首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
陕北黄土丘陵区不同土地利用方式下土壤碳剖面分布特征
摘要点击 2658  全文点击 794  投稿时间:2017-04-15  修订日期:2017-07-19
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  土地利用方式  土壤有机碳  土壤无机碳  碳密度  黄土高原
英文关键词  land use types  soil organic carbon  soil inorganic carbon  carbon density  Loess Plateau
作者单位E-mail
兰志龙 西北农林科技大学资源环境学院,农业部西北植物营养与农业环境重点实验室, 杨凌 712100 lanzhilong1024@163.com 
赵英 西北农林科技大学资源环境学院,农业部西北植物营养与农业环境重点实验室, 杨凌 712100 yzhaosoils@gmail.com 
张建国 西北农林科技大学资源环境学院,农业部西北植物营养与农业环境重点实验室, 杨凌 712100  
李会杰 西北农林科技大学水利与建筑工程学院,杨凌 712100  
司炳成 西北农林科技大学水利与建筑工程学院,杨凌 712100  
焦瑞 西北农林科技大学资源环境学院,农业部西北植物营养与农业环境重点实验室, 杨凌 712100  
Muhammad Numan Khan 西北农林科技大学资源环境学院,农业部西北植物营养与农业环境重点实验室, 杨凌 712100  
Tanveer Ali Sial 西北农林科技大学资源环境学院,农业部西北植物营养与农业环境重点实验室, 杨凌 712100  
中文摘要
      黄土高原土层深厚,土壤剖面碳存储受土地利用方式影响明显.为探讨不同土地利用方式对深层土壤碳分布的影响,研究了人工经济林地(陕北米脂)、退耕还林地(神木)和防风固沙林地(榆林榆阳区)0~20.0 m土壤有机碳(SOC)和无机碳(SIC)的分布特征和差异.结果表明,在不同土地利用方式下SOC含量:矮化枣树(2.00 g·kg-1) > 未矮化枣树(1.54 g·kg-1) > 柠条林(0.97 g·kg-1) > 退化人工草地(0.81 g·kg-1) > 樟子松林(0.70 g·kg-1) > 荒草地(0.45 g·kg-1),且各剖面之间SOC含量存在显著性差异(P<0.05).在不同土地利用方式下SIC含量:矮化枣树(11.66 g·kg-1)≥未矮化枣树(11.59 g·kg-1) > 柠条林(9.62 g·kg-1) > 退化人工草地(8.07 g·kg-1) > 樟子松林(4.32 g·kg-1) > 荒草地(0.47 g·kg-1);人工经济林和退耕还林(草)样地内所有土壤剖面之间SIC含量无显著性差异;人工经济林、退耕还林(草)剖面和防风固沙林地剖面SIC含量存在显著性差异(P<0.05).矮化枣树、未矮化枣树、柠条林、退化人工草地、樟子松林和荒草地土壤剖面无机碳密度分别是有机碳密度的6.19、7.71、10.80、10.78、5.91和1.03倍.综上可见,不同土地利用方式之间土壤碳储量存在明显差异,无机碳的含量远高于有机碳.
英文摘要
      Carbon storage in the Loess Plateau is affected by land use. In order to assess the differences in soil organic carbon (SOC) and soil inorganic carbon (SIC) under different land use patterns in deep soil profiles, we investigated the distribution characteristics of SOC and SIC at 0-20.0 m soil depth at three locations in the northern Shaanxi province (i.e., an economical plantation in Mizhi, a reforestation area in Shenmu, and a wind break and sand fixation forest district in Yuyang). The results showed that the order for SOC content was:pruning jujube tree (2.00 g·kg-1) > jujube tree (1.54 g·kg-1) > Caragana (0.97 g·kg-1) > degraded artificial grassland (0.81 g·kg-1) > pine forests (0.70 g·kg-1) > natural grass field (0.45 g·kg-1), which indicated significant differences between SOC content and land use types (P<0.05). Similarly, the order of SIC content was:pruning jujube tree (11.66 g·kg-1) > jujube tree (11.59 g·kg-1) > Caragana (9.62 g·kg-1) > degraded artificial grassland (8.07 g·kg-1) > pine forests (4.32 g·kg-1) > natural grass field (0.47 g·kg-1). There were no significant differences between SIC content and soil profiles under the economical plantation of Mizhi and the reforestation area of Shenmu. There were significant differences for SIC content between an artificial economic forest, an area returning farmland to a forest (grass) profile, and a windbreak and sand fixation forest (P<0.05). The SIC densities for pruning jujube tree, jujube tree, Caragana, degraded artificial grassland, pine forest, and natural grass field were 6.19, 7.71, 10.70, 10.78, 5.91, and 1.03 times that of its corresponding SOC density, respectively. It has been concluded that the soil carbon storage was significantly different for different land use patterns, and the SIC content was much higher than the SOC content in the soil profile.

您是第52855366位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2