首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
零价铁自养反硝化过程活性污泥矿化及解决措施
摘要点击 1819  全文点击 624  投稿时间:2017-03-04  修订日期:2017-04-06
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  铁自养硝酸盐反硝化  升流式厌氧反应器  活性污泥矿化  污泥流加  增设回流
英文关键词  iron autotrophic denitrification of nitrate  up-flow anaerobic reactor  activated sludge mineralization  sludge addition  adding reflux
作者单位E-mail
张宁博 苏州科技大学环境科学与工程学院, 苏州 215009
苏州科技大学环境生物技术研究所, 苏州 215009 
znb6677@163.com 
李祥 苏州科技大学环境科学与工程学院, 苏州 215009
苏州科技大学环境生物技术研究所, 苏州 215009 
 
黄勇 苏州科技大学环境科学与工程学院, 苏州 215009
苏州科技大学环境生物技术研究所, 苏州 215009 
yhuang@mail.usts.edu.cn 
张文静 苏州科技大学环境科学与工程学院, 苏州 215009
苏州科技大学环境生物技术研究所, 苏州 215009 
 
中文摘要
      本研究通过接种生活污水处理厂活性污泥,在升流式厌氧反应器内启动了零价铁还原硝酸盐的反应,经过52d的运行后实现氮去除速率29.3 g·(m3·d)-1.针对运行过程中形成的三价铁及铁氧化物对污泥的包裹,致使污泥矿化,导致活性降低的问题,进行了流加污泥和改变回流两种防矿化方式的可行性研究.采用流加方式,经过22 d运行,硝酸盐氮转化速率在33.0 g·(m3·d)-1左右,出水亚硝酸盐氮平均浓度16.50 mg·L-1,此两者和矿化时期相比均无较大变化,而出水氨氮平均浓度从12.38 mg·L-1下降到3.58 mg·L-1,氮去除速率从9.9 g·(m3·d)-1恢复至15.0 g·(m3·d)-1,生物反应减弱了化学还原硝酸盐过程;采用改变回流方式,反应柱外部设置回流池,利用回流池上部水进行水力循环和上升冲刷,将生成的三价铁及铁氧化物随出水流出并沉积在外部回流池内,在上升流速3.49 m·h-1的条件下,转化硝酸盐对应生成的三价铁量有大约58%通过回流沉淀在外部回流池内,硝酸盐氮反应速率在34.3 g·(m3·d)-1,出水亚硝酸盐氮、氨氮浓度分别为0.22 mg·L-1、0.75 mg·L-1,未出现氨和亚硝酸盐的大量积累,实现氮去除速率在33.4 g·(m3·d)-1,实现了长期运行中污泥矿化问题的解决.对比两种方式,从处理效果看改变回流模式处理污泥矿化问题优于污泥流加方式.
英文摘要
      We studied the inoculation of activated sludge from domestic sewage treatment plants. The reaction of reducing nitrate by zero-valent iron was started in the up-flow anaerobic reactor. After 52 d of operation, a nitrogen removal rate of 29.3 g·(m3·d)-1 was achieved. Ferric iron and iron oxide coated on the sludge formed in the operation process caused the mineralization and slowly decreased the sludge activity. The methods of the "supplement and replacement of the sludge in the reactor" and "changing the reflux mode of the reactor" were applied. Using the method of the supplement and replacement of the sludge in the reactor, by discharging a part of the sludge in the reactor and adding the extra dosage from the anaerobic denitrifying sludge for the treatment of wastewater, after 22 d of operation, the conversion rate of nitrate-nitrogen was 33.0 g·(m3·d)-1 and the concentration of nitrite-nitrogen was 16.50 mg·L-1. The effluent average concentration of ammonia-nitrogen decreased from 12.38 mg·L-1 to 3.58 mg·L-1 and the nitrogen removal rate was recovered from 9.9 g·(m3·d)-1to 15.0 g·(m3·d)-1. The biological reaction weakened the chemical reduction of nitrate by zero-valent iron. Using the method of changing the reflux mode of the reactor, the reflux tank was arranged outside the reaction column using hydraulic circulation. The increase in the erosion of the upper layer of the sedimentation tank would bring out ferric iron and iron oxide with the outflow water and they would be deposited in the reflux tank. The corresponding ferric iron of transformation of nitrate settled in the external reflux tank was 58% at the ascending velocity of 3.49 m·h-1. The nitrate-nitrogen conversion rate was 34.3 g·(m3·d)-1, the effluent concentration of nitrite-nitrogen was 0.22 mg·L-1, and ammonia-nitrogen was 0.75 mg·L-1. Ammonia and nitrite did not extensively accumulate. The nitrogen removal rate was 33.4 g·(m3·d)-1, which solved the problem of the mineralized sludge in the long-term reactor operation. In summary, the method of reforming the reflux mode of the reactor performed better than the method of the supplement and replacement of sludge in the reactor.

您是第54091157位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2