首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
同步脱氮除磷好氧颗粒污泥形成与反应机制的研究
摘要点击 3287  全文点击 3616  投稿时间:2009-06-07  修订日期:2009-08-09
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  好氧颗粒污泥  同步脱氮除磷  荧光原位杂交  胞外多聚物  染色
英文关键词  aerobic granular sludge(AGS)  simultaneous nitrogen and phosphorus removal(SNPR)  fluorescence in situ hybridization(FISH)  extracellular polymeric substances(EPS)  staining
作者单位
高景峰 北京工业大学环境与能源工程学院北京100124 
陈冉妮 北京工业大学环境与能源工程学院北京100124 
苏凯 北京工业大学环境与能源工程学院北京100124 
张倩 北京工业大学环境与能源工程学院北京100124 
彭永臻 北京工业大学环境与能源工程学院北京100124 
中文摘要
      处理实际生活污水添加不同碳源的A(丙酸钠+乙酸钠)、B(葡萄糖)2个单级SBR中的好氧颗粒污泥(aerobic granular sludge,AGS)均能在常温(18~27℃)和低温(9~13℃)条件下稳定维持同步脱氮除磷的去除效果,利用荧光原位杂交技术(fluorescence in situ hybridization,FISH)、多重荧光染色技术以及扫描电镜(scanning electron microscope,SEM)技术对2个反应器中好氧颗粒污泥的菌群、细菌凋亡和胞外多聚物(extracellular polymeric substances,EPS)的分布以及颗粒污泥的微观形态等进行了研究.FISH结果表明,2个反应器的AGS中,氨氧化菌均位于AGS的最外层,约占总菌的12%,聚磷菌则均位于颗粒的内层,约占总菌的40%,2种颗粒对氮、磷的去除机制没有明显区别,受碳源影响较小.硝化是限速步骤,好氧条件下颗粒内部反硝化除磷的存在加速了吸磷的进行.细菌凋亡荧光染色结果表明,A、B中AGS的活细菌多位于外层,而死细菌均匀分布.EPS多重荧光染色结果表明,2种AGS中的蛋白质和脂类均分布均匀,不受碳源的影响,但蛋白质数量较多,脂类较少;而多糖(α吡喃葡萄糖、α甘露糖和β-D-吡喃葡萄糖)在不同反应器的AGS中呈现出不同的分布规律,表明其分布及含量与外加碳源有着密切的关系,多糖与AGS的形成、稳定维持具有直接的联系.SEM显示B中球菌较多,而A中以杆菌为主,该结果表明不同的碳源会对好氧颗粒污泥的菌种产生影响,并且与最终的去除效果相关,以丙酸钠+乙酸钠为外加碳源更容易维持稳定的同步脱氮除磷去除效果.
英文摘要
      Aerobic granular sludge (AGS) for simultaneous nitrogen and phosphorus removal (SNPR) was cultivated and studied in two lab-scale sequencing batch reactors (named as A & B) treating real domestic wastewater, additional carbon (sodium propionate and sodium acetate for A, glucose for B) was added to make the ratio of COD∶N∶P as 360∶60∶6, good SNPR was achieved at normal (18-27 ℃) and low temperature(9-13℃). The microbial community composition and distribution, distribution of cells and extracellular polymeric substances (EPS) and morphologies of the AGS were investigated using fluorescence in situ hybridization (FISH), in situ fluorescent staining and scanning electron microscope (SEM), respectively. FISH results showed that ammonium-oxidizing bacteria comprised 12% of all the bacteria and were mainly located at the outer parts of the granules; phosphates accumulating organisms comprised 40% of all the bacteria and were mainly located in the inner parts of the granules. Nitrification was the rate controlling step; denitrifying phosphate accumulating organisms inside the granular sludge might be responsible for denitrification in the aerobic phase, which enabled effective SNPR. Live/dead fluorescent staining results showed that dead cells were distributed throughout the granules and live cells were principally distribution of polysaccharide (including α-mannopyranosyl, α-glucopyranosyl sugars and β-D-glucopyranose polysaccharides) of EPS in AGS were influenced by different carbon sources, but the contents and distributions of protein and lipids were not, the contents of protein was the largest. Polysaccharide was responsible for the formation and maintenance of aerobic granular sludge. SEM results showed that bacilli and cocci were the main bacteria in the granules of A and B, respectively. Carbon sources affected the bacteria type and the SNPR efficiency, sodium propionate and sodium acetate were better than glucose.

您是第54116747位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2