首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
1株耐油甲醛降解菌的分离鉴定及降解特性
摘要点击 1595  全文点击 723  投稿时间:2020-03-27  修订日期:2020-07-07
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  甲醛  芽孢杆菌属  筛选鉴定  降解特性  代谢机制
英文关键词  formaldehyde  Bacillus  isolation and identification  degrading characteristics  metabolic mechanism
作者单位E-mail
韩茜 北京工商大学生态环境学院, 国家环境保护食品链污染防治重点实验室, 北京 100048 1531552737@qq.com 
王蓉蓉 北京工商大学生态环境学院, 国家环境保护食品链污染防治重点实验室, 北京 100048  
史纯珍 北京工商大学生态环境学院, 国家环境保护食品链污染防治重点实验室, 北京 100048 shichunzhen@btbu.edu.cn 
中文摘要
      烹饪油烟的健康危害一直以来受到广泛关注.以甲醛为代表的醛类污染物是烹饪油烟排放的主要污染物之一.微生物法降解甲醛具有工艺简单、成本低及无污染等优点.本研究从烹饪油烟冷凝液中分离筛选出1株具有甲醛降解能力的菌株XF-1,经序列鉴定结合菌落形态特征及生理生化试验,该菌株被鉴定为解淀粉芽孢杆菌(Bacillus amyloliquefaciens sp.).该菌株具有能耐受高油环境的性能,最大耐受浓度为900 g·L-1.在甲醛浓度为100 mg·L-1的培养基中,菌株XF-1在34 h内的甲醛降解率为95.80%;当甲醛初始浓度<300 mg·L-1时,菌株XF-1能够在120 h以内完全降解溶液中的甲醛;甲醛浓度为800 mg·L-1时,在96 h,菌株XF-1的降解率达到73.01%,并可耐受1.5 g·L-1浓度的甲醛.通过单因素(pH、接种量、甲醛浓度和温度)试验,得到该菌株最佳生长温度为30℃、最佳生长pH为6左右,最佳接种量为10%.利用GC-TOF-MS进一步分析测定了菌株的胞外代谢产物,推测该菌株降解甲醛的途径可能为核酮糖单磷酸(RuMP)同化途径.结果表明,从烹饪油烟冷凝液中筛选得到的甲醛降解菌XF-1对甲醛具有良好的降解能力,并能够耐受高油环境.该菌对利用生物技术处理烹饪油烟中的甲醛具有良好的开发应用前景.
英文摘要
      In recent years, the health risks of cooking oil fumes have been widely concerning. Since formaldehyde is one of the major pollutants emitted from cooking oil fumes, the degradation of formaldehyde should be investigated. Due to the advances and innovations in the degradation of pollutants, biodegradation was evaluated in this research. In this study, we screened out the strain of XF-1, which can degrade formaldehyde from cooking oil fume condensates. The strain of XF-1 was identified as Bacillus amyloliquefaciens sp. by a sequence analysis combing morphology, physiological, and biochemical experiments. The degrading characteristics of the strain were further studied. In the medium with a formaldehyde concentration of 100 mg·L-1, the efficiency of XF-1 for degrading formaldehyde was 95.80% within 34 h. When the initial concentration of formaldehyde was <300 mg·L-1, the XF-1 strain could completely degrade the formaldehyde within 120 h. When the formaldehyde concentration was 800 mg·L-1, the degradation rate of the XF-1 strain reached 73.01% at 96 h. The maximum tolerated concentration of formaldehyde was 1500 mg·L-1. According to a single factor experiment (pH, inoculation amount, formaldehyde concentration, and temperature), the influence of each factor on the degradation of formaldehyde was studied. The optimal growth condition of the strain was 30℃ at pH 6 with an inoculum amount of 10%. The degradation specificity of formaldehyde was studied by comparing it with that of other bacillus species. The results showed that XF-1 strain was specific with regard to the function of degrading formaldehyde and was able to withstand a high oil environment. The maximum tolerable oil concentration of XF-1 was 900 g·L-1. By analyzing the extracellular metabolites, it was determined that the metabolic pathway of formaldehyde degradation was the RuMP assimilation pathway. In this paper, a strain of formaldehyde degrading bacteria that was also resistant to oil was screened out and its metabolic mechanism was studied. The results indicated that the bacteria had broad application prospects in the treatment of formaldehyde emitted from cooking oil fumes.

您是第52177120位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2