首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
不同低碳氮比废水中好氧颗粒污泥的长期运行稳定性
摘要点击 1472  全文点击 486  投稿时间:2020-01-29  修订日期:2020-04-19
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  好氧颗粒污泥(AGS)  低碳氮比(C/N)  高氨氮  硝化  稳定性
英文关键词  aerobic granular sludge(AGS)  low carbon to nitrogen ratio (C/N)  high ammonia concentration  nitrification  stability
作者单位E-mail
袁强军 昆明理工大学环境科学与工程学院, 昆明 650500 1217100592@qq.com 
张宏星 昆明理工大学环境科学与工程学院, 昆明 650500  
陈芳媛 昆明理工大学环境科学与工程学院, 昆明 650500 chenfy1220@hotmail.com 
中文摘要
      为了研究好氧颗粒污泥系统处理低碳氮比废水的长期运行稳定性,采用低碳氮比(C/N)条件下逐步增加碳氮负荷的进水方法,分别在反应器A和B中接种好氧颗粒污泥,考察其长期运行过程中的理化性质、处理性能及应对冲击负荷的稳定性.其中A反应器的碳氮比一直维持在2,而B则由4逐步降至2.结果表明,在4℃存储30d的好氧颗粒污泥,经过25d的培养,其活性基本恢复,A、B反应器化学需氧量(COD)和氨氮(NH4+-N)的去除效率均达到90%以上.在其后的稳定阶段,B反应器COD和NH4+-N去除率达到90%以上,实现了完全硝化;而A反应器COD去除率仅80%左右,虽然NH4+-N去除率最终也达到90%以上,但仅实现短程硝化.在冲击负荷阶段,A和B反应器COD去除率仍维持在80%以上,但是NH4+-N去除受到很大冲击.A反应器NH4+-N去除效率恶化,B反应器仅实现了部分硝化.整个运行过程,好氧颗粒污泥的物理性质受到的影响不大,A和B反应器的污泥容积指数(SVI30)分别维持在60 mL ·g-1和75 mL ·g-1左右,混合液悬浮固体(MLSS)在5g ·L-1和3.7g ·L-1左右.颗粒污泥微生物群落分析表明,B反应器相对于A反应器丰富度和多样性更高.同时B反应器具有更高丰度的Zoogloea属,在颗粒中能产生更多的胞外蛋白促使颗粒结构更稳定,保证系统的长期稳定运行.以上结果表明,与C/N为2的好氧颗粒污泥系统相比,C/N为4的系统脱碳硝化效果好,抗冲击负荷能力强,更有利于颗粒污泥的长期稳定运行.
英文摘要
      Long-term stability is important for the practical application of aerobic granular sludge system under low carbon to nitrogen ratio (C/N). In this study, aerobic granular sludge, seeded in the reactors A and B, were cultivated under low C/N to investigate the properties, performance, and resilience to shock load in the long-term operation. The load of carbon and nitrogen in the feed was increased gradually. The C/N of reactor A was kept at 2, while that of reactor B was kept at 4 initially and then reduced to 2 in the shock load stage. It was discovered that the aerobic granular sludge stored at 4℃ for 30 days was essentially revived after 25 days of cultivation in reactors A and B, with over 90% removal efficiency for COD and ammonia, respectively. In the following stages, the removal efficiencies of COD and ammonia in reactor B were over 90% and complete nitrification was achieved. In contrast, in reactor A, the removal efficiency of COD was only 80% and only partial nitrification was achieved; however, ammonia removal efficiency of 90% was finally achieved. In the shock load stage, the COD removal efficiencies in reactors A and B were still above 80%, but the ammonia removal efficiencies were severely affected. The removal of ammonia was deteriorated in reactor A, while only partial nitrification was achieved in reactor B. During the entire operation, the physical properties of the aerobic granules in reactors A and B were barely affected, with sludge volume index (SVI30) in reactors A and B maintained at 60 mL ·g-1 and 75 mL ·g-1, and mixed liquid suspended solid (MLSS) at 5 g ·L-1and 3.7 g ·L-1, respectively. Microbial analysis showed that the aerobic granular sludge in reactor B has richer and more diverse microbial community than that in reactor A. The abundance of Zoogloea in reactor B, which is simultaneously able to produce polymeric protein and stabilize the structure of the aerobic granules, may be favorable for the high stability of the aerobic granules. These findings suggested that the aerobic granular system under the C/N of 4 had better performance in ammonia removal and higher tolerance to shock load, which guaranteed high stability of the aerobic granular sludge system in long-term operation, as compared to that under the C/N of 2.

您是第52570999位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2