首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅指南  |  联系我们  |  微信  |  出版道德声明  |  Ei收录本刊数据
污水处理厂SNAD工艺小试
摘要点击 151  全文点击 59  投稿时间:2018-05-01  修订日期:2018-05-17
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  生活污水  有机碳源  同步短程硝化、厌氧氨氧化耦合反硝化(SNAD)  滤柱  生物膜
英文关键词  sewage  organic carbon source  simultaneous partial nitrification, ANAMMOX and denitrification(SNAD)  filter  bio-membrane
作者单位E-mail
李冬 北京工业大学建筑工程学院, 水质科学与水环境恢复工程北京市重点实验室, 北京 100124 lidong2006@bjut.edu.cn 
崔雅倩 北京工业大学建筑工程学院, 水质科学与水环境恢复工程北京市重点实验室, 北京 100124  
赵世勋 北京工业大学建筑工程学院, 水质科学与水环境恢复工程北京市重点实验室, 北京 100124  
刘志诚 北京工业大学建筑工程学院, 水质科学与水环境恢复工程北京市重点实验室, 北京 100124  
张杰 北京工业大学建筑工程学院, 水质科学与水环境恢复工程北京市重点实验室, 北京 100124
哈尔滨工业大学环境学院, 城市水资源与水环境国家重点实验室, 哈尔滨 150090 
 
中文摘要
      在污水处理厂室外,以A/O除磷工艺出水为基质,启动全程自养脱氮(CANON)生物滤柱反应器.反应器启动成功后,进水中投加葡萄糖作为有机碳源,启动同步短程硝化、厌氧氨氧化耦合反硝化(SNAD)工艺,研究SNAD生物滤柱处理城市生活污水的效果.结果表明,第119~128 d,CANON工艺氨氮去除率大于95%,最大出水总氮浓度为13.0 mg·L-1,超过了北京市地标一级A排放标准.第129 d在进水中投加葡萄糖30 mg·L-1启动SNAD工艺,第133~187 d时SNAD工艺总氮去除率在85%左右,出水总氮浓度为5.5~7.3 mg·L-1.第195d观察到滤柱出现堵塞现象,在第196 d对反应器进行反冲洗,反冲洗后的30d期间,反应器总氮去除率大于85%,出水总氮浓度维持在6.2~7.2 mg·L-1.与CANON工艺相比,SNAD工艺提高了总氮去除率,将出水总氮浓度降低了6 mg·L-1,使出水氨氮和总氮浓度达到北京市地标一级A标准.
英文摘要
      Outside the municipal waste water treatment plant(WWTP) which located in Mentougou District, Beijing, the effluent of the anoxic/oxic(A/O) phosphorus removal process served as the substrate to operate a completely autotrophic nitrogen removal over nitrite(CANON) filter reactor.. After the reactor was successfully activated, glucose was added to the influent as the organic carbon source. The simultaneous partial nitrification, anaerobic ammonium oxidation (ANAMMOX), and denitrification (SNAD) process was started to study the effect of SNAD filter on sewage treatment. The results showed that from 119 d to 128 d, the ammonia removal rate of the CANON process was more than 95%, and the maximum total nitrogen concentration in the effluent was 13.0 mg·L-1. Total nitrogen concentration surpassed the 1A level of the Integrated Discharge Standard of Water Pollutants applied in Beijing City. The SNAD process was started by adding glucose to the influent at 129 d. The total nitrogen removal rate of this process was about 85% at 133-187 d, and the total nitrogen concentration in the effluent was 5.5-7.3 mg·L-1. The filter plugged up at 195 d, and backwash was utilized at 196 d. During the subsequent 30 d, the total nitrogen removal rate of the reactor was greater than 85%, and the total nitrogen concentration in the effluent remained at 6.2-7.2 mg·L-1. Compared with the CANON process, the SNAD process improved the total nitrogen removal rate and reduced the total nitrogen concentration of the effluent by 6 mg·L-1. The ammonia and total nitrogen concentrations in effluent satisfied the 1A level of the Integrated Discharge Standard of Water Pollutants.

您是第13689777位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102,62849343 传真:010-62849343 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号