首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅指南  |  联系我们  |  微信  |  出版道德声明  |  Ei收录本刊数据
基于δ15N和δ18O的农业区地下河硝酸盐污染来源
摘要点击 114  全文点击 44  投稿时间:2018-04-07  修订日期:2018-04-22
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  氮氧同位素  硝酸盐污染  IsoSource模型  岩溶地下水  重庆青木关
英文关键词  nitrate-oxygen isotope  nitrate pollution  IsoSource model  karst groundwater  Qingmuguan in Chongqing
作者单位E-mail
盛婷 西南大学地理科学学院, 岩溶环境重庆市重点实验室, 重庆 400715
自然资源部岩溶生态环境-重庆南川野外基地, 重庆 400715 
shengting_2017@163.com 
杨平恒 西南大学地理科学学院, 岩溶环境重庆市重点实验室, 重庆 400715
自然资源部岩溶生态环境-重庆南川野外基地, 重庆 400715 
pinghengyang@126.com 
谢国文 西南大学地理科学学院, 岩溶环境重庆市重点实验室, 重庆 400715
自然资源部岩溶生态环境-重庆南川野外基地, 重庆 400715 
 
洪爱花 重庆地质矿产勘查开发局南江水文地质工程地质队, 重庆市地下水资源利用与环境保护实验室, 重庆 401121  
曹聪 重庆地质矿产勘查开发局南江水文地质工程地质队, 重庆市地下水资源利用与环境保护实验室, 重庆 401121  
谢世友 西南大学地理科学学院, 岩溶环境重庆市重点实验室, 重庆 400715
自然资源部岩溶生态环境-重庆南川野外基地, 重庆 400715 
 
时伟宇 西南大学地理科学学院, 岩溶环境重庆市重点实验室, 重庆 400715  
中文摘要
      为研究岩溶区农业活动为主导的地下河流域硝酸盐污染来源,于2017年5~10月每24 d左右对重庆青木关流域6个采样点进行监测,利用15N和18O同位素技术对示踪硝酸盐来源进行解译,应用IsoSource模型计算出不同端元硝酸盐的贡献率.结果表明:①青木关农业区地下河系统存在较大的硝酸盐污染风险,大部分采样点出现不同程度NO3--N浓度超标现象.②空间上,青木关地下河中NO3--N浓度整体呈现由上游向下游升高的趋势.时间上,上游鱼塘和岩口落水洞以及下游姜家泉样点NO3--N浓度在5~6月因受农业施肥的影响,均呈上升趋势,6~9月受降水影响而出现不同程度升高或降低,9月之后随着农业活动减少而逐渐降低;中游土壤点NO3--N浓度保持较高值;中下游大鹿池NO3--N浓度较低且变幅不大.③通过硝酸盐15N和18O同位素分析,表明上游鱼塘和岩口落水洞的硝酸盐源于土壤有机氮、动物粪便及污废水混合;中游土壤点硝酸盐源于土壤有机氮、降水和肥料中NH4+;中下游大鹿池中硝酸盐来源于动物粪便及污废水、土壤有机氮、降水和肥料中NH4+的混合作用.地下河出口处姜家泉硝酸盐污染严重,其源于土壤有机氮、降水和肥料中NH4+、动物粪便及污废水、大气沉降的综合作用.④基于IsoSource模型对地下河出口处硝酸盐来源进行定量分析,发现动物粪便及污废水贡献率占46.4%,土壤有机氮占32.6%,降水与肥料中NH4+占18.6%,大气沉降仅占2.4%.
英文摘要
      The objectives of this study were to reveal the sources of nitrate and the ratio of karst in an agricultural basin based on a 15N and 18O isotope technique and quantitative calculation of the IsoSource model. From May to October 2017, six sampling points in the Qingmuguan river basin, Chongqing, were monitored every 24 d. Results showed that there was a great risk of nitrate pollution in the underground river system, because most NO3--N concentrations of the sampling points exceeded the threshold. Spatially, NO3--N concentrations in the underground river increased from upstream to downstream. Temporally, NO3--N concentrations of Fishpond and Yankou Ponor upstream and Jiangjia Spring downstream were impacted by agricultural fertilizer from May to June and fluctuated from June to September due to precipitation. With decreased agricultural activities, NO3--N concentrations gradually decreased after September. NO3--N concentrations were high in midstream soil water. Daluchi, in the middle and lower reaches, maintained relatively low NO3--N concentrations with stable fluctuations. Dual 15N and 18O isotopic compositions suggested that the upstream nitrates were derived from soil organic nitrogen and a mixture of manure and sewage. The midstream nitrates originated from soil organic nitrogen and NH4+ from fertilizer and rain. Nitrates in the middle and lower reaches were derived from the mixing of manure and sewage, soil organic nitrogen, and NH4+ from fertilizer and rain. Jiangjia Spring, the outlet of the underground river, was seriously polluted by nitrates. It is believed that soil organic nitrogen, NH4+ in fertilizer and rain, the mixing of manure and sewage, and NO3- in precipitation were the main nitrate sources in the outlet. Nitrate source contribution of the outlet was calculated with the IsoSource model. The calculation results showed that manure and sewage, soil organic nitrogen, NH4+ in fertilizer and rain, and NO3- in precipitation contributed 46.4%, 32.6%, 18.6%, and 2.4%, respectively.

您是第13249726位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102,62849343 传真:010-62849343 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号