首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅指南  |  联系我们  |  微信  |  出版道德声明  |  Ei收录本刊数据
鄱阳湖微囊藻毒素时空分布格局及其与理化和生物因子的关系
摘要点击 319  全文点击 84  投稿时间:2017-08-28  修订日期:2017-10-20
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  微囊藻毒素  胞内微囊藻毒素  胞外微囊藻毒素  鄱阳湖  季节变化  空间分布
英文关键词  microcystins  intracellular microcystins  extracellular microcystins  Poyang Lake  seasonal variations  spatial distributions
作者单位E-mail
袁丽娟 江西省农业科学院农产品质量安全与标准研究所, 南昌 330200 ylj198820062467@163.com 
廖且根 江西省农业科学院农产品质量安全与标准研究所, 南昌 330200  
张莉 江西省农业科学院农产品质量安全与标准研究所, 南昌 330200  
张大文 江西省农业科学院农产品质量安全与标准研究所, 南昌 330200 zdw3296@163.com 
罗林广 江西省农业科学院农产品质量安全与标准研究所, 南昌 330200  
刘聚涛 江西省水利科学研究院,南昌 330029  
中文摘要
      本文分别于2012年4月(春季)、8月(夏季)、10月(秋季)和2013年1月(冬季)在鄱阳湖进行了4次野外调查和样品采集,采用超高效液相色谱-串联质谱仪(UPLC-MS/MS)对鄱阳湖水柱中常见的3种微囊藻毒素(MC-RR、MC-YR和MC-LR)的质量浓度进行定量分析,探寻了微囊藻毒素(microcystins,MCs)质量浓度的时空变化规律及其与湖泊环境理化因子和生物因子之间的关系.结果表明,MC-RR是鄱阳湖MCs的主要毒素种类.胞内微囊藻毒素(intracellular MCs,IMCs)与微囊藻生物量(r=0.47,P<0.01)、颤藻生物量(r=0.68,P<0.01)、蓝藻生物量(r=0.56,P<0.01)、Chl-a(r=0.28,P<0.01)之间均具有显著的正相关关系,但与鱼腥藻生物量之间没有明显的相关关系(P>0.05),这说明微囊藻和颤藻是鄱阳湖微囊藻毒素的主要产毒藻类.IMCs与水温(r=0.51,P<0.01)、透明度(r=0.69,P<0.01)、Fe(r=0.43,P<0.01)和Zn(r=0.43,P<0.01)之间均呈现显著的正相关关系,与TN(r=-0.44,P<0.01)、TP(r=-0.29,P<0.01)、NO2--N(r=-0.28,P<0.05)、NH4+-N(r=-0.33,P<0.05)、Ca(r=-0.34,P<0.01)和Mg(r=-0.35,P<0.05)均呈现显著的负相关关系,但与pH、PO43--P、NO3--N、电导率、高锰酸盐指数、Cu离子之间的相关关系不显著(P>0.05),这说明光照强度(透明度反映)、氮、磷、水温是控制鄱阳湖微囊藻毒素产生的重要因子,金属离子Ca、Mg、Fe、Zn在一定程度上能影响微囊藻毒素的产生.鄱阳湖IMCs和胞外微囊藻毒素(extracellular MCs,EMCs)呈现相似的季节变化趋势,即夏季最高,其次为秋季,冬季和春季较低.鄱阳湖IMCs的空间分布整体上呈现东部湖汊群、松门山周围以及蚌湖和蚌湖进入鄱阳湖的入湖口较高,其它区域较低的趋势,而EMCs的高值区位于松门山周围和蚌湖及其入湖口.
英文摘要
      Poyang Lake is the largest freshwater lake in China and an important drinking water source for Jiangxi Province. Since the year 2000, toxic cyanobacteria have been observed frequently in Poyang Lake. In this study, water samples were collected in the lake quarterly (April 2012, August 2012, October 2012, and January 2013) to examine the spatial and seasonal variations in the concentrations of microcystins (MCs; MC-RR, -YR, and -LR) and their relationships with physiochemical and biological factors. MCs were determined by ultra-high-performance liquid chromatography-electrospray ionization tandem triple quadrupole/mass spectrometry (UPLC-MS/MS). MC-RR (accounting for 75.01% and 71.34% of intracellular MC (IMC) and extracellular MC (EMC) concentrations, respectively) was the most dominant variant in Poyang Lake, followed by MC-LR (accounting for 21.95% and 24.97% of IMC and EMC concentrations, respectively), while MC-YR was detected in low concentrations (accounting for 3.01% and 3.69% of IMC and EMC concentrations, respectively). Total MC concentrations (IMC + EMC, TMC) ranged from 0.49 to 3517.85 ng·L-1, with an average of 337.43 ng·L-1 and only 2.53% (2 out of 79 water samples) of the water samples contained MCs concentrations exceeding the drinking water guideline level of 1 ng·L-1 for MC-LR proposed by World Health Organization (WHO). IMC concentrations showed significant relationships with Microcystis biomass (r=0.47, P<0.01), Oscillatoria biomass (r=0.68, P<0.01), Cyanobacteria biomass (r=0.56, P<0.01), and Chl-a (r=0.28, P<0.01), but no significant correlation was found between intracellular MC concentration and Anabena biomass (P>0.05), suggesting that Microcystis and Oscillatoria might be the main MCs-producing cyanobacteria in Poyang Lake. In addition, IMC concentrations were positively correlated with water temperature (r=0.51, P<0.01), transparence (r=0.69, P<0.01), Fe (r=0.43, P<0.01), and Zn contents (r=0.43, P<0.01), and negatively correlated with TN (r=-0.44, P<0.01), TP (r=-0.29, P<0.01), NH4+-N (r=-0.33, P<0.05), NO2--N (r=-0.28, P<0.05), Ca (r=-0.34, P<0.01), and Mg(r=-0.35, P<0.05), while no significant correlations were observed between IMC concentrations and pH, PO43--P, NO3--N, electrical conductivity, permanganate index, and Cu content (P>0.05). These results indicated that light intensity (represented by transparence), nitrogen, phosphorus, and water temperature might be the regulating factors of MCs production in Poyang Lake and trace elements (Fe, Zn, Ca, and Mg) can influence the MC production to a certain extent. IMCs and EMCs exhibited similar seasonal variations in Poyang Lake. The highest values of IMCs (531.87 ng·L-1) and EMCs (232.44 ng·L-1) were observed in summer. The concentrations of IMCs and EMCs in autumn were 31.97 ng·L-1 and 6.49 ng·L-1, respectively. Low concentrations were observed in spring (0.55 ng·L-1 and 0.88 ng·L-1 of IMCs and EMCs, respectively) and winter (0.69 ng·L-1 and 4.14 ng·L-1 of IMCs and EMCs, respectively). The highest IMCs and EMCs values of Poyang Lake in summer were 2298.08 ng·L-1 and 1219.77 ng·L-1, respectively, and the lowest values were 92.53 ng·L-1 and 38.80 ng·L-1, respectively. Overall, the concentrations of IMCs in eastern bays, the vicinity of Songmen Mountain, Banghu Lake, and its outlet were higher than those in other regions. However, the spatial distributions of EMCs in Poyang Lake were different from those of IMCs. EMCs concentrations in the vicinity of Songmen Mountain, Banghu Lake, and its outlet were higher than those in other regions.

您是第12036728位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102,62849343 传真:010-62849343 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号