首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
南京北郊冬春季气溶胶数浓度变化特征分析
摘要点击 1844  全文点击 747  投稿时间:2017-02-15  修订日期:2017-04-24
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  数浓度  日变化  粒径谱分布  相对湿度  霾等级  气团来源
英文关键词  pollutant number concentrations  diurnal variation  particle size distribution  relative humidity  levels of haze  air mass sources
作者单位E-mail
吴丹 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 南京 210044
南京信息工程大学江苏省大气环境监测与污染控制高技术研究重点实验室, 南京 210044 
wudan_04@163.com 
张璠 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 南京 210044
南京信息工程大学江苏省大气环境监测与污染控制高技术研究重点实验室, 南京 210044 
 
刘刚 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 南京 210044
南京信息工程大学江苏省大气环境监测与污染控制高技术研究重点实验室, 南京 210044 
 
吴明 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 南京 210044
中国气象局气溶胶与云降水重点开放实验室, 南京 210044 
 
夏俊荣 中国气象局气溶胶与云降水重点开放实验室, 南京 210044  
盖鑫磊 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 南京 210044
南京信息工程大学江苏省大气环境监测与污染控制高技术研究重点实验室, 南京 210044 
 
李凤英 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 南京 210044
南京信息工程大学江苏省大气环境监测与污染控制高技术研究重点实验室, 南京 210044 
 
杨孟 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 南京 210044
南京信息工程大学江苏省大气环境监测与污染控制高技术研究重点实验室, 南京 210044 
 
中文摘要
      使用APS-3321对2014年南京北郊冬春季0.5~20 μm粒径段大气气溶胶数浓度进行了较长时间的连续观测,对其变化特征进行了分析.观测期间南京北郊冬、春季大气气溶胶平均数浓度分别为(364.8±297.8)个·cm-3和(79.6±62.4)个·cm-3,细粒子(0.5~1.0 μm)分别占整个观测粒径段数浓度的87.8%和86.6%,在不同时间段,数浓度变化很大.南京北郊数浓度具有明显的日变化特征,夜晚浓度高,白天浓度低,冬季07:00和春季09:00达到早高峰,冬季17:00和春季18:00数浓度开始迅速增加.数浓度粒径谱分布冬季为单峰型,峰值粒径在0.583~0.626 μm之间,春季峰值粒径小于0.542 μm,冬季峰值粒径大于春季.随着相对湿度的增加气溶胶数浓度不断增加,同时峰值粒径向较大粒径方向偏移,体现了吸湿增长对气溶胶粒径谱分布的影响.观测期间,霾天比例高达83.3%,随着霾污染加重,在小于2.0 μm的粒径段数浓度显著增加且冬季更为明显;春季,细粒子比例随霾的加重而增加,但冬季由于气溶胶老化导致大粒径粒子浓度显著增大,重度霾天时,细粒子比例有所降低.对1月典型污染过程的分析表明,气团来源与地面风向存在很好的对应关系,苏北近距离污染输送和地面小风造成的污染物累积是此次重污染过程形成的重要原因.
英文摘要
      Using APS-3321, the atmospheric aerosol number concentrations (0.5-20 μm) were continuously monitored to analyze the characteristics of winter and spring pollution in 2014 in a northern suburb of Nanjing. The average number concentrations were (364.8±297.8) cm-3 and (79.6±62.4) cm-3 in winter and spring, respectively; fine particles (0.5-1.0 μm) accounted for 87.8% and 86.6% of the total, respectively. There were significant variations in number concentration at different periods. The diurnal variations in number concentrations were evident with high concentrations at night and low concentrations during the day. The early peaks were at 07:00 and 09:00, and number concentrations began to increase rapidly starting at 17:00 and 18:00 in winter and spring, respectively. The distribution of the number concentrations was unimodal, with peak sizes between 0.583 and 0.626 μm in winter and less than 0.542 μm in spring. With the increase in relative humidity, aerosol number concentrations increased gradually; at the same time, the peak size moved to a larger diameter which reflected the influence of hygroscopic growth of aerosols. During the total observation period, it reached 83.3% of the proportion of hazy days. The number concentration of particles less than 2.0 μm increased significantly with the increase in the haze pollution level, which was more obvious in winter. In spring, the proportion of fine particles increased with the increase in the haze level but in winter, it decreased during hazy days due to a significant increase in particle size caused by aging. The analysis of the typical pollution process in January indicated that there was a strong correlation between the source of air mass and the surface wind direction. Pollutants transmitted from the northern Jiangsu Province and the accumulation of pollutants due to slow winds were important causations of the pollution process.

您是第52700965位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2