首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
基于Monte Carlo模拟法对水源水体中微囊藻毒素的健康风险评估
摘要点击 2616  全文点击 694  投稿时间:2016-08-24  修订日期:2016-12-22
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  微囊藻毒素  @Risk7.0  污染特征  蒙特卡洛法  健康风险评价
英文关键词  microcystins (MCs)  @Risk7.0  pollution characteristics  Monte Carlo method  health risk assessment
作者单位E-mail
王阳 暨南大学生命科学技术学院, 广州 510632
暨南大学应急管理研究中心, 广州 510632 
wangyang5221@126.com 
徐明芳 暨南大学生命科学技术学院, 广州 510632
暨南大学应急管理研究中心, 广州 510632 
xumingfang@jnu.edu.cn 
耿梦梦 暨南大学生命科学技术学院, 广州 510632  
黎明 暨南大学生命科学技术学院, 广州 510632  
陈耕南 暨南大学生命科学技术学院, 广州 510632  
中文摘要
      调查水源水体中微囊藻毒素MCs(MC-RR、MC-LR和MC-YR)的污染情况,结合调查情况应用蒙特卡洛法(Monte Carlo)模拟量化人群通过饮水途径摄入微囊藻毒素的风险.在珠江西航道沿线设置5个采样点,在2016年1~6月期间共采集90份水样,根据国标(GB/T 20466-2006)推荐的HPLC方法检测水体中的微囊藻毒素,运用专业风险评估软件@Risk7.0,构建非参数概率评估模型,对通过饮水途径摄入微囊藻毒素(暴露)风险进行概率评估.对随机采集90份水源水体中微囊藻毒素MCs质量浓度检测值进行分布拟合,并运用Chi-Squared、Anderson-Darling、Kolmogorov-Smirnov这3种统计方法进行拟合度检验,根据3种评估拟合结果,确定最佳拟合分布模型.结果表明,在检测的90个水样品中,MC-RR的检出率最高,达到51.11%,质量浓度范围为0.0017~0.3863 μg·L-1;其次为MC-LR和MC-YR,检出率分别是47.78%和21.11%,质量浓度范围分别是0.0285~0.2796 μg·L-1和0.0030~0.1362 μg·L-1,水源水体中3种微囊藻毒素以MC-RR为主,最大检出质量浓度为0.3863 μg·L-1,MC-YR的含量最低.采用软件@Risk7.0分布拟合结果显示,MC-LR质量浓度最适的拟合分布为ExtValueMin模型(0.11391,0.098462),MC-RR质量浓度最适的拟合分布为Logistic(0.058064,0.053044).健康风险评估表明,MC-LR对人体健康危害的风险高于MC-RR的风险,儿童比成人更易于受到MCs污染的威胁.MC-LR对儿童健康危害的致癌年风险数值大于美国环保署(USEPA)推荐的最大可接受风险水平1×10-4;MC-LR对成人的致癌暴露年风险数值大于国际辐射防护委员会(ICRP)推荐的最大可接受风险水平5×10-5,表明水源水体中的MCs对人体健康存在潜在的危害,有必要加强饮用水源水体的保护与监控,为有效控制水源地水质污染和更好地保障人民健康奠定基础.
英文摘要
      To investigate the microcystins(MCs:MC-RR, MC-LR and MC-YR) exposure from drinking water source and to assess the health risk using Monte Carlo simulation method. 90 samples randomly collected from five sample points set along the river were determined using the national standard method (GB/T 20466-2006) during the period of January to June 2016. Professional risk assessment software@Risk7.0 was used to evaluate the dietary intake (exposure) risk of MCs based on building a nonparametric probabilistic evaluation model. First, 90 samples with the MCs were collected for fitting of distribution and the optimal fitting distribution model was selected from the results of three statistical test methods:the Chi-Squared test, the Anderson-Darling test and the Kolmogorov-Smirnov test. Of the 90 water samples tested, the most frequently detectable MCs was MC-RR with the detectable rate of up to 51.11% within the content range of 0.0017-0.3863 μg·L-1, followed by 47.78% of MC-LR within the range of 0.0285-0.2796 μg·L-1, and 21.11% of MC-YR within 0.0030-0.1362 μg·L-1. These results indicated that vast majority of MCs in testing samples were at relatively low levels with the highest concentration of MC-RR at 0.3863 μg·L-1 and MC-YR concentration was the lowest from drinking water source. The fit distribution of MC-LR concentration was the ExtValueMin(0.11391, 0.098462) and that of MC-RR was Logistic(0.058064, 0.053044)(the first number was μ as the position parameter, the second number was σ as the scale parameter). The result indicated that health risks of MC-LR from drinking water source were higher than those of MC-RR and MCs pollution and would lead to high potential health risks especially for children. The health risks caused by the MC-LR from drinking water source for children were significantly higher than the maximum allowance levels recommended by USEPA(1×10-4), and the health risks caused by the MC-LR from drinking water source for adults were significantly higher than the maximum allowance levels recommended by ICRP(5×10-5). Therefore, it is necessary to strengthen the protection and monitoring of drinking water source for effective control of water pollution and protection of human health.

您是第51721437位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2