首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
南京工业区夏冬季节二次有机气溶胶浓度估算及来源解析
摘要点击 2630  全文点击 3276  投稿时间:2016-10-24  修订日期:2016-11-23
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  VOCs  SOA浓度  FAC系数法  EC示踪法  PMF源解析
英文关键词  volatile organic compounds(VOCs)  concentration of secondary organic aerosol  fractional aerosol coefficients(FAC)  EC tracer method  positive matrix factorization model and source apportionment
作者单位E-mail
刘静达 南京信息工程大学, 气象灾害教育部重点实验室, 气候与环境变化国际合作联合实验室, 气象灾害预报预警与评估协同创新中心, 中国气象局气溶胶与云降水重点开放实验室, 南京 210044 nuistljd@163.com 
安俊琳 南京信息工程大学, 气象灾害教育部重点实验室, 气候与环境变化国际合作联合实验室, 气象灾害预报预警与评估协同创新中心, 中国气象局气溶胶与云降水重点开放实验室, 南京 210044 junlinan@nuist.edu.cn 
张玉欣 南京信息工程大学, 气象灾害教育部重点实验室, 气候与环境变化国际合作联合实验室, 气象灾害预报预警与评估协同创新中心, 中国气象局气溶胶与云降水重点开放实验室, 南京 210044  
师远哲 南京信息工程大学, 气象灾害教育部重点实验室, 气候与环境变化国际合作联合实验室, 气象灾害预报预警与评估协同创新中心, 中国气象局气溶胶与云降水重点开放实验室, 南京 210044  
林旭 杭州市环境监测中心站, 杭州 310007  
中文摘要
      采用2015年6月15日~7月15日及2015年12月16日~2016年1月15日期间GC5000在线气相色谱仪得到的挥发性有机物(volatile organic compounds,VOCs)数据、DRI-2001A热/光碳分析仪对膜采样分析得到的EC(elemental carbon)、OC(organic carbon)数据,使用气溶胶生成系数法(fractional aerosol coefficient,FAC)、EC示踪法及正矩阵因子分析(positive matrix factorization,PMF)对南京工业区二次有机气溶胶(secondary organic aerosol,SOA)浓度进行估算及来源解析.研究发现南京工业区SOA污染主要来源于芳香烃类物质,其对夏、冬季节SOA贡献率分别为80.39%、94.63%,主要贡献者为苯、甲苯、乙苯、二甲苯(benzene、toluene、ethylbenzene、xylene,BTEX);对南京工业区SOA浓度进行估算,得到夏季SOA浓度值为5.84~20.88 μg·m-3,平均浓度为12.15 μg·m-3,冬季为2.17~17.73 μg·m-3,平均浓度为6.91 μg·m-3,冬季SOA浓度平均水平明显低于夏季.SOA浓度值随风速及降水量的增大而减小;使用PMF受体模型对VOCs进行源解析分析得到夏季SOA污染主要来源于涂料使用、石油加工及石油化工源,SOA贡献值分别为0.65、0.21、0.18 μg·m-3.冬季SOA污染主要来自于涂料使用,SOA贡献值为0.94 μg·m-3.
英文摘要
      Volatile organic compounds (VOCs) were determined by GC5000, an automatic on-line Gas Chromatography-Flame Ionization Detector. Elemental carbon (EC) and organic carbon (OC) were determined by the thermal/optical method using DRI-2001A during the periods of June 15th-July 15th 2015 and December 16th 2015-January 15th 2016. The concentration of secondary organic aerosol(SOA) was estimated by fractional aerosol coefficients (FAC) and EC tracer method. The source apportionment relied on the positive matrix factorization model (PMF). There were several conclusions:First, aromatic hydrocarbon was the main substance causing the SOA pollution in the Nanjing Industrial district, the contributions of aromatic hydrocarbon to SOA during summer and winter were 80.39% and 94.63%, respectively. The main contributers were benzene, toluene, ethylbenzene, m,p-xylene and o-xylene (BTEX). In the summer, SOA concentration ranged from 5.84-20.88 μg·m-3 with an average of 12.15 μg·m-3 and in the winter ranged from 2.17-17.73 μg·m-3 in which the average concentration was 6.91 μg·m-3. Secondly, SOA concentration decreased when wind and precipitation increased. By using the PMF model, a total of 7sources of SOA were determined in summer and 6 were determined in winter. There were 3 main sources in summer, including painting, petroleum processing and petrochemical industry, and the contributions to SOA were 0.65 μg·m-3, 0.21 μg·m-3, 0.18 μg·m-3, respectively. In winter, the most important SOA pollution was from painting, in which the contribution was 0.94 μg·m-3.

您是第52606868位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2