厌氧污泥降解萘动力学与生物多样性研究 |
摘要点击 4499 全文点击 1820 投稿时间:2011-12-26 修订日期:2012-03-12 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 厌氧污泥 萘降解 降解动力学 克隆文库 系统发育分析 |
英文关键词 anaerobic sludge naphthalene removal degradation kinetics clone library phylogenetic analysis |
|
中文摘要 |
为对工业废水中的萘进行高效的生物处理,采集某石油工业废水处理装置的厌氧活性污泥,以萘和萘与乳酸钠为电子供体进行驯化培养. 当一个驯化周期中萘去除率达到90%以上时,研究间歇反应条件下分别以萘和萘与乳酸钠为电子供体时的降解动力学,并提取去除率高的污泥中微生物总DNA,构建16S rDNA基因片段克隆文库分析细菌群落结构. 结果表明,以单一萘为电子供体时萘的降解率远远小于萘与乳酸钠共代谢时的降解率; 两种驯化模式下萘浓度与时间符合一级反应动力学,动力学常数K分别为3.5×10-3 h-1和16×10-3 h-1. 萘与乳酸钠共代谢污泥中细菌类群主要为Deltaproteobacteria、Thermotogae、Bacteroidetes、Chloroflexi和Unclassified bacteria,其中Deltaproteobacteria类细菌占主导地位. 在成熟的厌氧活性污泥中Desulfobulbus sp. 所占比例为24.2%; Kosmotoga占21.0%. 此外,反应器中还存在Smithella、Syntrophobacter、Levilinea等细菌. 对厌氧活性污泥中细菌多样性的研究有利于优化反应条件,从而提高污泥中萘的去除率. |
英文摘要 |
For efficient biological treatment of naphthalene in the industrial wastewater, activated anaerobic sludge was collected from a wastewater treatment plant of petroleum industry, and domesticated with naphthalene, naphthalene and lactate as electron donors, respectively. When the removal efficiency of naphthalene reached more than 90% in a domestication cycle, degradation kinetics were investigated in batch reactions with naphthalene, naphthalene and lactate as electron donors, respectively. Meanwhile, the microbial DNA was extracted from the sludge with high naphthalene removal efficiency, the 16S rDNA clone library was built up, and the bacterial community was analyzed. The results indicated that the degradation rate of naphthalene in reaction with naphthalene as the sole electron donor was much lower than that with naphthalene and lactate as electron donors. In both domestication modes, the naphthalene concentration and the time followed the first order reaction kinetics model and the kinetic constant K were 3.5×10-3 h-1 and 16×10-3 h-1, respectively. In addition, phylogenetic analysis indicated that the bacterial communities in naphthalene and lactate co-metabolism sludge were mainly composed of Deltaproteobacteria, Thermotogae, Bacteroidetes, Chloroflexi and Unclassified bacteria. Deltaproteobacteria was the main phylum in the sludge. In mature anaerobic activated sludge,Desulfobulbus sp. and Kosmotoga accounted for 24.2% and 21.0%, respectively. Smithella, Syntrophobacter and Levilinea were also found in the bioreactor. The study of the bacteria diversity in the anaerobic sludge is conducive to the optimization of reaction conditions for efficient removal of naphthalene. |
|
|
|