

ENVIRONMENTAL SCIENCE

第45卷 第2期 2024年2月15日

目 次

「○同文学院家庭安徽社、徽家校会議員、「○日本、「「○日本、「「○日本、「「○日本、「「○日本、「「○日本、「「○日本、「「○日本、「「○日本、「「○日本、「「○日本、「○日本、	疫情期间人为源减排对城市大气氧化性的影响
不同力。如果 不是 "我想要我的一个。" "我想要我的一个。" "我想,我是 "我,是要我,也是我,生生,我的我。我的我。(45) 基于大口或分规制间的山窗的近地也。你我的我的有些好。" "不成年、家家 我怎么来他来,我这,我你是,我这一个。" "我说,我你是,我这一个。" "我说,我说我,我说我,我说我,我说我,我说我,我说我,我说我,我说我,我说我,	不同天气形势对南京地区双高污染的输送及潜在源区分析
2005-021 年夏年年上房具業業業費目級支持大学業業量分析	不同方法判定南京臭氧牛成敏感区的差异
	2006-2021年夏半年上海臭氧浓度特征及其大气环流背景分析
□ 文字、系是、李麗、天城高、大城高、大坡高、大生、美雄、代生、三、金、田谷、 □ 运动管理 YOG #WE 来面及复笑形成效感的 →	其于于与成分观测网的山西省近地面口体和分数分布转征
	金丁八 (风力)从时间时间自己地回应,你们不过来的问题,你们是这个人的问题,我们们不能是一个人的问题,我们们不能是一个人的问题。
出版的事件。	了」中发子八(天电工风机间及喷开水咀
#川市理、学校、工作、工作、工作、工作、工作、工作、工作、工作、工作、工作、工作、工作、工作、	应项印码字 VOCS付证、木砾及英电形成取透彻竹
 四川田川山、叶和机酸的学校: 本熟時为之、化生薬 (本生素)、「新生、、素素、、「素素、、「素素、、素素、、、「素素、、素素、、、、(12) 第二日和架型的高能器好比中长期展出发动的灵魂器、水、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	が州田冬夏季乃渠过程中人气VUC3万梁行低、米源肼竹及活性分析
田三大規申 田二,現地 田田二,現地 田田二,現 田田二,現 田田二,現 田田二, 田田一, 田田一	[▶] 州用PM _{2.5} 甲有机酸的污染符征、米源解析及_次生成 ····································
 苯丁比科模型的操作而并且不可要。某些。考析系(721) 委定局管器下的复杂地方包括一致之、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	中国三大城市群PM2.5浓度非线性变化分析
磁交易容素下山旱华地区碱代植物与交化	基于LEAP模型的临港新片区中长期碳排放预测及减排潜力分析
考虑区线增点和车型层种的盆燃料电池汽车全佔合周期或做预用分析	碳交易背景下中国华北地区碳代谢格局变化
現 王 愛阿富永系的為客的集神程 发度實解解	考虑区域特点和车型差异的氢燃料电池汽车全生命周期减碳预测分析马菁,蔡旭,张春梅,兰利波,陈轶嵩,付佩 (744)
不同时至尺度了土地利用结构与空间移动场,如果不能的影响	我国主要河流水系硝态氮污染特征及定量源解析
深圳正2015-2021年頃環境型構成來與村空電化及其对條訂的喻症	不同时空尺度下土地利用结构与空间格局对苏州河水质的影响谭娟,熊丽君,王卿,任志文,朱丹丹,王敏(768)
 副市前內定直定浸且地下水化学特征与定控污案解解 一一一, 化学、零红、学奖、, 本果志、常英点、「(22) 北京西山沿溜地下水化学特征及其成因为析 一部高轩、代果茶、许充、朱米、武艺亮、成为、中菜、牛菜、(22) 北京西山沿溜地下水化学特征及其成因为析 小菜市山松花水割地下水化学特征及其成因和制分析 金麦芽、服秀生、李长素、卡充、朱米、武艺亮、成为、中菜、牛菜、(22) 副防疫水中比仁素抗化的污染特征。公司于我和控制方法 小菜油刀、水水化学特征及其成因和制分析 金麦芽、服秀生、李长素、牛菜、(23) 副防疫水中比仁素抗化的污染特征。公司于我和控制方法 小菜油刀、水水化学特征及其成用和控制方法 小菜油刀、水水化学特征及其成用和控制方法 小菜油刀、水水化学特征及其成用和控制方法 小菜油刀、水水化学特征及其成用和控制方法 小菜油刀、水水水化学物化及其成用和控制方法 小菜油刀、水水水化学物化及其成化和控制、水水化学物化及其成量量、生活、(23) 副防疫水石、吸水和、肥料、軟工、(24) 小菜油和、水水化学物化及其成化和控制、(24) 小菜油和、水水化学物化和控制、(24) 小菜油、(24) 小菜油、(深圳市2015~2021年雨源型河流水质时空变化及其对降雨的响应
北京而山岩海龜下永化学特征及建成同分析	河南黄河改道区浅层地下水化学特征与主控污染源解析
 店埠河流城地表水、地下水水亿学特征及其成因分析 金麦芳、股秀兰、非长吉、孝文娟、麦干香、天洋、麦菜酱、Q到堆(813) 祭家口地区陆水圳地下水水亿学特征及其成以机制分析 金麦芳、股秀兰、非长吉、孝文娟、麦香香、文娟、麦香香、冬文娟(813) 制药皮水中拉仁素抗化的污染特征。检测于段和总增方达 水体组入分量定义储铁、和地区本水水亿学特征及其成以机制剂 新成方、中拉仁素抗化的污染特征。检测于段和总增方达 小水组入分量之常物、和地区本规的污染特征。检测于段和总增方达 小水组入分量之常物、和地量数量、化合物、使用 ※定、完美、安靖明、岳小菜、小麦菜、花香、水麦香、麦麦花、(844) 富硝皮并钙基仁物炭却水白地酸甲酸化、一酸、水量、水量、水量、水量、水量、水量、水量、水量、水量、水量、水量、水量、水量、	北京西山岩溶地下水化学特征及成因分析
ホームのないたいました。 ホームのないたいました。 ボールにたいたました。 ボールのないたいました。	π_{1} π_{2} π_{1} π_{1} π_{2} π_{1} π_{1} π_{2} π_{1} π_{2} π_{1} π_{1} π_{2} π_{2} π_{1} π_{1} π_{2} π_{2} π_{1} π_{2} π_{1} π_{1} π_{2} π_{2} π_{2} π_{1} π_{1} π_{2} π_{2} π_{2} π_{2} π_{1} π_{1} π_{2} π_{2
 出来口是包括小鸡鱼之、牛肉、白、牛肉、白、牛肉、白、白、白、白、白、白、白、白、白、白、白、白、白、	用性的机械地化力,也一方不可能力,因为我风闷力切。
與同中「防與建筑生物及加佳素白的安加布 制菌版水中加定素抗性的污染特性、检测于段和控制方法 一番湯的、弗力定、床关達一、医菜、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	派水中地区和小湖地上小小化于村间及头风四饥前刀切。
制罚政水中加主系机性的问案符值、程碑与花林化的方法 一番 如此 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	與利平下研與型仉任细因及仉任ᆇ因台來汀和 周期時時,並且於研究這些時代,他們不能是一個的意思。 周期時代,這些是一個人的意思。
水目山分如菜本Q.匈那米梨和菜和(力田影响) "黄星山、黄文正, 秋天之、秋天儿、夏、秋天山、秋天山、秋天山、秋天山、秋天山、秋天山、秋天山、秋天山、秋天山、秋天山	制匀质水甲机生素机性的污染特征、检测于权利控制力法 ————————————————————————————————————
當藏族於時是生物契約水体中铅的法除一合产的吸附机制	水体组分对聚苯乙烯纳米颗粒聚沉行为的影响
 需素糖改性生物炭的制备及其对水溶液中G2⁴的吸附机制 — 类或、类体用、各小菜、李菜菜、夏秋东、祝琴文在、柴脂豆(873) 磁性含磷油茶壳生物炭对水中磺胺甲噻唑的吸附特性 — 综体、常体照、产素、未吮慢、程建华、胡勇有(888) 一东省高分辨率温室(本排放清单及转位、产清、唐可双、穿彩、麦龙剂、综庄菜、宋慎粥、式动、米家充、李吮慢、程建华、胡勇有(888) 「东省高分辨率温室(本排放清单及转位、产清、唐可双、穿彩、麦龙剂、综庄菜、宋慎粥、式动、紫散比、菜小肉、羽茶之、陈末菌(990) 生物炭施用两年后对热带地区看发花小、变体及其环场调理2 一型口"温姆无器"修复区上态系统:O. 交换及其环场调理2 一型口"温姆无器"修复区上态系统:O. 交换及其环场调理2 一般型、洗缸、那天会、积洁、转动、水菜、在延正、孟嘉 (920) 生物炭施用两年后对热带地区看发体土壤 N.O 和 CH,排放的影响 — 胡星杰、唐瑶杰、胡天怡、珠海湾、湖南菜、代东菜、在美工、金融 (920) 生物炭施用两年后对热带地区有型或量发发情是根拟预测.U营定县为何 一、不同改良剂对酸性紫色上团聚体和有机碳的影响 — 条点、徐芝菜、 徐达城、盖枪、黑旋、盖维伟、王齿球、赤家新、刘干品、代玉室 (952) 影中吃斯特地区典型显域碳储量时空液空发情是根拟预测.U营定县为何 不同改良剂对酸性紫色上团聚体和有机碳的影响 — 条点、条点、柴麦、二、玉瓶、黄菜、油、黄花、半菜、(932) 我哈中转花之态影响及设造化化和 茶台、半花、常菜、水和、工具、黄菜、湖洋、三大方、高可 (974) 八面土壤多水方经污染特征及风险估合, 雪子水、床茎、水和、土菌、素菜、小用花、小菜、水果、1080 小面、水果多水、香菇、(1052) 小面、水果水、花豆、果花、水素、加工、白、水、水、水、水、水、水、水、水、101 小面、水果水、花豆、花香、小、水果、水、101 小面、水果水、花豆、花椒、水和、水果水、水和、水和、水果水、101 小面、水果水、水、水果、101 小面、小果、水、水果、101 小面、小果水、小、水果、101 小面、小果水、101 水用和、水果水、水、水果、101 水用和、水果、水果、11, 黄菜、小果水、水果、101 水用和和、水果、水果、11, 黄菜、11, 黄菜、11, 黄菜、11, 黄菜、11, 黄菜、11, 黄菜、11, 黄菜、11, 黄菜、11, 黄菜、11, 草菜、11, 草菜、11, 黄菜、11, 11, 11, 11, 11, 11, 11, 11, 11, 11,	富磷废弃钙基生物炭对水体中铅的去除
翻接含你和菜吸附四环素的效能与机制。	壳聚糖改性生物炭的制备及其对水溶液中Cd ²⁺ 的吸附机制姜凌,安靖玥,岳小琼,李亚雄,夏秋乐,祝婷文佳,柴丽红(873)
離性含弱油茶完生物发动水中磺胺甲噻唑的吸附特性	硼掺杂介孔炭吸附四环素的效能与机制
「东省高分辦率温室(体排放清单及特征…户清, 唐明双, 穿形, 黄志州, 钟庄敏, 宋県重, 达动, 张智胜, 录小明, 齐家仁, 除未囯 (990) 江河口"退塘还湿"修复区生态系统 CO,交换及其环境调控	磁性含磷油茶壳生物炭对水中磺胺甲噻唑的吸附特性
 江河口"進增还是"修复区生态系统CO,交换及其环境调控	广东省高分辨率温室气体排放清单及特征…卢清,唐明双,廖彤,黄志炯,钟庄敏,宋佩珊,沈劲,张智胜,梁小明,孙家仁,陈来国 (909)
生物炭產用兩年后对热带地区稻菜轮 ⁴ 在土壤NO和CH,排放的影响 親是杰、唐瑞杰、朝天治、其治、素菜、如花薇、肖那、童芝辰、孙立、(940) 生物炭產品兩年后对热带地区興型L建硬 魏盈、魚床、紫漱、刘循薇、肖辉、童芝辰、孙立、(940) 免薪为农田上菜用菜水的影响研究.Mea分析 德芝菜、德越悅、孟艳、温緩、孟维伟、王旭渚、李家新、刘开邕、代菜 (952) 野中略斯特地区興型L建硬储量时空演变及多情景模拟预测:以音定具为例 李月、罗红苏、(961) 不同皮良剂对酸化浆色土团浆体和有机碳的影响 李基、徐曼、湖永红、王颖、蒙求、说军、王芳苏、高明(974) Ca改性生物炎对土壤磷碱 花吃态影响及稳定化机制 李基、徐曼、湖永红、王颖、蒙求、说军、王芳苏、高明(974) Seive DA Folk 反 的 Seive DA Biz CM 和制 李本、徐曼、湖永红、王颖、康菜、说军、王芳苏、高明(974) Ca改性生物炎对土壤磷碱 花态 非保水 (983) 李林全、百陵英、刘本红、王颖、蒙求、诺莱、(974) 考up Lag 基式 化和和和和、黄华、金属、金属、金属、金属、小麦菜、(925) 744 Ca改性生物炎对土壤磷碱 Fix 影响 化和和多样生变化及其驱动因素 □□□□」 非量車盒風入廠計作及當吃包土分析 □□」 三日、(1015) 手服中 丁素、水、《市港、王丁業、康美、(1015) 三丁都导向的土壤金属风险评估、登生之、风险特征及来源解析	辽河口"退塘还湿"修复区生态系统 CO,交换及其环境调控 ····································
生物炭改良盐碱地研究与应用进展	生物炭施用两年后对热带地区稻菜轮作土壤N.O和CH.排放的影响胡煜杰、唐瑞杰、胡天怡、陈绮琦、汤水荣、伍延正、孟磊(929)
免耕对农田土壤团聚体的影响研究:Meta分析 除艺萍、饶越悦、孟艳、温媛、孟维伟、王想清、李宗新、刘开昌、代红翠(952) 黔中喀斯特地区典型县城碳储量时空演变及多情景概拟预测,以普定县为例 **月、罗红芩(961) 不同改良剂对酸性紫色土团聚体和有机碳的影响 ***** Ca改性生物炭对土壤磷瓶存形态影响及稳定化机制 ***** 秦岭中段不同恢复阶段弃耕农田植物多样性变化及其驱动因素 ····································	生物炭改良盐碱地研究与应用进展
 野中喀斯特地区典型县城碳储量时空演变及多情景模拟预测;以普定县为例 不同改良利对酸性繁色土团聚体和有机碳的影响 本考,除受,谢永红,王颖,黄容,谢军,王子芳,高明(974) Ca改性生物炎对土壤磷碳存形态影响及稳定化机制 张超,翟行杰,单保,(983) 我国典型制药厂污染场地中抗生素的污染特征及生态风险 杨州彬,黄争,赵建尧,何良芙,刘有胜,胡立新,石文静,应光国(1004) 广州市土壤多坏芳经污染特征及风险评估…每千载,陈莲,张培珍,王雨蓝,王振江,林森,唐翠明,罗国庆,侍建武,孝智赦,王圆(1015) 基于酚che-Carlo模拟的湖南省典型工厂周边农田土壤重金属区域潜在生态风险特征及来源解析 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	免耕对农田十壤闭聚体的影响研究·Meta分析徐艺萍、饶裁悦、孟艳、温媛、孟维伟、王旭清、李宗新、刘开昌、代红翠(952)
不同故良剂对酸性繁色土团聚体和有机碳的影响 — 李越、徐曼、谢永红、王颖、黄孝、谢军、王子芳、高(974) Ca改性生物发对土壤磷既存形态影响及稳定化机制 — "东起、星 (木、单 (保, (983)) 秦岭中段不同恢复阶段养耕农田植物多样性变化及其驱动因素 ————————————————————————————————————	影中喀斯特地区典型具域碳储量时空演变及多情景模拟预测,以普定具为例
「中設低市场底地合理」 「中学生物炭对土壤磷製作和活影的」」 「中学生物炭对土壤磷製作和活影的」」 「中学生物炭对土壤磷製作和活影的」 「中学生物炭对土壤磷製作和活影的」 「中学生物炭对土壤磷製作和活影的」 「中学生物炭对土壤磷製作和活影的」 「中学生物炭对土壤磷製作和活影的」 「中学生物炭对土壤、化学、中学生、非常、生物、生、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	而一日初时之一人生。 我们的是你是这个人的是你的你的是你的你的是你的你的你们是你的你的你的你们,你不能不能不能不能不能不能不能不能不能不能不能不能不能不能不能不能不能不能不能
GatgleTatownin Takewain Frozewardskeite Cutain 新生 化 2 (100) 素龄中段不同恢复阶段弃耕农田植物多样性变化及其驱动因素	了。""你们就是出来道上回来打作时们就听到你们。"
 案戰守投不同核之, 時代, 王公華, 陳母城, 上守年(2), 纪久與新幼因素 新国與型制約厂完築场地中抗生素的污染特征及风险评估…部子航, 陈莲, 张培珍, 王雨茜, 王振江, 林森, 唐翠明, 罗国庆, 钟建武, 李智毅, 王圆 (10015) 基于源导向的土壤重金属风险评价及管控因子分析 潘永兴, 陈盟, 王櫃橦 (1026) 基于Monte-Carlo模拟的湖南省典型工厂周边农田土壤重金属区域潜在生态风险特征及来源解析 基于参数优化和蒙特卡罗模拟的砷污染地块健康风险评估 要素杰, 潘俊, 陈小寶, 张敏, 沈良辰, 李歆, 丁平, 蔡井, 蔡立梅, 胡国成 (1038) 基于参数优化和蒙特卡罗模拟的砷污染地块健康风险评估 李春, 太德, 陈小寶, 张敏, 沈良辰, 李歆, 丁平, 蔡井, 蔡立梅, 胡国成 (1038) 基于参数优化和蒙特卡罗模拟的砷污染地块健康风险评估 "龙智杰, 李杰芹, 李彩寶, 廖泽潔, 梅楠, 罗程钟, 王定勇, 张成 (1058) PE-Cd复合污染土壤中Cd释放迁移特征及机制 公布、莱杰, 李杰芹, 李彩寶, 廖泽潔, 梅楠, 罗程钟, 天定勇, 张成 (1058) PE-Cd复合污染土壤中Cd释放迁移特征及相制 "差 小 条件, 刘贵平, 刘贵, 吕良华, 乔文静, 会成, 张晓旸, 蒋建东 (1080) 昭通市农田土壤和蔬菜重金属污染评价及相关性分析 张安圻, 董泰雨, 杨海婷, 张平, 黄水, 黄水条, 歌田, 赵科理 (1107) 其健生 有期施加外驱得灌溉水对水稻馏吸收转运的影响 ····································	Ca以正王初次为上來轉過行力心影响及協定比UUI的 素於由BC、目标自然的去對步由這種物學控制亦也及甘頭計用素
祝国與聖前到 / 白粱物理 + 10 年 第 10 年 10 年	来哎于权小问次发则权升析农山阻彻多什住文化及共犯幼问系。
1) 州市土壤多环方短行渠符征及风险评估11139 千元,除走, 张卢参, 王南菌, 王漱江, 林林, 唐本列, 夕国次, 针连头, 子者軟, 王崮 (1015) 基于额导的土壤重金属风险评价及管控因子分析	我国典望前约) 行朱幼地十饥生余的行朱付征及生态风险
基于源导问的土壤重金属风险评价及官拴因于分析) / 川门工块多环方烃方架行低及风险评估旷力机, 陈连, 旅宿珍, 土附函, 土振江, 林林, 唐卒明, 夕国庆, 钾建筑, 芋宿敷, 土圆(1013)
基于 Monte-Carlo 模拟的砌南省典型上)周边农田土壤重金属区域潜在生态风险特征及米源解析 	基于源导问的土壤重金属风险评价发管径因于分析
一個人的學家, 法侯, 陈小賀, 张敏, 沈良晨, 李歆, 丁平, 蔡升, 蔡立梅, 胡国成 (1038) 基于参数优化和蒙特卡罗模拟的神污染地块健康风险评估 素贝, 刘虎鵰, 杜平, 陈娟, 张云慧, 张吴 (1049) 基于 APCS-MLR 和 PMF 模型的赤泥堆场周边排地土壤重金属污染源解析 "沈智杰, 李杰芹, 李彩霞, 廖泽源, 梅楠, 罗程钟, 王定勇, 张成 (1058) PE-Cd 复合污染土壤中 Cd 释放迁移特征及机制 "法智杰, 李杰芹, 李彩霞, 廖泽源, 梅楠, 罗程钟, 王定勇, 张成 (1058) PE-Cd 复合污染土壤中 Cd 释放迁移特征及机制 "王迪, 徐绍辉, 邵明艳, 林青 (1069) 氧代乙烯的厌氧微生物还原脱氯特性 李伟, 刘贵平, 刘峻, 吕良华, 乔文静, 余欣, 张晓旸, 蒋建东 (1080) 昭通市农田土壤和蔬菜重金属污染液化及相关性分析 "张好, 董春雨, 杨海婵, 孙思静, 韩宇, 黄祖志, 张乃明, 包立 (1090) 钝化剂对轻中度镉污染在田的安全利用效果 王晓晶, 张东明, 曹阳, 吕家龙, 代允絕 (1098) 氧化乙墨烯负载铁锰复合材料对镉砷污染土壤的钝化修复 "素精, 吴骥子, 连斌, 袁峰, 孙淇, 田欣, 赵科理 (1107) 关键生育期施加外源锌灌溉水对水稻镉吸收转运的影响 一周霞, 胡雨井, 周煮, 陈琼, 谭文, 韩索、韩本, 韩二氏, 赵科理 (1107) 关键生育期施加外源特准派水对水稻镉吸收转运的影响 张辉红, 魏畅, 柳海涛, 张静, 刘芳, 赵颖, 张雪海, 李鸽子, 柳海涛 (1184) 外面培克、脑对中影脑边下大麦幼苗生长肉氨解效应 张辉红, 魏畅, 柳海涛, 洗船静, 刘芳, 赵颖, 朱佳, 化党领, 李鸽子, 柳海涛 (1141) 根施伯克氏菌对小麦镉吸收转运的两段式阻控作用 "郭佳佳, 王常荣, 刘仲齐, 黄青青, 张长波, 黄赤春, 薛卫杰, 孙约兵 (1150) 高密度聚乙烯微塑料与氯嘧磺隆对大豆生长和根际细菌群落的复合胁迫效应 "初晓用, 洋紫微, 姚伦广, 杜丽, 牛秋红, 李玉葉, 티客, 雨学, 住, 1173) 机器学习在微塑料试到与环境风险管对市的应用研究进展 白润昊, 范瑞琪, 刘琪, 刘勒, 严善荣, 北石、南大里, 朱鲁生 (1196) 基于分布式认知理论的农户面源污染治理支付意愿影响因素 "郭星, 李林罪, 夏显力 (1220) 《班科学》征稿简则(836) 信息(897, 1106, 1149)	基于Monte-Carlo 模拟的湖南省 典型上)周辺 农田土壤重金属区域潜在生态风险特征 及米源解析
基于参数优化和蒙特卡罗模拟的砷污染地块健康风险评估	罗豪杰,潘俊,陈小霞,张敏,沈良辰,李歆,丁平,蔡丹,蔡立梅,胡国成(1038)
基于 APCS-MLR 和 PMF 模型的赤泥堆场周边耕地土壤重金属污染源解析 	基于参数优化和蒙特卡罗模拟的砷污染地块健康风险评估
沈智杰,李杰芹,李彩霞,廖泽源,梅楠,罗程钟,王定勇,张成(1058) PE-Cd复合污染土壤中Cd释放迁移特征及机制 王迪,徐绍辉,邵明艳,林青(1069) 氯代乙烯的厌氧微生物还原脱氯特性 李伟,刘贵平,刘竣、吕良华,乔文静,余成,张晓旸,蒋建东(1080) 昭通市农田土壤和蔬菜重金属污染评价及相关性分析 张好,董春雨,杨海婵,孙思静,韩宇,黄祖志,张乃明,包立(1090) 钝化剂对轻中度镉污染农田的安全利用效果 王晓晶,张东明,曹阳,吕家珑,代允超(1098) 氧化石墨烯负载铁锰复合材料对镉砷污染土壤的钝化修复 麦婧,吴骥子,连斌,袁峰,孙淇,田欣,赵科理(1107) 关键生育期施加外源锌灌溉水对水稻镉吸收转运的影响 周霞,胡雨丹,周航,陈琼,谭文韬,曾鹏,辜娇峰,廖柏寒(1118) 外源锌对镉胁迫下小麦幼苗生长的缓解效应 张辉红,魏畅,柳海涛,张静静,刘芳,赵颖,张雪海,李鸽子,参瑛(1128) 稀土元素铈对锌胁迫下小麦幼苗生长的缓解效应 张推静,徐正阳,焦秋娟,范雷娜,刘芳,赵颖,宋佳,化党领,李鸽子,柳海涛(1141) 根施伯克氏菌对小麦镉吸收转运的两段式阻控作用 郭底羽,清紫微,姚伦广,杜丽,牛秋红,李玉英,闫路,陈兆进,张浩(1161) 高密度聚乙烯微塑料与氯嘧磺隆对大豆生长和根际细菌群落的复合胁迫效应	基于 APCS-MLR 和 PMF 模型的赤泥堆场周边耕地土壤重金属污染源解析
PE-Cd复合污染土壤中 Cd释放迁移特征及机制 ····································	······沈智杰,李杰芹,李彩霞,廖泽源,梅楠,罗程钟,王定勇,张成(1058)
 氯代乙烯的厌氧微生物还原脱氯特性 ····································	PE-Cd复合污染土壤中Cd释放迁移特征及机制
昭通市农田土壤和蔬菜重金属污染评价及相关性分析	氯代乙烯的厌氧微生物还原脱氯特性李伟,刘贵平,刘峻,吕良华,乔文静,余欣,张晓旸,蒋建东(1080)
 钝化剂对轻中度镉污染农田的安全利用效果 ————————————————————————————————————	昭通市农田土壤和蔬菜重金属污染评价及相关性分析张好,董春雨,杨海婵,孙思静,韩宇,黄祖志,张乃明,包立(1090)
氧化石墨烯负载铁锰复合材料对镉砷污染土壤的钝化修复	钝化剂对轻中度镉污染农田的安全利用效果
关键生育期施加外源锌灌溉水对水稻镉吸收转运的影响	氧化石墨烯负载铁锰复合材料对镉砷污染十壤的钝化修复
外源锌对镉胁迫下玉米幼苗生长及根系构型分级的影响 ····································	关键生育期施加外源锌灌溉水对水稻镉吸炉转运的影响 周霄 胡雨丹 周航 陈琼 谭文韬 鬯鹏 茎娇蜂 廖柏寒(1118)
稀土元素铈对锌胁迫下小麦幼苗生长仪被尔特望为或的影响。你保知,就得到,就留赖,就得到,就留赖,为为,之秋,就当海,等离马,顿头,变领 (1120) 稀土元素铈对锌胁迫下小麦幼苗生长的缓解效应 …张静静,徐正阳,焦秋娟,范丽娜,刘芳,赵颖,宋佳,化党领,李鸽子,柳海涛 (1141) 根施伯克氏菌对小麦镉吸收转运的两段式阻控作用	入场上自动地加入时,围绕不动水口面,这代代金山放中,一个大学的加入,从外面,从小水、十八匹,自动、十万十万。
和主兄家師內住師道十小愛幼宙至长的泼麻双短一一派雷雷,除正地,黑秋州,恐而爆,风光而爆,八度,不住,花兄娘,李鸣寸,磅海涛(1141) 根施伯克氏菌对小麦镉吸收转运的两段式阻控作用	小喷杆小响的短目上小弯面上的灰肤赤的雪上刀或的砂带。
限旭自先民國州小发編吸收投运的两投民匯任作用"加加加加加非筐筐,工市来,对许州,黄育育,派长放,黄水都,薛正然,新约兴(1130) 高密度聚乙烯微塑料与氯嘧磺隆对大豆生长和根际细菌群落的复合胁迫效应 	"加上九系师对计断定!"小叉动用工队的发研我迎。小时前,陈正阳,杰尔对,范围潮,对方,应救,不住,也无效,于哼了,犹得过(11+1/ 相流估方氏菌对小主复码的标序动面码走阳较佐田
高密度聚乙烯减塑料与氯嘧磺醛对人豆生长和根际细菌群落的复合肠迫效应 	你把旧元氏因对小发册双取校理的内权认图证任用 ************************************
明晚功, 項案領, 姚伦/, 杜丽, 千秋红, 李玉夹, 闫路, 陈兆进, 张浩(1161) 微塑料的人体富集及毒性机制研究进展 包亚博, 王成尘, 彭吾光, 侬代倩, 向萍(1173) 机器学习在微塑料识别与环境风险评估中的应用研究进展 自用究进展 的复数。 微塑料与农田土壤中典型污染物的复合污染研究进展 保证的 保守晴, 李冰, 王金花, 宋文慧, 王兰君, 王军, 朱鲁生(1196) 水中微/纳塑料电化学检测及去除的研究进展 将你说不知道你的你说一个你的你说是你不能帮助你。""你是你不是你的你们是不是你的你们的你们是不是你的你们的你们是你不是你的你们是你不是你的你们的你们是你们的你们是你们的你们是你们的你们是你们的你们是你们的你们是你们的你们是你们的你们是你们的你们是你们的你们是你们的你们是你们的你们是你们的你们是你们的你们是你们的你们是你们的你们是你们的你们的你们是你们的你们是你们的你们的你们是你们的你们的你们是你们的你们的你们的你们的你们的你们的你们是你们的你们的你们的你们的你们的你们是你们的你们的你们的你们的你们的你们你们你们你们	同省反承山冲顶空村 ラ 泉密嶼 医刃 人 豆 生 下 仲 限 所 畑 困 研 洛 的 友 盲 勝 坦 双 型 加 ぬ ロ ス レ レ ニ レ ム ん オ エ せ い ゅ い エ ル ・・・・・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・
 (國型科的人徑 届集及每性机制研允进展 ·································	·····································
机器学习在微塑料识别与环境风险评估中的应用研究进展	
微塑料与农田土壤中典型污染物的复合污染研究进展 (1196) 水中微/纳塑料电化学检测及去除的研究进展 (1196) 基于分布式认知理论的农户面源污染治理支付意愿影响因素 (1210) 《环境科学》征订启事(825) 《环境科学》征稿简则(836) 信息(897,1106,1149)	机器字匀在微塑料识别与环境风险评估甲的应用研究进展
水中微/纳塑料电化学检测及去除的研究进展 ************************************	微型科与农出土壤中典型污染物的复合污染研究进展侯宇晴,李冰,王金花,宋文慧,王兰君,王军,朱鲁生(1196)
基于分布式认知理论的农户面源污染治理支付意愿影响因素 ····································	水中微/纳塑料电化学检测及去除的研究进展
《环境科学》征订启事(825) 《环境科学》征稿简则(836) 信息(897,1106,1149)	基于分布式认知理论的农户面源污染治理支付意愿影响因素
	《环境科学》征订启事(825) 《环境科学》征稿简则(836) 信息(897,1106,1149)

郑州市 PM_{2.5}中有机酸的污染特征、来源解析及二次 生成

李子涵1,董喆2,尚璐琪1,孔梓涵1,李晓1,张瑞芹1*

(1. 郑州大学生态与环境学院,郑州 450001; 2. 郑州大学化学学院,郑州 450001)

摘要:大气颗粒物中的有机酸广泛参与大气中的各种物理化学反应,对二次有机气溶胶和霾的形成贡献极大,因此分析颗粒物中有机酸的浓度分布特征、评估其污染来源、探究其二次生成,对深入研究有机气溶胶及其二次转化具有重要意义.在郑州市不同季节采集大气细颗粒物(PM_{2.5})样品,识别并定量二元酸类、脂肪酸类和树脂酸类有机酸共 30种,探究其浓度分布特征、季节变化、来源贡献及二次生成.定量的二元酸类以丙二酸(di-C₃)和琥珀酸(di-C₄)含量最为丰富,并且表现出明显的季节变化特征:夏季 > 秋季 > 冬季 > 春季;脂肪酸类表现出明显的双峰优势,以棕榈酸和硬脂酸(C₁₈)最为丰富,季节变化特征为冬季最高,春季最低.利用主成分分析结合多元线性回归(MLR)方法对郑州市 PM_{2.5}中的有机酸进行来源解析,结果表明,35%的有机酸来自于燃烧源和交通源,24%来自于烹饪源、23%来自于二次生成以及 17%来自于天然源.利用标记物种的比值(如di-C₃/di-C₄、 F/M和C_{18:1}/C₁₈)探究有机气溶胶之次形成及其老化过程.结果表明,夏季光化学反应剧烈,有机气溶胶老化或二次生产比例较高,冬季光化学反应较弱,有机气溶胶老化程度较低.采用相关性分析与MLR相结合的方法,量化了气相氧化和液相氧化对二元酸形成的相对贡献,气相氧化在采样过程中起主导作用,占比为 58%,特别是夏季,占总二次转化的 61%.

关键词:二元酸;脂肪酸;二次有机气溶胶;二次生成;气相氧化

中图分类号: X513 文献标识码: A 文章编号: 0250-3301(2024)02-0700-09 DOI: 10.13227/j. hjkx. 202301111

Pollution Characteristics, Sources, and Secondary Generation of Organic Acids in PM_{2.5} in Zhengzhou

LI Zi-han¹, DONG Zhe², SHANG Lu-qi¹, KONG Zi-han¹, LI Xiao¹, ZHANG Rui-qin^{1*}

(1. School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; 2. College of Chemistry, Zhengzhou University, Zhengzhou 450001, China) **Abstract:** Organic acids in atmospheric particulate matter are widely involved in various physical and chemical reactions in the atmosphere and contribute greatly to the formation of secondary organic acrosols and haze pollutions. Therefore, the concentration distribution characteristics, sources, and secondary formation of organic acids in particulate matter are of great significance for further investigation of organic acrosols and their secondary transformation. Fine particulate matter ($PM_{2,5}$) samples were collected in Zhengzhou, and three types of organic acids, including dicarboxylic acids, fatty acids, and resin acids, were analyzed to explore their species distribution, seasonal variations, source contribution, and secondary generation. Malonic acid (di-C₃) and succinate acid (di-C₄) were the most abundant in the identified dicarboxylic acids, which showed obvious seasonal variations in the order of summer > autumn > winter > spring. Fatty acids had the highest concentration in winter and the lowest concentration in spring, showing obvious bimodal advantages, with the most abundant compounds being palmitic acid and stearic acid (C_{18}). Principal component analysis and multiple linear regression (MLR) were used to analyze the source of organic acids in $PM_{2,5}$ in Zhengzhou; the results showed that 35% of the organic acids came from combustion and traffic sources, 24% from cooking sources, 23% from secondary formation, and 17% from natural sources. The ratios of the selected marker species (i. e. , di-C₃/ di-C₄, F/M, and $C_{18,1}/C_{18}$) were used a tracers for the secondary production was high, whereas the photochemical reaction was weak in winter, and the aging degree of organic acrosol was low. Correlation analysis and MLR were used in combination to quantify the relative contribution of gas-phase oxidation and li

Key words: dicarboxylic acids; fatty acid; secondary organic aerosol; secondary generation; gas-phase oxidation

有机气溶胶是大气细颗粒物(PM_{2.5})的重要组成 部分^[1],其中有机酸是构成有机气溶胶的重要极性化 合物,主要组分包括二元酸、脂肪酸和树脂酸等^[2,3]. 气溶胶中有机酸能引起辐射强度变化,同时对颗粒 物的吸湿性、大气能见度、气候以及人体健康也有 重要影响^[4-6].由于有机酸广泛参与各种大气化学和 物理过程^[7],探索有机酸的污染特征和形成机制有助 于理解大气有机气溶胶的化学性质及二次有机气溶 胶(SOA)的形成机制,对大气污染的防治具有重要 意义. 有研究表明,二元酸和脂肪酸表现出较为明显 的季节变化规律^[8,9],但是不同地区的城市中有机酸 的季节变化不同,如北京^[10]和重庆^[11]PM_{2.5}中的有机 酸表现为夏高春低,而上海则是春高夏底^[12].有机酸 的来源主要分为一次排放和二次生成,其种类不同,

收稿日期: 2023-01-17;修订日期: 2023-05-04

基金项目:郑州市 PM_{2.5}与 O₃协同控制监测项目(20220347A);国家 重点研发计划项目(2017YFC0212403)

作者简介: 李子涵(1996~), 女, 硕士研究生, 主要研究方向为大气 PM_{2.5}中有机物的来源与二次生成, E-mail: 614667674@qq. com

^{*} 通信作者, E-mail: rqzhang@zzu. edu. cn

来源也存在差异.脂肪酸主要来自于燃煤排放、生 物质燃烧、烹饪、高等植物蜡排放和汽车尾气等一 次来源[13~17]. 树脂酸主要来自木柴燃烧、生物质和化 石燃料燃烧等一次来源[3.9]. 二元酸主要来自于不饱 和脂肪酸、挥发性有机物、芳香烃类化合物的氧化 等途径的二次生成^[18,19]. 二元酸作为SOA中的高度氧 化组分,对其二次生成过程的研究有助于理解SOA 的性质和形成机制. 例如, Kawamura 等^[20,21]发现丙二 酸与琥珀酸($di-C_a/di-C_a$)和马来酸与富马酸(M/F)的 比值反映光化学反应的强度与气溶胶老化程度,Wu 等^[22]发现了二元酸与环境氧化剂和前体之间的相关 性,认为气相光化学氧化和液相氧化是二元酸的主 要来源,Yu等^[23]研究两种氧化过程的相对贡献,认为 冬季霾事件发生期间,颗粒物表面的吸湿性促进了 有机酸的液相氧化,而Li等^[24]发现在温暖时间气相 光化学氧化对天津市二元酸的贡献更大.以上研究 大多集中在发达国家以及中国京津冀、长三角和珠 三角地区,在面临严重PM, 污染问题的中原城市研 究较少.郑州是河南省的省会,也是全国综合性交通 枢纽,污染物排放量大.虽2020年郑州市空气质量 综合指数已退出全国后20位,但郑州地区依旧面临 着严重的 PM, "污染问题^[25]. 现有对郑州市大气研究 多集中在对PM,,全组分、多环芳烃和挥发性有机化 合物上[26-28],对有机酸的研究较少,在不同环境条件 下的浓度水平、分布特征及其对SOA影响的研究更 为稀少.

本研究在郑州不同季节采集了 PM_{2.5}样品,测定 了 30 种有机酸,探究有机酸污染特征和季节变化,识 别有机酸的主要来源,分析气相氧化和液相氧化对 有机酸二次生成的贡献,讨论其二次生成对 SOA 的 影响,以期为郑州市大气环境中有机污染物的精准 防控提供有效的科学支撑.

1 材料与方法

1.1 样本采集

采样点位于郑州大学主校区协同创新中心4层的平台上,如图1所示.西面为西四环路的主要交通 道路,周围多为居民居住区域,附近有燃煤发电厂. 采集 PM_{2.5}的仪器为大流量仪器(TE-6070D,流量 1.13 m³·min⁻¹),滤膜为石英滤膜.在采样期间,共获 得了129个有效样品.

1.2 样品前处理

使用加速溶剂萃取器(BASE-26,北京宝德)进行 萃取,二氯甲烷和甲醇的混合溶液(3:1,体积比)作为 萃取试剂.使用全自动氮吹仪(QZDJT-12S,杭州聚 同)进行氮吹浓缩.每份样品加入内标混合溶液,使

用二氯甲烷定容,接着将样品溶液进行衍生化处理, 具体实验步骤见文献[29].

1.3 化学组分分析

使用气相色谱-质谱(CC-MS, Agilent 7890GC/7000MS)联用仪测定样品中的有机酸.目标化合物 对照标准样品的保留时间和质谱图进行定性,通过 标准曲线-内标法进行定量.色谱柱型号为HP-5MS 毛细柱(30 m×0.25 mm×0.25 μ m),载气为高纯氦气 (纯度≥99.99%).气相色谱的分析条件设置:进样口 温度 300 °C,自动进样器不分流模式进样,进样量1 μ L.初始温度 60 °C停留 10 min,以 10 °C·min⁴的速度 升温至 300°C,保持 60 min^[29]. 配制 7个呈梯度的标准 品浓度,加入相同浓度的内标绘制工作曲线,进行线 性回归.此次测定的有机物工作曲线的平方相关系 数*R*²均能达到 0.99 以上.

使用 O_3 分析 (2 测量 (Model 49i, Thermo Fisher Scientific, USA)测量分析 O_3 浓度;自动气象台 (QXZ 1.0,中国)观测气象参数:大气压(p)、温度(T)、相 对湿度(RH)、风向(WD)和风速(WS);使用碳气溶 胶分析(2(Sunset Lab Inc Model,美国)测定样品中的 OC和EC,并使用热光透射法和 NIOSH870升温程序 分析.

1.4 分析方法

本研究采用主成分分析和多元线性回归(PCA/ MLR)对郑州市有机酸及相关成分的来源进行了识 别,由 IBM SPSS统计软件执行.PCA能有效提取影响 污染物变化的因素,已被广泛应用于污染物的来源 研究.其目的是用最少的因素中表示有机酸数据的 总变异变性.因子提取基于特征值(>1),选择 Varimax进行旋转,使初始矩阵易于解释,采用绝对主 成分得分进行 MLR来量化每个来源的贡献^[30].

2 结果与讨论

2.1 气象数据、OC和PM_{2.5}
 从图 2(a)中可以看出,夏季的温度和相对湿度

都较高,春季的温度和相对湿度与秋季相当,冬季的 温度和相对湿度较低.从图2(b)可以看出,PM_{2.5}和 OC的变化趋势基本一致, ρ (PM_{2.5})在22~254 μ g·m⁻³ 之间,平均值±标准偏差为(79±41) μ g·m⁻³,夏季、 秋季、冬季和春季分别是国家《环境空气质量标准》 (GB 33095-2012)日均二级标准限值(75 μg·m⁻³)的 0.7、1.1、1.4和0.9倍,说明冬季郑州 PM_{2.5}污染最 严重,这是由于冬季温度低[(2.9±3.5)℃],集体供 暖和农村生物质取暖等导致冬季污染物排放量大, 加上气象条件不利于污染物的扩散导致的.

有机酸浓度和有机酸与OC的比值的时间变化 如图2(c)所示.ρ(有机酸)在冬季[(1080.2±231.4) ng·m⁻³]达到最高.Kawamura等提出有机物质与OC 的比值可以用来反映有机气溶胶的氧化程度^[20].有 机酸/OC的变化趋势为夏季最高,表明夏季的有机气 溶胶的氧化程度高,进一步表明郑州市夏季二次生 成的比例较高.

2.2 有机酸的污染特征

2.2.1 二元酸

本研究中共检测出二元酸 10种,包括 8种饱和 二元酸(丙二酸至癸二酸,di-C₃~di-C₁₀)和 2种不饱 和二元酸(马来酸和富马酸,M和F), ρ (二元酸)变化 范围为 108.7~441.6 ng·m⁻³,平均值为(262.0± 74.3) ng·m⁻³. 从表1可以二元酸有明显的季节变化 特征:夏季 >冬季 >秋季 >春季. ρ (二元酸)夏季最 高,为(329.7±58.5) ng·m⁻³,这与Yu等^[10]在北京的 研究结果一致.在夏季,较高的温度和相对湿度、较 强的太阳辐射和更多的大气氧化剂有利于二元酸的

生成[31].

二元酸在四季分物种的浓度变化如图 3(a)所示,可以看出丙二酸是最丰富的二元酸,高于di-C₄~di-C₁₀,这与以往研究结果相似^[32].丙二酸(di-C₃)可由琥珀酸(di-C₄)经光化学氧化生成^[20],在夏季浓度最高,其次是秋季和春季.壬二酸可由生物不饱和脂肪酸如油酸氧化生成^[33],它的浓度值在夏季最高.在冬季琥珀酸是含量最高的二元酸,其次是马来酸,马来酸来源于芳香挥发性有机物如苯和甲苯的大气氧化^[18]和人为活动排放^[34],所以推断冬季马来酸浓度高是由于郑州冬季采取集体供暖,燃煤排放较高,引发了严重的芳香族SOA污染.

2.2.2 脂肪酸

本研究中郑州地区脂肪酸共 16种,其中饱和脂肪酸 11种: $C_6 \sim C_{30}$;不饱和脂肪酸 5种: 棕榈油酸 $(C_{16;1})$ 、油酸 $(C_{18;1})$ 、亚麻酸 $(C_{18;3})$ 、亚油酸 $(C_{18;2})$ 和 蒎酮酸. ρ (脂肪酸)变化范围为 242.5 ~ 966.0 ng·m⁻³. 冬季的 ρ (脂肪酸)为(700.3±136.5) ng·m⁻³,

种类		名称	夏季	秋季	冬季	春季
		丙二酸(di-C,)	128.3 ± 21.4	87.5 ± 14.3	42.0 ± 13.9	57.9 ± 16.8
		琥珀酸(di-C,)	51.5 ± 10.0	42.5 ± 7.5	56.6 ± 10.3	30.5 ± 11.4
		戊二酸(di-C _s)	27.9 ± 7.2	30.9 ± 8.2	20.9 ± 8.3	13.9 ± 6.4
		肥酸(di-C ₆)	24.6 ± 7.0	14.3 ± 6.1	17.5 ± 7.0	11.3 ± 4.6
		庚二酸(di-C ₇)	11.1 ± 3.9	11.8 ± 5.5	13.8 ± 4.8	6.0 ± 3.8
二元酸/ng·m ⁻³		木栓酸(di-C ₈)	9.1 ± 3.4	7.5 ± 4.3	10.6 ± 5.7	4.6 ± 2.9
		壬二酸(di-C ₉)	30.8 ± 4.9	25.5 ± 7.5	26.0 ± 11.0	26.0 ± 7.3
		癸二酸(di-C ₁₀)	5.3 ± 2.3	4.1 ± 2.5	15.1 ± 9.4	4.2 ± 2.5
		富马酸(M)	21.2 ± 5.3	25.6 ± 4.3	48.8 ± 9.8	18.3 ± 7.8
		马来酸(F)	19.9 ± 8.3	15.5 ± 6.2	26.0 ± 9.5	14.2 ± 9.1
		二元酸	329.6 ± 58.5	265.1 ± 55.0	277.0 ± 62.9	186.8 ± 52.0
		己酸(C ₆)	27.1 ± 5.9	35.4 ± 8.5	41.4 ± 13.5	25.7 ± 8.4
		辛酸(C8)	14.0 ± 5.9	12.1 ± 7.4	16.4 ± 8.1	9.6 ± 4.7
		癸酸(C ₁₀)	8.8 ± 3.9	9.5 ± 4.7	14.8 ± 6.7	7.7 ± 3.8
		十二酸(C ₁₂)	16.9 ± 7.1	17.7 ± 6.7	21.2 ± 9.6	15.5 ± 8.8
		十四酸(C ₁₄)	9.9 ± 4.3	11.9 ± 5.6	14.5 ± 7.2	9.0 ± 4.4
	梅和肥陆融	十六酸(C ₁₆)	97.8 ± 15.4	98.9 ± 19.6	122.9 ± 12.2	74.6 ± 7.7
	127日月日月月月日	十八酸(C ₁₈)	92.2 ± 7.7	79.8 ± 13.9	77.4 ± 26.6	52.2 ± 10.4
		二十酸(C ₂₀)	20.5 ± 7.1	25.0 ± 6.9	36.0 ± 12.3	17.0 ± 5.4
		二十二酸(C ₂₂)	18.5 ± 6.5	20.1 ± 7.9	28.5 ± 14.1	18.3 ± 7.9
脂肪酸/ng·m ⁻³		二十四酸(C ₂₄)	10.3 ± 3.6	13.1 ± 4.6	19.0 ± 5.7	11.7 ± 5.2
n la	~	三十酸(C ₃₀)	8.6 ± 2.1	12.5 ± 5.6	16.2 ± 7.0	9.4 ± 4.2
	h	饱和脂肪酸	324.6 ± 52.4	336.0 ± 56.6	408.3 ± 92.3	250.8 ± 61.5
	8	棕榈酸(C _{16:1})	19.6 ± 6.0	24.2 ± 6.7	35.2 ± 12.1	17.6 ± 6.2
31 81	8	油酸 (C _{18:1})	28.9 ± 6.7	55.5 ± 4.8	70.4 ± 13.2	19.4 ± 4.4
16	不饱和脂肪酸	亚麻酸(C _{18:3})	38.6 ± 6.0	58.1 ± 19.1	107.6 ± 16.5	24.8 ± 8.0
250	ALCONTRACTOR OF THE ACTION OF	亚油酸(C _{18:2})	23.1 ± 3.6	28.1 ± 10.5	47.8 ± 6.2	16.6 ± 6.6
ONVS	12	蒎酮酸	11.8 ± 2.1	26.1 ± 5.4	31.0 ± 18.7	5.5 ± 1.9
My AR	Vr.	不饱和脂肪酸	122.1 ± 21.7	192.0 ± 44.2	292.0 ± 59.0	83.9 ± 23.5
10Pm		脂肪酸	446.7 ± 53.7	528.0 ± 69.4	700.3 ± 136.5	334.6 ± 62.7
		海松酸	19.8 ± 4.4	24.1 ± 10.3	31.3 ± 15.6	9.8 ± 5.5
-11		松香酸	12.5 ± 2.9	20.7 ± 6.0	25.5 ± 15.3	12.4 ± 4.6
树脂酸/ng·m⁻³		脱氢松香酸	12.8 ± 4.7	23.1 ± 6.0	28.2 ± 14.8	6.5 ± 4.1
		异海松酸	10.2 ± 4.9	12.5 ± 4.7	17.9 ± 10.3	3.6 ± 2.0
		树脂酸	55.2 ± 16.7	80.4 ± 26.4	102.9 ± 55.1	32.3 ± 15.6
		OC	5.9 ± 1.8	12.2 ± 5.7	23.3 ± 11.2	15.2 ± 6.5
碳质组分 / μg·m ⁻³		EC	1.1 ± 0.5	2.2 ± 0.8	2.4 ± 0.8	1.6 ± 0.5
		SOC	2.3 ± 1.0	6.4 ± 4.0	13.4 ± 9.7	5.7 ± 5.2

表1 采样期间郑州市 PM_{2.5}中有机酸及其相关成分的浓度平均值

aaida nd that

明显高于其他3个季节.

从表1中可以看出脂肪酸表现出的季节变化特 征为:冬季>秋季>夏季>春季.从图3(b)可以看出 饱和脂肪酸(C₆~C₃₀)显示出较强的双峰优势,最丰富 的脂肪酸为棕榈酸和硬脂酸,浓度分别为(98.4± 22.8)ng·m⁻³和(71.6 ± 22.2) ng·m⁻³. 这与武汉和印 度分布模式非常相似[8,16].长链脂肪酸二十二烷酸 (C₂₂)和二十四烷酸(C₂₄),它们来自于陆生高等植 物^[35],冬季表现出更高的浓度.C₂₀以下脂肪酸的主要 来源包括生物来源的细菌代谢,以及人为来源,如汽 车尾气、煤炭燃烧和烹饪排放^[36],本研究中C₂₀以下

的ρ(饱和脂肪酸)的平均值为(287.6±77.8)ng·m⁻³, C2以上的脂肪酸来源于高等植物蜡排放^[37],其浓度 平均值为(26.3±11.5)ng·m-3.本研究中C_{\$20}/C_{\$22}在 夏、秋、冬和春四季的值分别为15.9、13.9、10.8和 11.2. 夏季 C_{\$20}/C_{>22}的值远高于其他季节,这可能是 由于夏天温度高细菌活动强烈所致.冬季C_{\$20}/C_{\$22}的 值较低的原因为落叶经过风蚀后排放出大量高碳数 脂肪酸[38].

郑州市 ρ (不饱和脂肪酸)变化范围为48.7~ 441.5 ng·m-3,油酸是颗粒物中浓度较高的不饱和脂 肪酸,主要来源于烹饪油烟的排放^[15],它在大气环境

中极不稳定,容易和空气中的氧化剂发生反应,生成 硬脂酸^[39],另一条转化途径是经光化学氧化最终生 成壬二酸^[40].本研究中,油酸在夏季和春季浓度低 (28.9 ng·m⁻³和19.4 ng·m⁻³),可能是由于发生了光化 学反应,转化为硬脂酸或壬二酸, 2.2.3 树脂酸

本研究中检测出郑州地区树脂酸 4 种, ρ (树脂酸)的变化范围为:11.4~253.2 ng·m⁻³,平均值为 (71.1±44.3) ng·m⁻³.从表1中可以看出,树脂酸季 节变化特征为:冬季>秋季>夏季>春季.从图3(c) 中可以看得出树脂酸中 ρ (海松酸)最高,年平均值为 (22.1±13.3) ng·m⁻³, ρ (异海松酸)最低,为(11.6± 8.5) ng·m⁻³.由木质素热解和植物燃烧释放的树脂酸 (如脱氢松香酸)可作为生物质燃烧的示踪剂^[41].郑 州市 ρ (脱氢松香酸)的年平均值为(18.8±12.6) ng·m⁻³,高于北京地区(15.0 ng·m⁻³)和加德满都山谷 地(13.8 ng·m⁻³)^[4].这可能由于河南是粮食大省,受 到麦秆燃烧的影响所导致的.脱氢松香酸在冬季和 秋季浓度最高,说明生物质燃烧是 PM_{2.5}中树脂酸的 重要一次来源,在冬季和秋季贡献较大.

2.3 主成分分析

本研究共解析了4个因子,解释了总方差的 81.8%,结果展示在表2中.

因子1被富马酸、低碳数脂肪酸C₆~C₁₈和树脂 酸大量负载,因此这个因素主要代表燃烧源(燃煤排 放和生物质燃烧)和交通源^[13,14,17].因子2被C_{16:1}、 C_{18:1}、C_{18:2}、C_{18:3}和蒎酮酸等不饱和脂肪酸大量负载, 与烹饪产生的油烟有关^[15],因此这个因子代表烹饪 源.因子3被与光化学反应有关的二元酸中的di-C₃、 di-C₄、di-C₅、di-C₆、di-C₇、di-C₈和di-C₉大量负载,且 因子3与相对湿度(r = 0.41, P < 0.01)和O₃浓度(r = 0.50, P < 0.01)呈正相关,表明与气相光化学氧化和 液相氧化反应过程密切相关,因此,因子3被确定为 二次来源^[20].因子4被高碳数的饱和脂肪酸C₂₀~C₃₀ 大量负载,因此被认为与植物蜡排放有关^[16].

为了定量每种来源对单个有机酸的贡献,利用 多元线性回归方法进行了探究,结果如图4所示.郑 州市63%的低碳数饱和脂肪酸C₆~C₁₈和57%的树脂 酸来自于燃烧源和交通源,烹饪油烟对不饱和脂肪 酸的贡献约为60%,天然高等植物蜡对高碳数的脂肪 酸C₂₀~C₃₀的贡献为65%,约70%的饱和二元酸来自 于二次生成.总体上,燃烧源和交通源对郑州市有机 酸的贡献率最高,为35%,其次是贡献率为24%的烹 饪源、23%的二次源和17%的天然源.

2.4 有机酸的二次生成

本研究中的有机酸的季节变化及其PCA结果表明,二次生成过程是二元酸重要来源.为了研究二元酸二次生成过程及其对SOA的影响,选择了6种可能对其有影响的因素.分别是T、RH、p、WS、PM_{2.5}浓度和O₃浓度.温度是影响化学反应速率的关键因素,也会影响气溶胶前驱体的吸收^[42],风速可以通过改变大气扩散能力来影响SOA前驱体的浓度,从而影响有机酸的二次生成速率^[43],相对湿度对有机酸的主要形成机制之一液相氧化有显著影响^[44],压力也

Table 2	Results of PCA analysis of organic acids in Zhengzhou						
75 D		因子					
坝日	1	2	3	4			
方差/%	49.28	15.73	10.24	6.52			
di-C ₃	0.17	-0.52	0.52	-0.31			
$di-C_4$	0.33	0.42	0.63	0.15			
di-C ₅	0.09	-0.03	0.85	-0.08			
di-C ₆	0.08	-0.01	0.92	-0.09			
$di-C_7$	0.11	0.35	0.85	0.05			
$di-C_8$	0.11	0.25	0.85	0.15			
di-C ₉	0.01	-0.10	0.86	-0.09			
$di-C_{10}$	0.32	0.62	0.43	0.09			
М	0.56	0.63	0.03	0.32			
F	0.84	0.19	0.14	0.23			
C ₆	0.87	0.33	0.09	0.15			
C_8	0.60	0.01	0.30	0.34			
C ₁₀	0.86	0.29	0.05	0.16			
C ₁₂	0.91	0.04	0.01	0.13			
C_{14}	0.91	0.12	-0.03	0.13			
C ₁₆	0.68	0.50	0.25	0.23			
C_{18}	0.73	0.06	0.37	-0.02			
C ₂₀	0.28	0.37	-0.02	0.82			
C ₂₂	0.24	0.10	-0.04	0.90			
C ₂₄	0.18	0.30	-0.02	0.85			
C ₃₀	0.25	0.21	-0.06	0.88			
C _{16:1}	0.28	0.83	0.04	0.09			
C18:1	0.31	0.84	0.09	0.22			
C _{18:3}	0.24	0.90	0.11	0.28			
C _{18:2}	0.22	0.88	0.04	0.25			
蒎酮酸	0.46	0.68	0.11	0.14			
海松酸	0.88	0.35	0.17	0.16			
松香酸	0.87	0.33	0.01	0.17			
脱氢松香	睃 0.81	0.46	0.12	0.17			
异海松酸	ξ 0.84	0.40	0.15	0.16			

表 2 郑州市有机酸 PCA 分析结果

是影响化学反应的因素之一^[45],O₃浓度是代表气相 光化学氧化能力的指标^[10],而PM_{2.5}浓度也会影响 SOA的浓度水平^[23].本文计算了指示性有机酸的比 值(di-C₃/di-C₄、M/F、di-C₆/di-C₉、C_{18:1}/C₁₈)和其潜在影 响因素的相关性(皮尔逊相关性),结果如图5所示.

本次所采集的环境样品中,di-C₃/di-C₄介于0.5~6.1 之间,平均值为1.8±0.8,高于上海(1.1)^[12]、北京 (0.8)^[3]和东京(1.5)^[20],说明郑州市光化学反应强 烈.从图5可以看出di-C₃/di-C₄的季节变化在夏季和 春季值较高(2.5±0.4、2.1±0.1),冬季最低(0.7± 0.2),且与T、O₃和RH呈正相关(图5).说明夏季温 度高、氧化剂浓度大以及湿度大的情况下,光化学反 应强烈,冬季较低可能是光化学反应在不利的气象

1. di-C₃/di-C₄, 2. di-C₆/di-C₉, 3. M/F, 4. C_{18:1}/C₁₈

图 5 4 个季节指示性有机酸的特征比值及它们与气象数据、PM_{2.5}和 O₃的相关性

Fig. 5 Indicator ratios of the indicated organic acids for the four seasons and their correlations with meteorological data, PM2, and O3

条件和霾事件中受到抑制所导致的.

马来酸在强烈的太阳辐射下可以转化为富马酸,油酸受温度、光学氧化剂浓度的影响,易被氧化为硬脂酸,因此,M/F和C_{18:1}/C₁₈通常可指示气溶胶的老化程度,比值越小,老化程度越高^[21,39].郑州市夏季、秋季、冬季、春季M/F和C_{18:1}/C₁₈的值如图5所示,可以看出夏季、春季气溶胶老化较高,冬季最低,且M/F和C_{18:1}/C₁₈与O₃、RH呈显著负相关(图5),说明夏季、春季温度高,相对湿度大,臭氧浓度高,以上因素共同促进了气溶胶的老化.春季老化程度高于秋季,冬季温度低,相对湿度小,臭氧浓度低,不利于二次生成,气溶胶老化程度低.

己二酸主要由人为源排放的环己烯的氧化产 生,壬二酸主要由生物源不饱和脂肪酸的氧化产生, 己二酸与壬二酸的质量浓度比值越高说明有机气溶 胶中人为SOA的贡献越大^[24].在观测过程中,郑州市 的 di-C₆/di-C₉的范围为0.2~1.3,平均值为0.6± 0.2,低于重庆(1.31)^[11]、东京(0.83)^[20],高于北京 PM_{2.5}样品(0.36)^[10],这说明郑州大气细粒子中人为 SOA的贡献比东京和重庆低,比北京高.这可能是因 为郑州属于中原城市群,冬季采取集体供暖等原因 导致的.di-C₆/di-C₉与气象条件、PM_{2.5}和O₃的相关性 并不明显(图5).夏季和冬季的di+C₆/di-C₆(0.8±0.1 和0.7±0.2)的比值高于其他季节,说明在夏季和冬 季人为SOA的贡献大于其他季节,

为了更加深入地讨论有机酸的二次生成,将有 机酸的浓度通过OC浓度进行归一化^[46],以消除大气 稀释效应,更好阐明二次生成率.对二元酸/OC与其 可能的影响因素进行了相关性分析(以下二元酸选 择的是 PCA结果中来自于二次生成的7种二元酸, di-C₃~di-C₉).选择了5种可能对二元酸二次形成有 影响的因素,包括T、WS、RH、p和O₃浓度.其中,T、 RH和O₃浓度和二元酸/OC有显著相关性.因此,选 取上述3个因素进行多元线性回归分析,结果如表3 所示.因为在模型2中,T的显著性大于0.05,说明模 型2没有实际意义,所以选择模型1作为本次研究中 的最优方程,O₃和RH作为独立自变量.O₃和RH的显 著性水平均低于0.05,说明两者对因变量(二元酸/ OC)均有显著影响.

表 3	整个	采样期间二元酸/OC与T、RH及O ₃ 浓度多元回归分析
Tabl	е 3	Multiple regression analysis of dicarboxylic acids/OC and
	temp	perature, relative humidity, and ozone concentration

·uro,	roran		aman	"	ana	onone	conc
	.1	1	1		1.		1

	unoughout the sumpling period							
模型	项目	回归 系数	标准 错误	显著 性	Tolerance	VIF	R^2	
	常量	-7.05	3.98	0.08				
1	03	0.28	0.06	0.00	0.71	1.40	0.40	
	RH	0.26	0.09	0.00	0.71	1.40	2	
	常量	-6.83	3.97	0.09	Cr	11	r	
2	03	0.22	0.07	0.00	0.41	2.42	0.41	
2	RH	0.22	0.09	0.02	0.63	1.60	6.8	
	T /	0.38	0.29	0.19	0.37	2.70	11	
				N		~ /		

以 O₃的浓度与回归系数的乘积代表气相氧化的 贡献,RH与回归系数的乘积代表液相氧化的贡献, 计算了郑州市 PM_{2.3}中气相氧化和液相氧化的相对贡 献,结果如图 6 所示.在整个采样过程中,二次生成 在夏季贡献最高,气相氧化与液相氧化贡献值在夏 季也均为四季最高,其次是春季和秋季,冬季二次生 成贡献最低,这可能是因为郑州市冬季灰霾天气时 常发生^[25],抑制了气相氧化,Xu等^[47]研究表明水磷酶 氧化是液相氧化的主要反应,而冬季较低的温度和

图6 二元酸/OC和气相氧化与液相氧化相对贡献的时间变化

Fig. 6 Temporal change in dicarboxylic acids/OC and the relative contributions of gas-phase oxidation and liquid-phase oxidation

相对湿度也不利于液相氧化,这也是气溶胶夏季、春季老化程度高,冬季最低的原因.气相氧化和液相氧化对郑州市二元酸的形成均有显著贡献,这与Yu 等^[33]研究的结果相似.其中,气相氧化是整个研究阶段的主要氧化过程,特别是在夏季和春季,占比为 61%和60%,明显高于液相氧化的占比,这也与 di-C₃/di-C₄在夏季、春季比值最高相一致,进一步证 实了强烈的太阳辐射和高温有利于光化学氧化的发 生^[24],在秋季和冬季气相氧化(54%和53%)均略高于 液相氧化.

3 结论

(1)郑州市饱和二元酸存在明显的季节变化规律,夏季最高春季最低,M的浓度变化特征表明,冬季郑州存在严重的芳香族SOA污染.

(2)郑州市饱和脂肪酸和树脂酸浓度在冬季最高,春季最低.不饱和脂肪酸浓度低于饱和脂肪酸, 饱和脂肪酸呈明显双峰优势,主峰碳为C₁₆和C₁₈, C₁₆/C₁₈的比值在冬季达到最高,说明机动车排放是 PM_{2.5}中脂肪酸的重要一次来源.树脂酸中的脱氢松 香酸在冬季和秋季浓度最高,说明生物质燃烧是 PM_{2.5}中树脂酸的重要一次来源.

(3)利用 PCA-MLR 模型探究有机酸的来源,结 果表明:燃烧源和交通源是郑州市有机酸主要来源, 其次是烹饪源、二次源和天然源.

(4)相关性和 MLR 分析结合指示性有机酸比值的结果表明,二次生成在夏季和春季贡献较大,气溶胶老化程度较高,冬季二次生成的贡献较小,气溶胶 老化程度较低.气相氧化和液相氧化对郑州市有机 酸的二次生成均有显著贡献,其中气相氧化占主导 作用,占比为 58%.

参考文献:

- Menon S, Hansen J, Nazarenko L, et al. Climate effects of black carbon aerosols in China and India [J]. Science, 2002, 297 (5590): 2250-2253.
- [2] Ho KF, Huang RJ, Kawamura K, et al. Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids and benzoic acid in PM_{2.5} aerosol collected during CAREBeijing-2007: an effect of traffic restriction on air quality [J]. Atmospheric Chemistry and Physics, 2015, 14(10): 14855-14887.
- [3] 许绍锋.北京市大气中有机气溶胶的分子组成、粒径分布及 季节性变化[D].天津:天津大学,2019.
 Xu S F. Molecular composition, size distributions and seasonal variation of urban organic aerosols in Beijing[D]. Tianjin: Tianjin University, 2019.
- [4] Novakov T, Penner J E. Large contribution of organic aerosols to cloud-condensation nuclei concentrations [J]. Nature, 1993, 365 (6449): 823-826.
- [5] Penner J E, Chuang C C, Grant K. Climate forcing by carbonaceous and sulfate aerosols [J]. Climate Dynamics, 1998,

14(12): 839-851.

- [6] Gundel L A, Dalsey J M, De Carvalho L R F, et al. Polar organic matter in airborne particles: Chemical characterization and mutagenic activity [J]. Environmental Science & Technology, 1993, 27(10): 2112-2119.
- [7] Chebbi A, Carlier P. Carboxylic acids in the troposphere, occurrence, sources, and sinks: a review [J]. Atmospheric Environment, 1996, 30(24): 4233-4249.
- [8] 郭浩天,周家斌,余文洋,等.武汉市大气 PM_{2.5}中有机酸的季节变化及其来源解析[J].环境科学与技术,2014,37(4):90-95.

Guo H T, Zhou J B, Yu W Y, *et al.* Seasonal variation and source of carboxylic acids in PM_{2.5} in Wuhan, China[J]. Environmental Science & Technology, 2014, **37**(4): 90-95.

- [9] 曾昕.典型源排放和城市大气中有机气溶胶的组成及DNA损伤能力研究[D].武汉:中国地质大学,2021.
 Zeng X. Composition and DNA damage capacities of organic aerosols from typical emission sources and urban air environment
 [D]. Wuhan: China University of Geosciences, 2021.
- [10] Yu Q, Chen J, Cheng S M, et al. Seasonal variation of dicarboxylic acids in PM_{2.5} in Beijing: Implications for the formation and aging processes of secondary organic aerosols [J]. Science of the Total Environment, 2021, **763**, doi: 10.1016/j. scitotenv. 2020. 142964.
- [11] 贡营涛,田密,傅敏,等,重庆主城区PM_{2.5}中羧酸的季节变化和来源分析[J].环境科学学报,2016,36(7);2332-2343.
 Gong Y T, Tian M, Fu M, et al. Seasonal variation and source analysis of carboxylic acids in PM_{2.5} in the urban area of Chongqing [J]. Acta Scientiae Circumstantiae, 2016, 36(7): 2332-2343.
- [12] 杜艳.上海 PM_{2.5}中低分子二元羧酸的污染特征及其来源解析[D].上海:上海大学, 2015.
 Du Y. Characteristics and sources of dicarboxylic acids in PM_{2.5} in Shanghai[D]. Shanghai: Shanghai University, 2015.
- [13] Oros D R, Simoneit B R T. Identification and emission rates of molecular tracers in coal smoke particulate matter[J]. Fuel, 2000, 79(5): 515-536.
- Zhang Y X, Shao M, Zhang Y H, et al. Source profiles of particulate organic matters emitted from cereal straw burnings[J]. Journal of Environmental Sciences, 2007, 19(2): 167-175.
- [15] He L Y, Hu M, Huang X F, et al. Measurement of emissions of fine particulate organic matter from Chinese cooking [J]. Atmospheric Environment, 2004, 38(38): 6557-6564.
- [16] Oliveira C, Pio C, Alves C, et al. Seasonal distribution of polar organic compounds in the urban atmosphere of two large cities from the North and South of Europe [J]. Atmospheric Environment, 2007, 41(27): 5555-5570.
- [17] He L Y, Hu M, Huang X F, et al. Chemical characterization of fine particles from on-road vehicles in the Wutong tunnel in Shenzhen, China[J]. Chemosphere, 2006, 62(10): 1565-1573.
- [18] Kawamura K, Kasukabe H, Barrie L A. Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: one year of observations [J]. Atmospheric Environment, 1996, 30(10-11): 1709-1722.
- [19] Grosjean D, van Cauwenberghe K, Schmid J P, et al. Identification of C₃-C₁₀ aliphatic dicarboxylic acids in airborne particulate matter [J]. Environmental Science & Technology, 1978, **12**(3): 313-317.
- [20] Kawamura K, Ikushima K. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere [J]. Environmental Science & Technology, 1993, 27(10): 2227-2235.

- [21] Kawamura K, Sakaguchi F, et al. Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics[J]. Journal of Geophysical Research, 1999, 104 (1): 3501-3509.
- [22] Wu L M, Wei L L, Wang G L, et al. Comparison of atmospheric monocarboxylic and dicarboxylic acids in Xi'an, China, for Source apportionment of organic aerosols [J]. Water, Air, & Soil Pollution, 2020, 231(7), doi: 10.1007/s11270-020-04675-y.
- [23] Yu Q, Chen J, Qin W H, et al. Characteristics and secondary formation of water-soluble organic acids in PM₁, PM_{2.5} and PM₁₀ in Beijing during haze episodes [J]. Science of the Total Environment, 2019, 669: 175-184.
- [24] Li P S, Pavuluri C M, Dong Z C, et al. Characteristics, seasonality, and secondary formation processes of diacids and related compounds in fine aerosols during warm and cold periods: year-round observations at Tianjin, North China [J]. Journal of Geophysical Research, 2021, 126 (23), doi: 10.1029/ 2021JD035435.
- [25] 王申博,王玲玲,范相阁,等.河南省北部区域霾污染过程中 城市和农村点位 PM_{2.5}组分差异[J].环境科学,2023,44(1): 11-19.
 Wang S B, Wang L L, Fan X G, *et al.* Differences in PM_{2.5} components between urban and rural sites during heavy haze event in northern Henan province[J]. Environmental Science, 2023, 44 (1): 11-19.
- [26] 董喆,袁明浩,苏方成,等.郑州市细颗粒物时空差异及管控 措施影响[J].环境科学,2021,42(5):2179-2189.
 Dong Z, Yuan M H, Su F C, et al. Spatiotemporal variations in fine particulate matter and the impact of air quality control in Zhengzhou [J]. Environmental Science, 2021, 42(5):2179-2189.
- [27] 董喆,姜楠,王佳,等.中原城市群興型城市大气细颗粒物中 多环芳烃人群健康风险评估[A].2020中国环境科学学会科 学技术年会论文集(第四卷)[C].南京:中国环境科学学会, 2020.545-550.
- [28] 王冰, 尹沙沙, 黄爱枝, 等. 郑州市多靖点大气 VOCs 变化特征及源解析[J]. 环境科学, 2023, 44(2): 699-708.
 Wang B, Yin S S, Huang A Z, et al. Variation characteristics and source apportionment of atmospheric VOCs at Multi-sites in Zhengzhou[J]. Environmental Science, 2023, 44(2): 699-708.
- [29] Chen H Y , Yin S S , Li X , et al. Analyses of biomass burning contribution to aerosol in Zhengzhou during wheat harvest season in 2015[J]. Atmospheric Research, 2018, 207: 62-73.
- [30] Larsen R K, Baker J E. Source apportionment of polycyclic aromatic hydrocarbons in the Urban Atmosphere: a comparison of three methods [J]. Environmental Science & Technology, 2003, 37(9): 1873-1881.
- [31] Kawamura K, Bikkina S. A review of dicarboxylic acids and related compounds in atmospheric aerosols: Molecular distributions, sources and transformation [J]. Atmospheric Research, 2016, **170**: 140-160.
- [32] Fu P Q, Kawamura K, Usukura K, et al. Dicarboxylic acids, ketocarboxylic acids and glyoxal in the marine aerosols collected during a round-the-world cruise [J]. Marine Chemistry, 2013, 148: 22-32.
- $[\,33\,]$ $\,$ Kawamura K, Gagosian R B. Implications of ω -oxocarboxylic

acids in the remote marine atmosphere for photo-oxidation of unsaturated fatty acids[J]. Nature, 1987, **325**(6102); 330-332.

- [34] Cai T Q, Zhang Y, Fang D Q, et al. Chinese vehicle emissions characteristic testing with small sample size: results and comparison
 [J]. Atmospheric Pollution Research, 2017, 8(1): 154-163.
- [35] Fu P Q, Kawamura K, Pavuluri C M, et al. Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation [J]. Atmospheric Chemistry and Physics, 2010, 10(6): 2663-2689.
- [36] Rogge W F, Hildemann L M, Mazurek M A, et al. Sources of fine organic aerosol. 6. Cigarette smoke in the urban atmosphere [J]. Environmental Science & Technology, 1994, 28(7): 1375-1388.
- [37] Simoneit B R T, Sheng G Y, Chen X J, et al. Molecular marker study of extractable organic matter in aerosols from urban areas of China [J]. Atmospheric Environment. Part A. General Topics, 1991, 25(10): 2111-2129.
- [38] Rogge W F, Hildemann L M, Mazurek M A, et al. Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surfaces of urban plants [J]. Environmental Science & Technology, 1993, 27(13): 2700-2711.
- [39] Simoneit B R T, Mazurek M A. Organic matter of the troposphere-II. Natural background of biogenic lipid matter in aerosols over the rural western united states[J]. Atmospheric Environment (1967), 1982, 16(9): 2139-2159.
- [40] Stephanou E G, Stratigakis N. Oxocarboxylic and α, ω -dicarboxylic acids: photooxidation products of biogenic unsaturated fatty acids present in urban aerosols [J]. Environmental Science & Technology, 1993, 27(7): 1403-1407.
- [41] Myers-Pigg A N, Griffin R J, Louchouarn P, et al. Signatures of biomass burning aerosols in the plume of a saltmarsh wildfire in South Texas[J]. Environmental Science & Technology, 2016, 50 (17): 9308-9314.
- [42] Ding X, Wang X M, Zheng M. The influence of temperature and aerosol acidity on biogenic secondary organic aerosol tracers: Observations at a rural site in the central Pearl River Delta region, South China[J]. Atmospheric Environment, 2011, 45(6): 1303-1311.
- [43] Kawamura K, Yasui O. Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere[J]. Atmospheric Environment, 2005, 39 (10): 1945-1960.
- [44] Bikkina S, Kawamura K, Sarin M. Secondary organic aerosol formation over coastal ocean: Inferences from atmospheric watersoluble low molecular weight organic compounds [J]. Environmental Science & Technology, 2017, 51 (8): 4347-4357.
- [45] 张韫宏,庞树峰,郑传明.温度和压力对化学反应方向和化 学平衡的调控[J].化学教育,2019,40(22):91-95.
- [46] Zheng M, Fang M, Wang F, et al. Characterization of the solvent extractable organic compounds in PM_{2.5} aerosols in Hong Kong[J]. Atmospheric Environment, 2000, 34(17): 2691-2702.
- [47] Xu W Q, Han T T, Du W, et al. Effects of aqueous-phase and photochemical processing on secondary organic aerosol formation and evolutionin Beijing, China [J]. Environmental Science & Technology, 2017, 51(2): 762-770.

HUANJING KEXUE

Environmental Science (monthly)

CONTENTS

Impacts of Anthropogenic Emission Reduction on Urban Atmospheric Oxidizing Capacity During the COVID-19 Lockdown	·····ZHU Jian-lan, QIN Mo-mei, ZHU Yan-hong, et al.	. (617)
Transport and Potential Sources Regions of Double High Pollution in Nanjing by Different Synoptic Situations	······QIN Yang, HU Jian-lin, KONG Hai-jiang	(626)
Differences of Three Methods in Determining Ozone Sensitivity in Nanjing ·····	······CHEN Gan-yu, LI Xun, LI Lin, et al.	. (635)
Characteristics of Ozone Concentration in Shanghai and Its Associated Atmospheric Circulation Background During Summer Half-years free	om 2006 to 2021	
	ZHENG Qing-feng, LIANG Ping, DUAN Yu-sen, et al.	. (645)
Distribution Characteristics of Near Surface Ozone Volume Fraction in Shanxi Province Based on Atmospheric Composition Observation Neuropean Composition Characteristics of Near Surface Ozone Volume Fraction in Shanxi Province Based on Atmospheric Composition Observation Neuropean Composition Characteristics of Neuropean Characteristics of Neuropean Composition Characteristics of Neuropean Characteristics	etwork	
	LI Ying, WANG Shu-min, PEI Kun-ning, et al.	. (655)
Photochemical Mechanism and Control Strategy Optimization for Summertime Ozone Pollution in Yining City	WANG Wen-ting, GU Chao, LI Li-ming, et al.	. (668)
Characteristics, Sources, and Ozone-sensitive Species of VOCs in Four Seasons in Yuncheng	······YIN Shi-jie, LIU Xin-gang, LIU Ya-fei, et al.	. (678)
Pollution Characteristics, Source Analysis, and Activity Analysis of Atmospheric VOCs During Winter and Summer Pollution in Zhengzho	ou ······LAI Meng-jie, ZHANG Dong, YU Shi-jie, et al.	. (689)
Pollution Characteristics, Sources, and Secondary Generation of Organic Acids in PM2.5 in Zhengzhou	LI Zi-han, DONG Zhe, SHANG Lu-qi, et al.	. (700)
Nonlinear Variations in PM2.5 Concentration in the Three Major Urban Agglomerations in China	"WU Shu-qi, GU Yang-yang, ZHANG Tian-yue, et al.	. (709)
Medium and Long-term Carbon Emission Projections and Emission Reduction Potential Analysis of the Lingang Special Area Based on the	: LEAP Model	
	WU Qiong, MA Hao, REN Hong-bo, et al.	. (721)
Dynamic Analysis on Carbon Metabolism of the Northern Region of China Under the Background of Carbon Emission Trading Policy	ZHENG Hong-mei, SHEN Fang, XU Guang-yao, et al.	. (732)
Carbon Reduction Analysis of Life Cycle Prediction Assessment of Hydrogen Fuel Cell Vehicles: Considering Regional Features and Vehi	cle Type Differences	
	MA Jing, CAI Xu, ZHANG Chun-mei, et al.	. (744)
Nitrate Pollution Characteristics and Its Quantitative Source Identification of Major River Systems in China	·····WEI Ying-huai, HU Min-peng, CHEN Ding-jiang	(755)
Effects of Land Use Structure and Spatial Pattern at Different Temporal and Spatial Scales on Water Quality in Suzhou Creek	······TAN Juan, XIONG Li-jun, WANG Qing, et al.	. (768)
Spatial-temporal Variation in Water Quality of Rain-source Rivers in Shenzhen from 2015 to 2021 and Its Response to Rainfall	····WEI Bi-ying, CHENG Jian-mei, SU Xiao-yu, et al.	. (780)
Chemical Characteristics of Shallow Groundwater in the Yellow River Diversion Area of Henan Province and Identification of Main Control	Pollution Sources	
	WANG Shuai, REN Yu, GUO Hong, et al.	. (792)
Chemical Characteristics and Genetic Analysis of Karst Groundwater in the Beijing Xishan Area	GUO Gao-xuan, DAI Yin-dong, XU Liang, et al.	. (802)
Hydrochemical Characteristics and Its Origin of Surface Water and Groundwater in Dianbu River Basin	······ZHENG Tao, QIN Xian-yan, WU Jian-xiong	(813)
Hydrochemical Characteristics and Genesis Mechanism of Groundwater in the Dry Period in the Zhangjiakou Area	JIN Ai-fang, YIN Xiu-lan, LI Chang-qing, et al.	. (826)
Distribution of Typical Resistant Bacteria and Resistance Genes in Source Water of the Middle and Lower Reaches of the Yellow River	MIN Wei, GAO Ming-chang, SUN Shao-fang, et al.	. (837)
Contamination Characteristics, Detection Methods, and Control Methods of Antibiotic Resistance in Pharmaceutical Wastewater	······PENG An-ping, GAO Hu, ZHANG Xin-bo	(844)
Effect of Water Components on Aggregation and Sedimentation of Polystyrene Nano-plastics	uan-yang, ZHENG Wen-li, CHEN Guan-tong-yi, et al.	. (854)
Lead Removal from Water by Calcium-containing Biochar with Saturated Phosphate	LIU Tian, LÜ Si-lu, DU Xing-guo, et al.	. (862)
Preparation of Chitosan-modified Biochar and Its Adsorption Mechanism for Cd2+ in Aqueous Solution	·····JIANG Ling, AN Jing-yue, YUE Xiao-qiong, et al.	. (873)
Efficacy and Mechanism of Tetracycline Adsorption by Boron-doped Mesoporous Carbon	ZOU Zhen, XU Lu, OIAO Wei, et al.	. (885)
Adsorption Properties of Magnetic Phosphorous Camellia Oleifera Shells Biochar to Sulfamethoxazole in Water	HAN Shuai-peng, TANG Li-wen, LIU Qin, et al.	. (898)
High Resolution Emission Inventory of Greenhouse Gas and Its Characteristics in Guangdong, China	LU Oing, TANG Ming-shuang, LIAO Tong, et al.	(909)
Ecosystem CO, Exchange and Its Environmental Regulation of a Restored Wetland in the Liaohe River Estuary	LIU Si-qi, CHEN Hong, XING Qing-hui, et al.	. (920)
Effects of Biochar Application Two Years Later on N.O and CH. Emissions from Rice-Vegetable Rotation in a Tropical Region of China	HU Yu-ije, TANG Rui-ije, HU Tian-vi, et al.	(929)
Research and Application Progress of Biochar in Amelioration of Saline-Alkali Soil	WEI Ying, IIAO Le, ZHANG Peng, et al.	(940)
Effect of No-tillage on Soil Aggregates in Farmland · A Meta Analysis	XU Yi-ping, RAO Yue-yue, MENG Yan, et al.	(952)
Spatio-temporal Evolution and Multi-scenario Simulation of Carbon Storage in Karst Regions of Central Guizhou Province · Taking Puding	County as An ExampleLI Yue, LUO Hong-fen	(961)
Effects of Different Modifiers on Aggregates and Organic Carbon in Acidic Purple Soil	······································	(974)
Effect of Ca Modified Biochar on the Chemical Speciation of Soil Phosphorus and Its Stabilization Mechanism	·······ZHANG Chao, ZHAI Fu-jie, SHAN Bao-ging	(983)
Plant Diversity Changes and Its Driving Factors of Ahandoned Land at Different Restoration Stages in the Middle of the Oinling Mountains	YAN Cheng-long, XUE Yue, WANG Yi-fei, et al.	(992)
Contamination Characteristics and Ecological Risk of Antibiotics in Contaminated Sites of Typical Pharmaceutical Factories in China		())=)
VA	NG Jiong-bin, HUANG Zheng, ZHAO Jian-Jiang, et al.	(1004)
Pollution Characteristics and Risk Assessment of Polycyclic Aromatic Hydrocarbons in Soils of Guangzhou	····ZOU Zi-hang, CHEN Lian, ZHANG Pei-zhen, et al.	(1015)
Quantifying the Contribution of Soil Heavy Metals to Ecological and Health Risk Sources	······PAN Yong-xing, CHEN Meng, WANG Xiao-tong	(1026)
Potential Ecological Risk Characteristics and Source Apportionment of Heavy Metals in Farmland Soils around Typical Factories in Hunan	Province Based on Monte -Carlo Simulation	(,
		(1038)
Health Risk Assessment for an Arsenic-contaminated Site Based on Monte Carlo Simulation and Parameters Optimization	YUAN Bei, LIU Hu-peng, DU Ping, et al.	(1049)
Pollution Source Apportionment of Heavy Metals in Cultivated Soil Around a Red Mud Yard Based on APCS-MLR and PMF Models		(1058)
Characteristics and Mechanism of Cd Release and Transport in Soil Contaminated with PE-Cd	WANG Di, XII Shao-hui, SHAO Ming-yan, et al.	(1069)
Characterization of Reductive Dechlorination of Chlorinated Fthylenes by Anaerobic Consortium		(1080)
Analysis of Heavy Metal Pollution Evaluation and Correlation of Farmland Soil and Vegetables in Zhaotong City	ZHANG Hao, DONG Chun-vu, YANG Hai-chan, et al.	(1000)
Safe Utilization Effect of Passivator on Mild to Moderate Cadmium Contaminated Farmland	ANG Xiao-iing ZHANG Dong-ming CAO Yang et al.	(1098)
Simultaneous Immobilization of Cadmium and Arsonic in Paddy Soils with Noval Fa-Mn Combined Cranhane Ovide	······································	(1107)
Effects of the Application of Irrigation Water Containing Zn at the Key Growth Period on the Untake and Transport of Cd in Rice	············ZHOU Xia HU Yu-dan ZHOU Hang <i>et al.</i>	(1118)
Effects of Evogonous Zine on Crowth and Root Architecture Classification of Maiza Saedlings Under Cadmium Stress		(1110)
Mitigative Effect of Bare Farth Element Cerium on the Growth of Zine-stressed Wheat (<i>Triticum gestivum</i> L.) Seedlings	ANG Jing-jing XII Zheng-yang JIAO Oju-juan et al	(1120)
Two-stage Inhibition Effects of Burkholderia en VA Annliegtion on Cadmium Untake and Transport in Wheat	CIIO Jia-ija WANG Chang-rong IIII Zhong-gi et al.	(1150)
Effects of Combined Stress of High Density Polyethylene Micronlastics and Chlorimuron-athyl on Souhaen Crowth and Rhizoenhaze Rogion	ial Community	(1150)
anous of communication of the money responsible intropraence and continuant citiyi on boyucan orowin and unitabilited bacter	·····HII Xiao-vue HIIA Zi-wai VAO Lun-guang at al	(1161)
Human Accumulation and Toxic Effects of Microplastics. A Critical Review	O Ya-ho WANG Chang-chan PENC Wu-muong at al	(1173)
Overview of the Annlication of Machine Learning for Identification and Environmental Risk Assocsment of Micronlastics		(1185)
Research Process on the Combined Pollution of Microplastics and Tyrical Pollutants in Agricultural Soils		(1106)
Research Progress in Fleetrachemical Detection and Removal of Micro/Nano Plastics in Water	HENG Wei-kang LIII Zhen-zhong XIANG Yigo-fong	(1210)
Factors Influencing Willingness of Farmers to Pay for Agricultural Non-noint Source Pollution Control Record on Distributed Cognitive The	oryGIIO Chen-hao LI Lin-fai XIA Yian-li	(1220)
united and a set of the		()