採 佐 神 草 (HUANJING KEXUE)

ENVIRONMENTAL SCIENCE

第44卷 第6期 2023年6月15日

目 次

持久性、迁移性和潜在毒性化学品环境健康风险与控制研究现状及趋势分析 张少轩,陈安娜,陈成康,景侨楠,刘建国(3017) 我国厨余垃圾资源化技术的多维绩效评价 杨光,史波芬,周传斌(3024) 基于 MSPA 和电路理论的京津冀城市群热环境空间网络
基于 MSPA 和电路理论的京津冀城市群热环境空间网络
本治,陈嘉悦,王楠,卢应爽,贺瞳,孙宗耀,徐新良,杨浩,李莹,王方(3034)城市空间格局与热环境响应关系:以合肥市区为例
天津市"十三五"期间 PM2.5减排效果评估
一清洁取暖对保定市采暖期 PM,中储店与溶胶的影响 发字基 张凯 赵妤希 任家曼 段書表 李欢欢 美健 乳志姫 李博丈(3063)
大气环流型对珠三角 2015 ~ 2020 年臭氧变化的影响
南京地区细颗粒物污染输送影响及潜在源区 谢放尖,郑新梅,窦焘焘,杨峰,刘春蕾,李洁,谢轶嵩,王艳,胡建林,陈长虹(3071)大气环流型对珠三角 2015~2020 年臭氧变化的影响

$2010 \sim 2020$ 年成都市任制 $r_{M_2,5}$ 和 $0_{3.8h}$ 17来的健康双量评价 ************************************
世界的 2022年中华 3 10 20 11 20 11 20 12 12 14 15 15 15 15 16 15 15 16 15 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16
西安市大气降水的主要化学组分及其来源 周东,黄智浦,李思敏,王森,牛振川,熊晓虎,冯雪(3142)
宜昌市大气微塑料的分布、呼吸暴露及溯源 ····································
无定河流域地表水硝酸盐浓度的时空分布特征及来源解析 徐奇峰,夏云,李书鉴,王万洲,李志(3174)
—— 太佣刑小怀·司仉代初中里金属的学卫文化特征·司乃采计价 ··· 夕鹏任,凉难仁,亦好好,对生胜,尚任朕,尨任恉,庾心龙,权祀士(5184)
北京市北运河水体中抗生素污染特征及风险评估
西宁市浅层地下水化学特征及形成机制
推河下游湖泊表层水和沉积物中 PPCPs 分布特征及风险评估
可见光激发下模拟海水中四环素光降解的机制和路径 许恒韬, 付小航, 丰卫华, 王挺 (3260) 纳米零价铁改性生物炭对水中氨氮的吸附特性及机制 陈文静, 石峻岭, 李雪婷, 张李金, 刘富强, 陈正祝, 庞维海, 杨殿海 (3270)
喜每酸钾砂性椰壳生物岩对水中Cd(Ⅱ)和N;(Ⅱ)的丰险性能及机制 张凤恕 王敦禄 曹星洼 刘标克 兵租租 刘立恒(3278)
網改性净水污泥水热炭对水体中磷的吸附特性及底泥内源磷的固定 · · · · 何李文泽,陈钰,孙飞,李艳君,杨顺生,张志鹏(3288)城镇生活污水处理厂出水硝酸盐浓度及同位素组成的影响因素 · · · · · · · · · · · · · · · · · · ·
基于 Meta 分析的污水处理上之对微型科去除效果影响 符立松,疾磊,土艳葭,李晓琳,土万兵,栾启斌(3309) 我国自然生态系统氮沉降临界负荷评估 数超 (3321)
气候变化和人类活动对东部沿海地区 NDVI 变化的影响分析 金岩松,金凯,王飞,刘春霞,秦鹏,宗全利,刘佩茹,陈明利 (3329)
基于 Meta 分析的污水处理工艺对微塑料去除效果影响 符立松,侯磊,王艳霞,李晓珠,王万宾,梁启斌(3309)我国自然生态系统氮沉降临界负荷评估 黄静文,刘磊,颜晓元,遗超普(3321)气候变化和人类活动对东部沿海地区 NDVI 变化的影响分析 金岩松,金凯,王飞,刘春霞,秦鹏,宗全利,刘佩茹,陈明利(3329)基于 InVEST 模型和 PLUS 模型的环杭州湾生态系统碳储量 丁岳,王柳柱,桂峰,赵晟,朱望远(3343)河西走廊中段荒漠绿洲土壤生态化学计量特征 孙雪,龙永丽,刘乐,刘继亮,金丽琼,杜海峰,陈凌云(3353)乌梁素海东部流域非生长季草地土壤细菌群落结构的垂向差异 李文宝,张博尧,史玉娇,郭鑫,李兴月(3364)芦芽山华北落叶松林土壤剖面细菌群落分布格局 毛晓雅,刘晋仙,贾彤,吴铁航,柴宝峰(3376)植被类型对黄土高原露采矿山复垦土壤碳循环功能基因的影响 赵姣,马静,朱燕峰,于吴辰,张琦,陈浮(3386)施用生物炭对麦田土壤细菌群落等性和冬小麦生长的影响
乌梁素海东部流域非生长季草地土壤细菌群落结构的垂向差异··························李文宝,张博尧,史玉娇,郭鑫,李兴月(3364)
植被类型对黄土高原露采矿山复垦土壤碳循环功能基因的影响 赵姣,马静,朱燕峰,于吴辰,张琦,陈浮(3386)
施用生物炭对麦田土壤细菌群落多样性和冬小麦生长的影响 ····································
生物炭对热带地区辣椒种植土壤N,O排放及其功能基因的影响 ····································
·····································
不同类型地膜覆盖对土壤质量、根系生长和产量的影响
基于 PMF 模型的某铅锌冶炼城市降尘重金属污染评价及来源解析
兰州市黄河风情线地表积尘及周边绿地土壤重金属污染特征及风险评价 ····································
PMF 和 RF 模型联用的土壤重金属污染来源解析与污染评价. 以西北某典型工业园区为例
POLAPOS MED 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
三峡库区稻田土壤重金属污染特征及风险评价
张家口市万全区某种植区土壤重金属污染评价与来源分析 安永龙,殷秀兰,李文娟,金爱芳,鲁青原(3544)
PCA-APCS-MLR 和地筑订字的典型农田土壤重金属来源解析 三峡库区稻田土壤重金属污染特征及风险评价 一城君, 李彩霞, 梅楠, 张美平, 张成, 王定勇 (3520) 皖江经济带耕地重金属健康风险评价及环境基准 张家口市万全区某种植区土壤重金属污染评价与来源分析 "安永龙, 殷秀兰, 李文娟, 金爱芳, 鲁青原 (3544) 滁州市表层土壤重金属含量特征、源解析及污染评价 "汤金来, 赵宽, 胡睿鑫, 徐涛, 王宜萱, 杨扬, 周葆华 (3562) 矿业废弃地重金属形态分布特征与迁移转化影响机制分析 基于成土母质的矿产资源基地土壤重金属生态风险评价与来源解析 卫晓锋, 孙紫坚, 陈自然, 魏浩, 孙厚云, 刘卫, 傅大庆 (3585)
基于成土母质的矿产资源基地土壤重金属生态风险评价与来源解析 ········ 卫晓锋,孙紫坚,陈自然,魏浩,孙厚云,刘卫,傅大庆(3585)不同种类蔬菜重金属富集特征及健康风险 ····································
小同种吴疏采里壶周苗栗村正及健康风险 ————————————————————————————————————
基于机器学习方法的小麦镉富集因子预测 ····································
. Your # W - 1991 4 (1991 4 # 1991 4

滁州市表层土壤重金属含量特征、源解析及污染评价

汤金来1,赵宽2*,胡睿鑫3,徐涛4,王宜萱2,杨扬2,周葆华2

(1. 安徽省地质调查院(安徽省地质科学研究所),合肥 230001; 2. 安庆师范大学资源环境学院,皖江流域水环境保护与污染控制安徽省教育厅重点实验室,安庆 246133; 3. 安徽理工大学地球与环境学院,淮南 232001; 4. 安庆市生态环境局,安庆 246002)

摘要:为全面系统了解滁州市表层土壤重金属污染水平和生态风险,采集滁州市4360个表层土壤样品,并分析 Cr、Zn、Pb、Cu、Ni、Cd、As 和 Hg 这 8 种重金属元素含量特征,利用相关分析、聚类分析和主成分分析解析重金属来源,采用富集因子法、单因子污染指数法、污染负荷指数、地累积指数法和潜在生态风险指数法对该地区表层土壤重金属进行环境风险评价.结果表明:①滁州市表层土壤 8 种重金属元素含量平均值均大于安徽省江淮流域土壤背景值,其中 Cd、Ni、As 和 Hg 空间变异较大,受外界干扰显著;②综合相关分析、聚类分析和主成分分析表明 8 种重金属污染来源可划分为 4 类,其中 Cr、Zn、Cu 和 Ni 来源于自然背景源,As 和 Hg 主要来源于工农业污染源,Pb 主要来自交通运输和工农业污染,Cd 主要来源于交通源、自然源和工农业污染源;③富集因子法、单因子污染指数法、污染负荷指数法、地累积指数法和潜在生态风险指数法都表明该区域表层土壤 Cd 污染较为严重,Cd 污染点位空间分布较多;④ 污染负荷指数法和潜在生态风险综合指数法表明,研究区内重金属污染程度较小、生态风险水平较低,但 Cd 和 Hg 的生态风险总体较为突出,应作为优先控制的对象.研究结果可为滁州地区土壤安全利用和分类管控提供科学依据.

关键词:表层土壤;重金属;源解析;污染评价;滁州

中图分类号: X53; X820.4 文献标识码: A 文章编号: 0250-3301(2023)06-3562-11 **DOI**: 10.13227/j. hjkx. 202208031

Heavy Metal Concentration, Source, and Pollution Assessment in Topsoil of Chuzhou City

TANG Jin-lai¹, ZHAO Kuan²*, HU Rui-xin³, XU Tao⁴, WANG Yi-xuan², YANG Yang², ZHOU Bao-hua²

(1, Anhui Institute of Geological Survey (Anhui Institute of Geological Sciences), Hefei 230001, China; 2, Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui Provincial Education Department, School of Resource and Environment, Anqing Normal University, Anqing 246133, China; 3, School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; 4, Anqing Ecological Environment Bureau, Anqing 246002, China)

Abstract: In order to understand the pollution level and ecological risk of heavy metals in topsoil of Chuzhou City, a total of 4 360 soil samples in Chuzhou City were collected, and the concentrations of eight heavy metals including Cr, Zn, Pb, Cu, Ni, Cd, As, and Hg were measured. Correlation analysis, cluster analysis, and principal component analysis were used to analyze the sources of the heavy metals, and the enrichment factor index, single-factor pollution index, pollution load index, geo-accumulation index method, and potential ecological risk index were selected to assess the environmental risk of the eight heavy metals in the topsoil. The results showed that the average values of Cr, Zn, Pb, Cu, Ni, Cd, As, and Hg contents in the surface soil of Chuzhou City were higher than the background value of that in the soil of Yangtze-Huaihe River Basin of Anhui, and Cd, Ni, As, and Hg were significantly different in space and influenced by external disturbance. The eight types of heavy metals could be divided into four categories based on correlation analysis, cluster analysis, and principal component analysis. Cr, Zn, Cu, and Ni were from natural background sources; As and Hg mainly came from sources of industrial and agricultural pollution; Pb mainly came from the sources of transportation pollution degree of Chuzhou City was low, and the ecological risk level was at a slight level based on the pollution load index and the potential ecological risk index; however, the ecological risk of Cd and Hg was generally serious, and these two heavy metals should be taken as the objects of priority control. The results provided a scientific basis for soil safety utilization and classification control in Chuzhou City.

Key words:topsoil; heavy metals; source analysis; pollution assessment; Chuzhou

重金属是一类密度大于 5 g·cm⁻³的金属元素,它们是对人类危害最大的污染物之一^[1,2]. 土壤中的重金属可通过植物根部吸收,在土壤-根系-植物地上部进行迁移转化,通过食物链传递对人体产生显著影响^[3,4]. 土壤重金属污染的隐蔽性、滞后性和难消除性导致重金属污染过程是一个长期的、逐步的和动态的累积过程^[5~7]. 矿物开采、电解电镀、交通运输、污水灌溉、污泥施肥和工业排放等人类活动是土壤重金属累积的主要方式,同时重金属复合

污染状况较为普遍^[8~10]. 我国土壤环境中的重金属状况总体不容乐观,遭受不同程度重金属污染的耕地面积已接近 1×10⁷hm²,受重金属污染的土地面积占 64. 80%,其中 Cd、Hg、As、Cu、Pb、Cr、Zn 和

收稿日期: 2022-08-03; 修订日期: 2022-09-05

基金项目: 安徽省科技重大专项项目(17030701057); 安徽省自然科学基金项目(1908085QD149); 安徽省高校优秀人才支持计划项目(gxyq2021193)

作者简介:汤金来(1980~),男,硕士,高级工程师,主要研究方向为 环境地球化学,E-mail:253719332@qq.com

* 通信作者,E-mail:zhaokuan@aqnu.edu.cn

Ni 这 8 种重金属元素都存在一定程度的污染超标情况^[11].因此,土壤重金属引起的土壤环境治理问题需要优先关注.

滁州市位于安徽省东部江淮分水岭地区,面积 约 1.30 × 10⁴ km², 是长江三角洲中心区 27 城之一, 是安徽省经济社会发展水平较高的区域之一,区域 土壤污染与人类高强度扰动有密切关系[12,13].有研 究表明滁州市土地质量状况整体良好,优良以上等 级土地占研究区的98%以上[14],滁州市土壤元素 地球化学基准值受成土母质类型影响显著[15]. 因 此,为进一步了解滁州市耕地土壤重金属污染状况, 本文以滁州市作为研究区域,通过采集代表性土壤 样品,测定其中 Cr、Zn、Pb、Cu、Ni、Cd、As 和 Hg 这8种重金属元素含量,深入分析滁州市耕地土壤 重金属含量特征及分布情况,利用相关性分析、聚 类分析和主成分分析解析该区域重金属污染来源情 况,并采用富集因子法、单项污染指数法、地累积 指数法和潜在生态风险指数法等综合评价区域内重 金属的污染状况和生态风险,旨在为滁州地区土壤 环境污染防治及安全利用提供科学依据。

1 材料与方法

1.1 研究区概况与土壤样品采集

滁州市地处安徽省东部江淮分水岭地区,位于东经117°15′~119°17′,北纬31°50′~33°10′,下辖琅琊区、南谯区、来安县、全椒县、明光市、天长

市、凤阳县和定远县共2个区和6个县(县级市). 滁州属亚热带湿润季风气候,全年主导风向为东北 风,次主导风向为西南风. 全市年平均气温 15.4℃, 年平均降水量1000~1100 mm. 滁州利用外水资源 条件较好,可利用淮河和长江两大干流水源,同时可 提引滁河、高邮湖、池河和窑河等水源. 滁州矿产 资源丰富,种类繁多,主要矿种有黑色金属的铁、 钛、锰和钒:有色金属的铜和钼;贵金属的金;燃 料矿产石油:建筑材料及其他非金属矿产石膏、凹 凸棒石和玻璃石英岩等. 其中玻璃石英岩、凹凸棒 石和石油等是滁州市的优势矿产资源. 滁州境内拥 有合宁、合徐和宁洛等11条高速公路,京沪、宁西 和淮南等5条铁路,以及4个航空港和4个码头,交 通便捷,四通八达.滁州是安徽省重要的稻麦油农业 经济区,也是国家重要的商品粮生产基地;已形成: 先进装备、智能家电、农副产品深加工、新型化工、 硅基材料和新能源这六大支柱产业[16]. 研究区地貌 整体属江淮波状平原区,全市地貌大致可分为丘陵 区、岗地区和平原区这三大类型,地势西高东低,分 布有以河流冲积物母质、黄土母质和变质岩类风化 物母质为主的成土母质,形成了以水稻土、黄褐土 和潮土等多种类型的土壤(图1).

参照《多目标区域地球化学调查规范 $(1:250\ 000)$ 》(DD 2005-1),以 $1\ km^2$ 为1 个表层土壤采样网格单元, $4\ km^2$ 组合为1 个分析样,共检测分析了 $4\ 360$ 个土壤样品数据(图 1). 每个采集点多

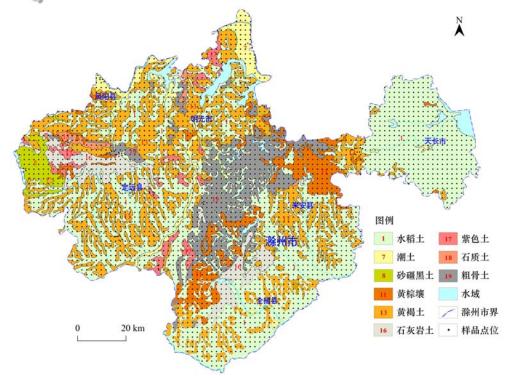


图 1 研究区土壤采样范围和样品点位分布示意

Fig. 1 Sampling scope and site distribution in the study area

点采集 0~20 cm 表层土壤样品,将多点采集土壤均匀混合后作为 1个混合土样,土样经自然风干,去除其中的石块和残根等杂质,研磨后过 100 目土壤筛,密封装人聚乙烯塑料袋备用.

1.2 土壤重金属含量的测定

分析 Cr、Zn、Pb、Cu、Ni、Cd、As 和 Hg 这 8 种重金属元素的含量. 样品分析测试由国土资源部合肥矿产资源监督检测中心完成. 样品测试过程采用国家一级标准物质(GBW 系列)进行质量监控. 按比例随机检查和异常点抽查监控分析质量,以重复采样和重复分析来评定采样和分析误差,保证样品分析质量.

依据《土壤和沉积物无机元素的测定 波长色散 X 射线荧光光谱法》(HJ 780-2015)^[17],用粉末压样 机将 5.0 g 的土壤样品制成样片,利用 X 射线荧光光谱仪(XRF-Primus II, RIGAKU,日本)测定 Pb、 Cr、Zn、Cu、Mn、Ni 和 TFe₂O₃ 的含量;取 0.3 g 土壤样品加入 HCl-HNO₃ 的混合酸,微波消解后加入 2%的硼氢化钾,依据《土壤质量 总汞、总砷、总铅的测定 原子荧光法 第 1 部分:土壤中总汞的测定》(GB/T 22105.1-2008)^[18],利用原子荧光光谱仪(AFS-8520,北京海光)测定 Hg 的含量;采用 HCl-HNO₃-HF-HClO₄ 的消解方法,准确称取0.2000 g土壤样品,依据《土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法》(GB/T 17141-1997)^[19],使用石墨炉原子吸收分光光度计(GFAAS-Zeenit 650P, JENA,德国)测定土壤中 Cd 的含量.

1.3 污染评价方法

1.3.1 富集因子法

富集因子是用来判别人类活动对土壤重金属来源的扰动程度的重要指标,可用来判别土壤重金属的富集状况,将样品待测元素含量与土壤背景中元素的含量比较反映重金属人为污染状况^[20,21],计算公式如下:

$$EF = \frac{\left(c_i/c_n\right)_s}{\left(c_i/c_n\right)_b} \tag{1}$$

式中,EF 为重金属富集因子; c_i 和 c_n 分别为待测重金属元素的含量和参考元素的含量,本研究选取 Fe 为参考元素; s 和 b 分别为待测土壤样品和相对应的元素背景值,本研究选取重金属地球化学基线值^[22]. 富集因子分级评价标准为:当 EF \leq 1 时,无富集; 1 <EF \leq 2 时,轻微富集; 2 <EF \leq 5 时,中度富集(中度污染); 5 <EF \leq 20 时,强度富集(强度污染); 20 <EF \leq 40,极强富集(极强污染).

1.3.2 单项污染指数法

单项污染指数法能直观和快速地反映某重金属

的污染程度和超标情况[23],计算公式如下:

$$P_i = C_i / C_s \tag{2}$$

式中, P_i 为重金属元素的单项污染指数, C_i 为重金属元素的实测值; C_s 为重金属元素的评价标准值,取安徽省江淮流域土壤元素背景值^[22]. 单项污染指数法分级评价标准为:当 $P_i \le 1$ 时,无污染; $1 < P_i \le 2$ 时,轻度污染; $2 < P_i \le 3$ 时,中度污染; $P_i > 3$ 时,重度污染.

1.3.3 污染负荷指数法

污染负荷指数法可用于评价某区域内多种重金 属污染程度^[24],计算公式如下:

$$PLI = \sqrt[n]{P_1 \times P_2 \times \dots \times P_n}$$
 (3)

式中,PLI 为相应点位的负荷指数,n 为纳入评价的重金属元素种类数目, P_n 为第 n 种重金属元素的污染指数,计算方法参考式(2). 污染负荷指数法分级评价标准为: 当 PLI \leq 1 时,无污染; 1 < PLI \leq 2 时,轻度污染; 2 < PLI \leq 3 时,中度污染; PLI \geq 3 时,重度污染.

1.3.4 地累积指数法

地累积指数法是综合考虑受人为污染和地球化 学背景共同影响,判别污染土壤生态风险程度的一 种评价方法^[25],计算公式如下:

$$I_{\text{geo}} = \log_2(C_n/K \times B) \tag{4}$$

式中, I_{geo} 为重金属的地累积指数, C_n 为重金属元素的实测值;B 为重金属元素在土壤中的地球化学背景值,本研究取安徽省江淮流域土壤元素背景值 $^{[22]}$;K 为背景值变动系数,此处取K=1.5. 污染程度分级标准 $^{[24]}$ 为:当 $I_{geo} \leq 0$ 时,无污染;当 $0 < I_{geo} \leq 1$ 时,轻度污染;当 $1 < I_{geo} \leq 2$ 时,偏中度污染;当 $1 < I_{geo} \leq 3$ 时,中度污染;当 $1 < I_{geo} \leq 4$ 时,偏重污染;当 $1 < I_{geo} \leq 5$,重污染;当 $1 < I_{geo} \leq 5$,重污染;当 $1 < I_{geo} \leq 5$,更三污染;

1.3.5 潜在生态风险指数法

Hankson 潜在生态风险指数法(potential ecological risk index)将重金属的含量、生态学效应和环境毒理学效应等联系在一起,可系统全面地评价土壤重金属污染状况. 单个污染因子潜在生态风险指数 E_r^i 的评价模型计算公式如下 [26]:

$$E_r^i = T_r^i \times C_n^i = T_r^i \times (C_n^i/B_n^i) \tag{5}$$

式中, E_r^i 为某区域内重金属 i 的潜在生态风险系数; T_r^i 为某区域内重金属 i 的污染系数,Cr、Zn、Pb、Cu、Ni、Cd、As 和 Hg 的 T_r^i 分别为 2、1、5、5、5、30、10 和 40; C_n^i 为重金属元素 i 的实测值; B_n^i 为重金属元素 i 的参比值,本文取安徽省江淮流域土壤背景值[22]. 重金属元素 i 的生态风险指数分级标准[26] 为:当 E_r^i < 40 时,轻度生态风险;当 $40 \le E_r^i$

<80 时,中等生态风险; 当 $80 \le E_r^i < 160$ 时,中高等生态风险; 当 $160 \le E_r^i < 320$ 时,高等生态风险; 当 $E_r^i \ge 320$,极高生态风险.

根据式(5)的计算,可得到土壤重金属 i 的潜在生态风险指数评价标准,并利用式(6) 获取土壤多种重金属潜在生态风险综合指数. 土壤多种重金属潜在生态风险综合指数评价标准为: RI < 150,轻度生态风险; $150 \le RI < 300$,中等生态风险; $300 \le RI < 600$,中高等生态风险; $RI \ge 600$,高等生态风险.

$$RI = \sum_{i=1}^{m} E_{r}^{i}$$
 (6)

1.4 数据统计与处理

应用 SPSS 24.0 统计分析软件对原始数据进行 描述性统计分析、相关性分析、聚类分析和主成分 分析.

2 结果与分析

2.1 重金属元素统计特征

由表 1 可知,滁州市表层土壤 Zn、As 和 Hg 含量平均值小于全国土壤背景值,而其它 5 种重金属含量平均值大于全国土壤背景值,其中 Cr、Ni 和 Cd

平均值分别是全国土壤元素背景值的 1. 19、1. 23 和 1. 34 倍; 8 种重金属含量平均值均大于安徽省江淮流域土壤背景值,Cr、Zn、Pb、Cu、Ni、Cd、As 和 Hg 的平均值分别超出安徽省江淮流域土壤背景值的 4. 29%、 17. 20%、 1. 12%、 5. 30%、 32. 76%、 25. 0%、 4. 26% 和 9. 76%; Pb、Cd 和 Hg 含量平均值大于滁州市土壤背景值,而其它 5 种重金属含量平均值小于滁州市土壤背景值,其中 $\omega(Hg)$ 平均值 $(0.045 \text{ mg·kg}^{-1})$ 是滁州市土壤 Hg 背景值 $(0.015 \text{ mg·kg}^{-1})$ 的 3 倍. 因此,总体来看该区域土壤 Cd 有一定程度的积累.

另一方面,变异系数可反映重金属含量的空间分布特征,变异系数越大,重金属含量的空间分布越不均匀,当变异系数大于 50% 时,重金属元素可能存在外界污染源^[28,29]. 由表 1 可知, Cr、Zn、Pb 和 Cu 的变异系数都小于 50%,说明这 4 种元素受外界因素的影响比较一致,空间分异不显著. Cd、Ni、As 和 Hg 受外界干扰比较显著,空间分异较大,其中 Cd 和 Ni 的变异系数分别为 52. 31% 和 71. 35%,属于中等强度变异; As 和 Hg 的变异系数超过 1,属非常强变异性,这说明 As 和 Hg 来源受人为因素干扰十分严重,尤其是 Hg.

表 1 研究区土壤重金属含量统计特征

Table	1 Statistical	characteristic	s of soil he	avy metals in	study area	\J		
项目	Cr 🗸	Zn	Pb	Cu	Ni	Cd	As	Hg
最小值/mg·kg-1	10. 4	22	9. 70	4. 80	2.49	0.036	1.2	0. 01
最大值/mg·kg ⁻¹	280. 1	243. 60	216.50	242. 90	248.40	2. 30	542. 50	9. 35
平均值/mg·kg-1	72. 38	62. 35	26. 19	26. 22	33. 19	0. 13	9.80	0.045
标准误差/mg·kg-1	0.39	0. 26	0.09	0. 15	0.36	0.001	0.17	0.002
标准差/mg·kg-1	25. 91	17. 08	6. 19	9. 74	23.68	0.068	11. 14	0. 15
变异系数/%	35. 80	27. 38	23.63	37. 15	71.35	52. 31	113.67	333. 33
滁州市土壤背景值 ^[15] /mg·kg ⁻¹	80	66	24	27	39.9	0.086	10.9	0.015
安徽省江淮流域土壤背景值 ^[22] /mg·kg ⁻¹	69. 4	53. 2	25. 9	24. 9	25	0. 104	9.4	0.041
全国土壤背景值 ^[27] /mg·kg ⁻¹	61	74. 2	26	22. 6	26. 9	0.097	11.2	0.065

2.2 重金属元素的来源解析

2.2.1 重金属元素之间的相关性分析

表 2 反映了滁州表层土壤 8 种重金属之间的相关性,一般来说,相关系数 R 值越大,说明两个因子之间的关联性越强,两种重金属元素同源或伴生的可能性就越大,因此可以用来解析土壤中重金属的来源[30]. 由表 2 可知,除了 Cr 与 As、Cr 与 Hg、Ni 与 As 以及 Ni 与 Hg 之间的相关性不显著以外,其它重金属元素之间的相关性都达到极显著水平(P < 0.01),存在很强的相关关系. Cr 与 Zn、Cu 和 Ni 这 4 种重金属元素的相关系数都超过 0.6,其中 Cr 与 Ni 的相关系数达到 0.96,存在极强的相关性; Zn 与 Cu、Ni 和 Cd 这 4 种重金属元素的相关系数都超过

0.50; Pb 与其它 7 种元素的相关性系数都没超过 0.5,其中 Pb 与 Cr 和 Ni 这两种重金属元素之间的相关系数为负值,说明 Pb 与这两种重金属的来源肯定不一致; As 与 Hg 的相关性较强,其相关系数为 0.71. 由此初步判断,滁州市表层土壤 As 与 Hg 来源相似或相同, Cr、Zn、Cu 和 Ni 来源相似或相同, Cd 与 Pb 分别和其它金属均存在一定程度的相关性,说明来源相对复杂.

2.2.2 重金属元素的聚类分析

聚类分析可反映重金属的类别情况^[31],滁州市表层土壤重金属元素的聚类分析如图 2 所示. 从中可知,在距离为 20~25 时,可分为 2 类:第1 类重金属元素包括 Cr、Ni、Cu、Zn、Pb 和 Cd 这 6 种元素,

第2类重金属元素包括 As 和 Hg; 在距离为 15~20时,可分为 3 类:第1类重金属元素包括 Cr、Ni、Cu和 Zn 这4种元素,第2类重金属元素 Pb 和 Cd,第3类重金属元素包括 As 和 Hg; 在距离为 10~15时,可分为 4 类:第1类重金属元素包括 Cr、Ni、Cu和

Zn 这 4 种元素,第 2 类重金属元素为 Pb,第 3 类重金属元素为 Cd,第 4 类重金属元素包括 As 和 Hg. 这说明 Cr、Ni、Cu 和 Zn 可能具有相似的来源,As 和 Hg 可能具有相似的来源,Cd 和 Pb 来源较为复杂.

表 2 研究区土壤重金属元素相关性系数1)

Table 2	Correlation	coefficient	αf	soil	heavy	metals	in	study	area
rabie 2	Conferation	coemicient	OI	SOII	neavy	metais	ш	Study	area

	Zn	Pb	Cu	Ni	Cd	As	Hg
Cr	0. 62 **	-0.04**	0. 68 **	0. 96 **	0. 19 **	0. 002	-0.02
Zn	1	0. 20 **	0. 60 **	0. 60 **	0. 55 **	0. 12 **	0. 07 **
Pb		1	0. 10 **	- 0. 10 **	0. 43 **	0. 23 **	0. 09 **
Cu			1	0. 65 **	0. 26 **	0. 14 **	0. 14 **
Ni				1	0. 17 **	-0.02	-0.02
Cd					1	0. 10 **	0. 04 **
As						1	0. 71 **

1) ** 表示 P < 0.01 时相关性显著

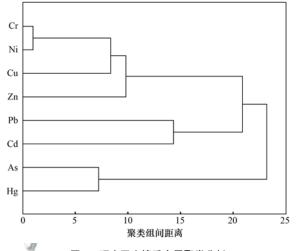


图 2 研究区土壤重金属聚类分析

Fig. 2 Cluster analysis of soil heavy metals in study area

2.2.3 重金属元素的主成分分析

由表 3 可知,基于方差极大旋转的主成分分析的 KMO 指数和 Bartlett 球形检验指数分别 0.68 和 23 087.20(df = 28, P < 0.001),这说明利用主成分分析可以用来解释土壤重金属来源之间的关联性^[32].前 3 个主成分(PC)的特征值大于 1,累计解释了总方差的 80.66%,符合分析要求.第一主成分(PC1)可解释 40.62%的差异性,Cr、Zn、Cu 和 Ni的载荷值较大;第二主成分(PC2)可解释 23.23%的差异性,As 和 Hg 的载荷值显著高于其它几种元素;第三主成分(PC3)可解释 16.81%的差异性,其中 Pb 和 Cd 具有较大载荷.

2.3 重金属污染评价

2.3.1 EF 富集因子的计算及占比

富集因子 EF 可反映重金属元素的人为污染状况,由表 4 可知, Zn、Ni、Cd 和 Hg 的 EF 平均值大于1,其中 Cd 的 EF 平均值最大;而 Cr、Pb、Cu 和

As 的 EF 平均值小于 1. 相对而言, Zn、Ni、Cd 和 Hg 有轻微富集. 从富集点位分布来看, 各采样点中, Zn 和 Cd 的富集率均大于 60%, Cr 的富集率小于 20%, As 和 Hg 分别有 0.04% 和 0.48% 的采样点属于强度富集以上的水平.

表 3 研究区土壤重金属主成分分析1)

Table 3 Principal component analysis of soil heavy

/ (%	metals in the stud	ly area	" A
元素	PC1	PC2	PC3
Cr	0. 89	-0.29	-0.20
Zn	0. 84	0.07	0.21
Pb	0. 17	0. 52	0.63
Cu	0.83	-0.01	-0.12
Ni	0.87	-0.33	-0.23
Cd	0.48	0. 33	0.65
As	0. 17	0. 83	-0.36
Hg	0. 13	0. 78	-0.49
方差贡献率/%	40. 62	23. 23	16. 81
累计方差贡献率/%	40. 62	63. 85	80.66
KMO 指数		0. 68	
Bartlett 指数		23 087. 20	
自由度		28	
P		0.000	

1)黑字体表示各主成分中的较大载荷值

2.3.2 单因子污染指数及污染负荷指数评价

由表 5 可知,研究区内 8 种重金属的 P_i 平均值 大小依次为: Ni > Cd > Zn > Hg > Cu > As = Cr > Pb, 其中 Ni、Cd、Zn 和 Hg 污染相对严重,其 P_i 平均值 分别为 1.33、1.24、1.17 和 1.10. 从污染程度来 看,4360个采样点土壤重金属元素超标率大小依次 为: Zn > Ni > Cd > Cu > As > Pb > Cr > Hg, Zn、Ni 和 Cd 的污染超标率均高于 60%. 土壤各重金属元素 P_i 平均值和超标率大小排序完全不一致. Ni 的 P_i 平均值和超标率均最大,说明 Ni 的污染范围分布较 广且对土壤已经构成轻度污染,约 60% 的采样点土壤 Ni 污染程度为轻度. Cd 的 P_i 平均值仅次于 Ni,这主要是由于其重度污染点位分布小于 Ni 所引起的. As 和 Hg 的 P_i 范围分布较广,这主要是由于其中某个点位的 As 和 Hg 含量超标较多所引起的. 基

于8种重金属元素综合评价的PLI平均值为0.97, 表明该区域整体上属于无污染;从点位分布上看, 该区域主要是以无污染和轻度污染分布为主,其占 比分别为66.47%和33.26%,中度及重度以上点位 仅有12个,占比为0.27%(表5).

表 4 研究区土壤重金属富集因子分析

Table 4 Analysis of soil heavy metal enrichment factors in the study area

				,	,		
元素	EF 值范围	EF 平均值		污迹	染程度/个(超标率	/%)	
儿系	EF 1月.1亿日	EF 干均值	无富集	轻微富集	中度富集	强度富集	极强富集
Cr	0. 33 ~ 2. 56	0. 95	3 530 (80. 97)	829 (19. 01)	1(0.02)	0	0
Zn	0. 64 ~ 5. 12	1.09	1 527 (35. 02)	2 807 (64. 39)	25 (0. 57)	1(0.02)	0
Pb	0. 13 ~ 6. 94	0. 97	2 538 (58. 21)	1 804 (41. 38)	17(0.39)	1(0.02)	0
Cu	0. 33 ~ 8. 48	0. 97	3 007 (68. 97)	1 329 (30. 48)	21 (0.48)	3(0.07)	0
Ni	0. 28 ~ 3. 80	1.01	2 974 (68. 21)	1 278 (29. 31)	108(2.48)	0	0
Cd	0. 29 ~ 18. 36	1. 16	1 678 (38. 49)	2 555 (58. 60)	116(2.66)	11(0.25)	0
As	0. 09 ~ 55. 34	0. 97	2 522 (57. 84)	1813(41.59)	23(0.53)	1(0.02)	1(0.02)
Hg	0. 14 ~ 218. 69	1.06	2 705 (62. 04)	1 506 (34. 54)	128(2.94)	19(0.43)	2(0.05)

表 5 研究区土壤重金属单因子污染指数与污染负荷指数

Table 5 Single factor pollution index and pollution load index of soil heavy metals in the study area

		I June 1		
元素	P_i 范围	P _i 平均值 —————	污染程度/个(超标率/%)	
儿系	I i WIE	安全	轻度污染 中度污染	重度污染
Cr	0. 15 ~ 4. 04	1. 04 2 572 (58. 99)	1 657(38.00) 87(2.00)	44(1.01)
Zn	0. 41 ~ 4. 58	1. 17 1 342(30. 78)	2 900 (66. 51) 110 (2. 52)	8(0.18)
Pb	0. 37 ~ 8. 36	1. 01 2 375 (54. 47)	1 964(45. 05) 11(0. 25)	10(0.23)
Cu	0.19 ~ 9.76	1. 05 2 286 (52. 43)	1 951 (44. 75) 111 (2. 55)	12(0.27)
Ni	0. 10 ~ 9. 94	1.33 1358(31.15)	2 682 (61.51) 141 (3.23)	179(4.11)
Cd	0. 35 ~ 22. 12	1. 24 1 385 (31. 77)	2 770 (63. 53) 155 (3. 55)	50(1.15)
As /	0. 13 ~ 57. 71	1. 04 2 345 (53. 78)	1 948 (44. 68) 47 (1. 08)	20(0.46)
€ Hg	0. 24 ~ 228. 05	1. 10 2 668 (61. 19)	1 540 (35. 32) 88 (2. 02)	64(1.47)
PLI	0. 24 ~ 4. 02	0. 97 2 898 (66. 47)	1 450(33. 26) 11(0. 25)	1(0.02)
/ 0 //		Special Control of the Control of th		

2.3.3 地累积指数评价

由表 6 可知,研究区内 8 种重金属 I_{geo} 平均值都小于 0,这说明总体上该区域土壤是安全的. 从污染

程度来看, Cd 和 Ni 的超标率大于 15%, Zn 的超标率大于 10%, 其它 5 种重金属的超标率均小于 10%, 其中 Pb 的超标率小于 5%.

表 6 研究区土壤重金属地累积指数

Table 6 Geo-accumulation index of soil heavy metal in the study area

					,	,			
元素	$I_{ m geo}$ 范围	I _{geo} 平均值	_		污染程度//	个(超标率/%)		_
儿系	1 geo 7 12 [19]	I geo I 与阻	无污染	轻度污染	偏中度污染	中度污染	偏重污染	重污染	严重污染
Cr	-3.32 ~1.43	-0.59	4 119(94. 47)	197 (4. 52)	44(1.01)	0	0	0	0
Zn	-1.86 ~1.61	-0.40	3 844(88. 17)	508(11.65)	8(0.18)	0	0	0	0
Pb	$-2.00 \sim 2.48$	-0.59	4 291 (98. 42)	59(1.35)	9(0.21)	1(0.02)	0	0	0
Cu	$-2.95 \sim 2.70$	-0.57	4 073 (93. 41)	275 (6.31)	9(0.21)	3(0.07)	0	0	0
Ni	-3.91 ~2.73	-0.34	3 686 (84. 54)	495 (11. 36)	117(2.68)	62(1.42)	0	0	0
Cd	− 2. 10 ~ 3. 88	-0.37	3 647 (83. 64)	663 (15. 20)	40(0.93)	8(0.18)	2(0.05)	0	0
As	−3.55 ~5.26	-0.63	4 093 (93. 88)	247 (5.66)	17(0.39)	1(0.02)	0	0	2(0.05)
Hg	−2.62 ~7.25	-0.67	3 950(90.60)	346(7.94)	44(1.01)	15(0.34)	4(0.09)	0	1(0.02)

2.3.4 潜在生态风险指数评价

由表 7 可知,研究区内 8 种重金属 E_r^i 的平均值 依次为: Hg > Cd > As > Ni > Cu > Pb > Cr > Zn, 从总体上看,除了 <math>Hg 的 E_r^i 平均值大于 40,属于中等生态危害以外,其它 7 种重金属的区域生态风险指数都是轻度的. 从潜在生态危害分布看, Cr 和 Zn 都是

轻度生态危害; Pb、Cu 和 Ni 分别有 1、2 和 11 个点位属于中等生态危害, 其它点位都是轻度危害; As 分别有 7 个和 2 个点位属于中等和极强生态危害; Hg 的生态危害最大, 其中有 38.81% 的点位属于中等及以上生态危害, 这可能与 Hg 的毒性系数较大相关; Cd 的潜在生态危害仅次于 Hg, 其中等

表 7 研究区土壤单个重金属潜在生态风险指数

Table 7 Potential ecological risk index of single heavy metals in soil of the study area

元素	E_r^i 范围	E_r^i 平均值		污染程	度/个(超标率/%)		
儿系	E _r ₹E⊞	E _r 干均值	轻度	中等	强烈	很强	极强
Cr	0. 30 ~ 8. 07	2. 09	4 360 (100)	0	0	0	0
Zn	0. 41 ~4. 58	1. 17	4 360 (100)	0	0	0	0
Pb	1.87 ~41.80	5. 06	4 359 (99. 98)	1(0.02)	0	0	0
Cu	0. 97 ~ 48. 78	5. 26	4 358 (99. 95)	2(0.05)	0	0	0
Ni	0. 50 ~ 49. 68	6. 64	4 349 (99. 75)	11(0.25)	0	0	0
Cd	10. 48 ~ 1 663. 75	37. 05	3 261 (74. 79)	1 038(23.81)	47(1.08)	12(0.27)	2(0.05)
As	1. 28 ~ 577. 13	10. 42	4 351 (99. 79)	7(0.16)	0	0	2(0.05)
Hg	9. 76 ~ 9 121. 95	44. 00	2 668 (61. 19)	1 540 (35. 32)	111(2.55)	31(0.71)	10(0.23)

及以上生态危害的点位分布超过25%.

表 8 反映了 8 种重金属元素的 RI 平均值为 111.69,属于轻度生态风险.从污染分布来看,其中

度及以上生态风险分布点位为 6.40%, 总体来说污染点位分布较少, 因此其对 RI 平均值的贡献率较低.

表 8 研究区土壤多种重金属潜在生态风险综合指数

Table 8 Comprehensive potential ecological risk index of various heavy metals in soil of the study area

- 本田	平均值		污染程度/	个(超标率/%)	C 118
范围	平均恒 -	轻度	中等	强烈	很强
36. 77 ~ 9 791. 58	111. 69	4 081 (93. 60)	243 (5.57)	29 (0.67)	7 (0.16)

3 讨论

3.1 土壤重金属来源解析

综合相关性分析、聚类分析和主成分分析进行 对比分析,可以将8种重金属的来源划归为4类.第 1类:Cr、Zn、Cu和Ni这4种重金属元素,其主要来 自于自然源. 有研究表明土壤中 Cr、Cu 和 Ni 受地 球化学成因影响较大,主要为地质自然来源[8,33].相 关性分析、聚类分析和主成分分析都表明这4种重 金属具有同一来源. 统计性分析结果表明(表1), Cr、Zn、Cu 和 Ni 这 4 种元素平均值低于滁州土壤 元素背景值,并且 Cu、Zn 和 Cr 空间变异较小,这反 映它们在表层土壤中基本保持了原始背景状态,主 要受土壤环境生物地球化学作用和成土母质的控 制,受人为活动影响较小或基本未受影响.第2类: As 和 Hg,其主要来源于工农业污染源. 相关性分 析、聚类分析和主成分分析都表明 As 和 Hg 的来源 具有高度的一致性,统计性分析结果表明该区域 As 和 Hg 的空间变异较大,说明这两种重金属受人类 活动干扰较为严重. 有研究表明, As 和 Hg 既有工业 污染源,又有农业污染源[34,35]. 大气沉降可将其它 区域的污染扩散到周边区域[36~38],滁州市常年主导 风向为东北风,滁州东南面与江苏省的南京、扬州 和淮安等工业发达的区域接壤,因此这些区域的 As 和 Hg 会随着气流向周边扩散,并可能最终通过大 气沉降在滁州地区,同时滁州本地的煤电、冶金、 机械制造和建材等相关行业产生的废气排放也会沉

降在该地区. 另一方面,滁州矿产资源较为丰富,境 内有琅琊铜矿、全椒铜矿和凤阳铁矿等,矿业活动 的开采会伴生 As 和 Hg 随着地表径流和污水灌溉 等方式进入土壤;同时施用磷肥可能会促进砷的协 同作用,使As以砷酸盐和亚砷酸盐的形式在土壤中 富集[39], 化学农药的大量使用还会排放大量的 Hg[40,41]. 因此综合判定 As 和 Hg 来源于工业污染的 大气沉降和农业面源污染.第3类:Pb,主成分分析 表明 Pb 在 PC2 和 PC3 都有较大的载荷值,相关性 分析和聚类分析表明 Pb 与 Cr 和 Ni 来源相反,与 Cd 有同一来源,因此,综合判定其主要来源于交通 源和工农业污染源.有研究表明,工业生产、大气沉 降和车辆排放对 Pb 都有显著影响[42~44]. 城镇化的 加速导致机动车保有量的增加,从而导致 Pb 排放量 的增加. 滁州市化工、材料、能源、家电和机械制造 等相关行业在工业生产布局中占比较大,这可能会 增加 Pb 在土壤中的累积. 同时农药化肥的使用和污 灌也会增加 Pb 的排放. 第 4 类: Cd, 相关性分析表 明 Cd 与其它几种重金属元素都存在一定的联系, 主成分分析表明 Cd 在 3 个主成分中都有一定的分 担贡献,这说明 Cd 主要来源于交通源、自然源和工 农业污染源. 交通运输是 Cd 的重要来源之一,这和 Pb 的情况类似;土壤母质和成土过程对 Cd 也有重 要影响[45]:滁州是长江北岸著名的鱼米之乡,素有 "安徽粮仓"之称,在保障农作物丰产高产的基础 上,农药化肥的施用也会增加土壤 Cd 的累积. 因 此,综合判定 Cd 主要来源于交通源、自然源和工农

业污染源.

3.2 土壤重金属污染及风险评价

富集因子法、单因子污染指数法和地累积指数 法表明,Cd、Ni 和 Zn 在滁州表层土壤的污染较为 严重; 潜在生态风险指数法表明 Hg 和 Cd 的生态风 险等级高于其它6种重金属元素. 这表明该区域土 壤 Cd 污染相对突出、风险较大,这与我国当前土壤 重金属污染类型相同. 有研究表明, Cd 是我国污染 最突出的重金属污染元素,在我国广西地区、湖南 地区、长三角地区、云南地区、四川地区和珠三角 地区都存在不同程度的 Cd 污染,其涉及范围较 广[46~52]. 2014 年《全国土壤污染状况调查公报》[11] 显示 Cd 的点位超标率为 7.0%, 显著高于其它 7 种 重金属元素. Cd 的来源较为广泛,工业活动的"三 废"排放、农药化肥的施用、大气沉降和交通运输 等都会带来不同程度的 Cd 污染,同时由于 Cd 在土 壤中富集程度高,因此,其滞留在土壤表层中的时间 较长. 在本研究区的土壤采样点位中,主要作物为水 稻,而水稻土对 Cd 的富集程度相对其它土壤要高 得多,这表明该区域表层土壤 Cd 相对富集. Zn 也有 一定范围的污染分布,这主要与评价尺度有关,安徽 省江淮流域土壤 Zn 背景值显著低于全国和滁州市 土壤 Zn 的背景值,因此这说明 Zn 在该区域有一定 程度的富集,但不能代表有污染.这主要是基于两方 面原因. 第一,以全国土壤 Zn 背景值作为评价标准 其单因子评价指数 P_i 平均值分别为 0.84,以滁州市 土壤 Zn 背景值作为评价标准,其单因子评价指数 P_i 的平均值为 0.94,这说明评价尺度不一致时,结 果具有较大差异,尤其是本研究点位分布较为广泛, 土壤类型较多,使得不同结果出现的可能性较大. Zn 在多数耕地中含量超标率较低,在全国土壤调查 中,其点位超标率为0.9%,与本研究类似.第二,在 许多区域,耕地尤其是农田土壤中的Zn 含量对人体 健康是有益的,如果不存在 Zn 与 Pb 等其它重金属 元素伴生的情况下,富锌土壤在一定程度上有利于 人体身心健康,这主要是因为 Zn 是人体必需的微量 元素[53,54]. 因此,从该角度上说在耕地上 Zn 可不作 为典型的重金属污染元素. 潜在生态风险评价法表 明 Hg 的生态风险最高,这与 Hg 的土壤区域背景值 有很大关系,分别以国家、安徽省和滁州市土壤 Hg 的背景值(0.065、0.041 和 0.015 mg·kg⁻¹)为评价 标准,可得出滁州表层土壤 Hg 的潜在生态危害指 数平均值分别为 27. 75、44. 00 和 120. 26. 同时本研 究区内由于 Hg 的变异系数大于 300%, 其毒性系数 也显著高于其它几种重金属元素,这些都表明 Hg 的潜在生态风险较大,因此要充分考虑 Hg 的生态

风险预警.

污染负荷指数法 PLI 和潜在生态风险 RI 综合指数表明,总体上该区域污染程度较小、生态风险水平较低,中重度以上污染的主要贡献来自于区域内某一点位 As 和 Hg 的严重超标,同时由于 Cd 的超标率较高,这就导致有部分点位达到了强烈及以上生态风险等级,因此在滁州表层土壤中,尤其是耕地土壤中,必须做好 Cd 和 As 的外源输入管控,同时加强 Hg 的管控,以确保 Hg 的生态风险总体维持在较低水平上.

4 结论

- (1)研究区内采集的 8 种重金属元素受人为活动影响较为显著,其含量平均值都高于安徽省江淮流域土壤元素背景值,其中 Cd、Ni、As 和 Hg 变异较大,尤其是 As 和 Hg 受外界干扰显著.
- (2)相关性分析、聚类分析和主成分分析表明 8 种重金属污染来源总体上各有差异. Cr、Zn、Cu 和 Ni 这 4 种重金属元素其主要来自于自然源; As 和 Hg 主要来源于工农业污染源; 各种交通运输和工农业活动对 Pb 有重要影响; Cd 主要来源于交通源、自然源和工农业污染源.
- (3)5 种污染评价方法都表明该区域表层土壤 Cd 污染较为严重, Cd 污染点位的空间分布较为广泛;总体上研究区内土壤重金属污染程度较小、生态风险水平较轻,但 Cd 和 Hg 应作为优先控制的土壤重金属元素.

参考文献:

- [1] 陈卫平,杨阳,谢天,等. 中国农田土壤重金属污染防治挑战与对策[J]. 土壤学报,2018,55(2):261-272.

 Chen W P, Yang Y, Xie T, et al. Challenges and countermeasures for heavy metal pollution control in farmlands of
- [2] 赵宽, 万昕, 郭展翅, 等. 安庆沿江湖泊湿地湖滨带土壤重金属含量特征及潜在生态风险评价[J]. 水生态学杂志, 2021, 42(4):67-75.

China[J]. Acta Pedologica Sinica, 2018, 55(2): 261-272.

- Zhao K, Wan X, Guo Z C, et al. Characterization of heavy metals and assessment of potential ecological risk in shoreline buffer zone soils of Anqing lake wetland [J]. Journal of Hydroecology, 2021, 42(4): 67-75.
- [3] 尚二萍, 许尔琪, 张红旗, 等. 中国粮食主产区耕地土壤重金属时空变化与污染源分析[J]. 环境科学, 2018, **39**(10): 4670-4683.
 - Shang E P, Xu E Q, Zhang H Q, et al. Spatial-temporal trends and pollution source analysis for heavy metal contamination of cultivated soils in five major grain producing regions of China [J]. Environmental Science, 2018, 39(10): 4670-4683.
- [4] 王晓娟, 王文斌, 杨龙, 等. 重金属镉(Cd)在植物体内的转运途径及其调控机制[J]. 生态学报, 2015, **35**(23): 7921-7929.
 - Wang X J, Wang W B, Yang L, et al. Transport pathways of cadmium (Cd) and its regulatory mechanisms in plant[J]. Acta

- Ecologica Sinica, 2015, 35(23): 7921-7929.
- [5] 李元,祖艳群.重金属污染生态与生态修复[M].北京:科学出版社,2016.
 - Li Y, Zu Y Q. Heavy metal pollution ecology and ecological remediation [M]. Beijing: Science Press, 2016.
- [6] 徐建明, 孟俊, 刘杏梅, 等. 我国农田土壤重金属污染防治与粮食安全保障[J]. 中国科学院院刊, 2018, **33**(2): 153-159
 - Xu J M, Meng J, Liu X M, et al. Control of heavy metal pollution in farmland of China in terms of food security [J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 153-150.
- [7] 陈航,王颖,王澍. 铜山矿区周边农田土壤重金属来源解析及污染评价[J]. 环境科学, 2022, 43(5): 2719-2731.

 Chen H, Wang Y, Wang S. Source analysis and pollution assessment of heavy metals in farmland soil around Tongshan mining area[J]. Environmental Science, 2022, 43(5): 2719-2731.
- [8] 陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 2019, 38(10): 2219-2238.
 - Chen Y L, Weng L P, Ma J, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils[J]. Journal of Agro-Environment Science, 2019, 38(10): 2219-2238.
- [9] 吴永红, 靳少非. 基于 CiteSpace 的重金属污染土壤修复研究文献计量分析[J]. 农业环境科学学报, 2020, **39**(3): 454-461.
 - Wu Y H, Jin S F, Bibliometric analysis of the repair of heavy metal-contaminated soil based on CiteSpace[J], Journal of Agro-Environment Science, 2020, 39(3): 454-461.
- [10] 宋伟, 陈百明, 刘琳. 中国耕地土壤重金属污染概况[J]. 水土保持研究, 2013, **20**(2): 293-298.

 Song W, Chen B M, Liu L. Soil heavy metal pollution of cultivated land in China [J]. Research of Soil and Water Conservation, 2013, **20**(2): 293-298.
- [11] 环境保护部,国土资源部.全国土壤污染状况调查公报 [EB/OL]. http://www. gov. cn/foot/site1/20140417/782bcb88840814ba158d01.pdf, 2014-04-17.
- [12] 曹伟, 周生路, 王国梁, 等. 长江三角洲典型区工业发展影响下土壤重金属空间变异特征[J]. 地理科学, 2010, **30** (2): 283-289.
 - Cao W, Zhou S L, Wang G L, et al. Spatial variability characteristics of soil heavy metals due to industry development of typical regions in Changjiang River Delta of China [J]. Scientia Geographica Sinica, 2010, 30(2): 283-289.
- [13] 张云芸,马瑾,魏海英,等.浙江省典型农田土壤重金属污染及生态风险评价[J].生态环境学报,2019,28(6):1233-1241.
 - Zhang Y Y, Ma J, Wei H Y, et al. Heavy metals in typical farmland soils of Zhejiang Province: levels, sources and ecological risks[J]. Ecology and Environmental Sciences, 2019, 28(6): 1233-1241.
- [14] 陶春军, 贾十军, 梁红霞, 等. 安徽省滁州地区土地质量地球化学评估研究[J]. 地质调查与研究, 2014, 37(1): 61-67.
 - Tao C J, Jia S J, Liang H X, et al. Research on the geochemical assessment for land quality in Chuzhou area [J]. Geological Survey and Research, 2014, 37(1): 61-67.
- [15] 陶春军, 贾十军, 陈永宁, 等. 滁州地区土壤地球化学基准 值与背景值研究[J]. 安徽地质, 2013, **23**(4); 286-291.

- Tao C J, Jia S J, Chen Y N, *et al.* A study on geochemical baseline value and environmental background value of soils in the Chuzhou area[J]. Geology of Anhui, 2013, **23**(4): 286-291.
- [16] 滁州市统计局. 2019 年滁州七十年统计年鉴[EB/OL]. https://tjj. chuzhou. gov. cn/ztzl/tjsj/178695984. html, 2020-03-16.
- [17] HJ 780-2015, 土壤和沉积物 无机元素的测定 波长色散 X 射线荧光光谱法 [S].
- [18] GB/T 22105.1-2008, 土壤质量 总汞、总砷、总铅的测定 原子荧光法 第1部分: 土壤中总汞的测定[S].
- [19] GB/T 17141-1997, 土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法[S].
- [20] 廖启林,金洋,吴新民,等. 南京地区土壤元素的人为活动 环境富集系数研究[J]. 中国地质, 2005, **32**(1): 141-147. Liao Q L, Jin Y, Wu X M, *et al.* Artificial environmental concentration coefficients of elements in soils in the Nanjing area [J]. Geology in China, 2005, **32**(1): 141-147.
- [21] 赵阳,于瑞莲,胡恭任,等. 泉州市 324 国道泉州至塘头段 路旁土壤中重金属来源分析[J]. 土壤通报,2011,42(3):742-746.
 - Zhao Y, Yu R L, Hu G R, et al. Multivariate analysis approach to study the source of heavy metals in heavy traffic areas in the 324 national highway section of Quanzhou to Tangtou [J]. Chinese Journal of Soil Science, 2011, 42(3): 742-746.
- [22] 陈兴仁,陈富荣,贾十军,等.安徽省江淮流域土壤地球化学基准值与背景值研究[J].中国地质,2012,39(2):302-310.
 - Chen X R, Chen F R, Jia S J, et al. Soil geochemical baseline and background in Yangtze River-Huaihe River basin of Anhui Province [J]. Geology in China, 2012, 39(2): 302-310.
- [23] 周葆华, 胡睿鑫, 赵宽, 等. 皖江经济带土壤 Cd 空间分布特征与生态风险评价[J]. 自然资源学报, 2021, 36(12): 3261-3270
 - Zhou B H, Hu R X, Zhao K, *et al*. Spatial distribution characteristic of Cd in soils and its ecological risk assessment in the economic belt of Yangtze River in Anhui [J]. Journal of Natural Resources, 2021, **36**(12): 3261-3270.
- [24] 麦麦提吐尔逊·艾则孜,阿吉古丽·马木提,艾尼瓦尔·买买提.新疆焉耆盆地辣椒地土壤重金属污染及生态风险预警[J].生态学报,2018,38(3):1075-1086.
 - Eziz M, Mamut A, Mohammad A. Soil heavy metal pollution and ecological risk warning assessment of pepper field in Yanqi Basin, Xinjiang [J]. Acta Ecologica Sinica, 2018, **38**(3): 1075-1086.
- [25] Müller G. Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 1969, $\mathbf{2}(3)$: 108-118.
- [26] Hakanson L. An ecological risk index for aquatic pollution control. a sedimentological approach [J]. Water Research, 1980, 14(8): 975-1001.
- [27] 中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.
- [28] 雷国建,陈志良,刘千钧,等.广州郊区土壤重金属污染程度及潜在生态危害评价[J].中国环境科学,2013,33(S1):49-53.
 - Lei G J, Chen Z L, Liu Q J, et al. The assessments of polluted degree and potential ecological hazards of heavy metals in suburban soil of Guangzhou city [J]. China Environmental Science, 2013, 33(S1): 49-53.
- [29] 张明, 陈国光, 刘红樱, 等. 长江三角洲地区土壤重金属含量及其分异特征[J]. 土壤通报, 2012, **43**(5): 1098-1103. Zhang M, Zhang G G, Liu H Y, *et al.* Spatial distribution

- characteristics of heavy metal in soils of Yangtze River Delta[J]. Chinese Journal of Soil Science, 2012, 43(5): 1098-1103.
- [30] 陈秀端,卢新卫,赵彩凤,等. 西安市二环内表层土壤重金属空间分布特征[J]. 地理学报, 2011, 66(9): 1281-1288. Chen X D, Lu X W, Zhao C F, et al. The spatial distribution of heavy metals in the urban topsoil collected from the interior area of the Second Ring Road, Xi'an[J]. Acta Geographica Sinica, 2011, 66(9): 1281-1288.
- [31] 林燕萍, 赵阳, 胡恭任, 等. 多元统计在土壤重金属污染源解析中的应用[J]. 地球与环境, 2011, **39**(4): 536-542. Lin Y P, Zhao Y, Hu G R, *et al*. The application of multivariate statistical analysis in the pollution source recognition and analysis of heavy metals in soils[J]. Earth and Environment, 2011, **39** (4): 536-542.
- [32] 姚世厅, 农冬灵, 赵峰华. 多元统计学理论在矿区土壤重金属溯源分析中的应用[J]. 中国资源综合利用, 2018, 36 (9): 152-155, 158.

 Yao S T, Nong D L, Zhao F H. Application of multivariate statistical theory in traceability analysis of heavy metals in mining area soils [J]. China Resources Comprehensive Utilization, 2018, 36(9): 152-155, 158.
- 带农田土壤重金属污染特征[J]. 环境科学, 2022, **43**(11): 5169-5179.

 Liu X Y, Fan Y N, Liu P, *et al.* Characteristics of heavy metals pollution in farmland soil of the Yangtze River Economic Belt based on bibliometric analysis [J]. Environmental Science, 2022, **43**(11): 5169-5179.

刘孝严, 樊亚男, 刘鹏, 等. 基于文献计量分析的长江经济

- [34] 张丽,张乃明,包立,等. 滇东南农田土壤重金属分布特征及污染风险评价[J]. 土壤通报,2020,51(2):473-480.

 Zhang L, Zhang N M, Bao L, et al. Heavy metal distribution and pollution risk assessment in farmland soil in southeastern Yunnan Province[J]. Chinese Journal of Soil Science, 2020,51 (2):473-480.
- [35] 吴昌华,徐昌旭,池泽新. 江西省耕地重金属污染防治问题及治理策略[J]. 环境监测管理与技术,2019,31(4):1-3,37.

 Wu C H, Xu C X, Chi Z X. Problems and strategies of heavy metal pollution control in cultivated land in Jiangxi Province[J].

 The Administration and Technique of Environmental Monitoring,
- [36] Huang S S, Liao Q L, Hua M, et al. Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China [J]. Chemosphere, 2007, 67 (11): 2148-2155.

2019, 31(4): 1-3, 37.

- [37] 杨磊,熊黑刚. 新疆准东煤田土壤重金属来源分析及风险评价[J]. 农业工程学报, 2018, **34**(15): 273-281.

 Yang L, Xiong H G. Soil heavy metal sources analysis and risk evaluation of Zhundong coal mine in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, **34** (15): 273-281.
- [38] 张棕巍, 胡恭任, 于瑞莲, 等. 泉州市大气降尘中金属元素 污染特征及来源解析[J]. 环境科学, 2016, **37**(8): 2881-2888. Zhang Z W, Hu G R, Yu R L, *et al.* Characteristics and source apportionment of metals in the dustfall of Quanzhou City[J]. Environmental Science, 2016, **37**(8): 2881-2888.
- [39] 艾建超, 王宁, 杨净. 基于 UNMIX 模型的夹皮沟金矿区土壤 重金属源解析[J]. 环境科学, 2014, **35**(9): 3530-3536. Ai J C, Wang N, Yang J. Source apportionment of soil heavy metals in Jiapigou goldmine based on the UNMIX model [J].

- Environmental Science, 2014, 35(9): 3530-3536.
- [40] Zhang Y X, Wang M, Huang B, et al. Soil mercury accumulation, spatial distribution and its source identification in an industrial area of the Yangtze Delta, China[J]. Ecotoxicology and Environmental Safety, 2018, 163: 230-237.
- [41] 林承奇, 胡恭任, 于瑞莲, 等. 九龙江近岸表层沉积物重金属污染评价及来源解析[J]. 中国环境科学, 2016, **36**(4): 1218-1225.
 - Lin C Q, Hu G R, Yu R L, et al. Pollution assessment and source analysis of heavy metals in offshore surface sediments from Jiulong River[J]. China Environmental Science, 2016, 36(4): 1218-1225.
- [42] 邵莉,肖化云,吴代赦,等. 交通源重金属污染研究进展[J]. 地球与环境, 2012, **40**(3): 445-459.

 Shao L, Xiao H Y, Wu D S, *et al.* Review on research on traffic-related heavy metals pollution [J]. Earth and Environment, 2012, **40**(3): 445-459.
- [43] Ewen C, Anagnostopoulou M A, Ward N I. Monitoring of heavy metal levels in roadside dusts of Thessaloniki, Greece in relation to motor vehicle traffic density and flow [J]. Environmental Monitoring and Assessment, 2009, 157(1-4): 483-498.
- [44] 窦磊, 马瑾, 周永章, 等. 乡镇企业密集区菜地土壤重金属含量分布特征及生态效应—以东莞市为例[J]. 农业环境科学学报, 2007, 26(6): 2048-2056.

 Dou L, Ma J, Zhou Y Z, et al. Distribution characteristics and ecological effects of heavy metals in vegetable soils from townshipenter-prise prosperity area: a case study of Dongguan [J]. Journal of Agro-Environment Science, 2007, 26(6): 2048-2056.
- [45] 王信凯,张艳霞,黄标,等。长江三角洲典型城市农田土壤重金属累积特征与来源[J].土壤学报,2021,58(1):82-91.
 - Wang X K, Zhang Y X, Huang B, et al. Accumulation and sources of heavy metals in agricultural soil in a city typical of the Yangtze River Delta, China[J]. Acta Pedologica Sinica, 2021, 58(1): 82-91.
- [46] 王佛鹏, 肖乃川, 周浪, 等. 桂西南地球化学异常区农田重金属空间分布特征及污染评价[J]. 环境科学, 2020, **41** (2): 876-885.
 - Wang F P, Xiao N C, Zhou L, et al. Spatial distribution characteristics and pollution assessment of heavy metals on farmland of geochemical anomaly area in southwest Guangxi [J]. Environmental Science, 2020, 41(2): 876-885.
- [47] 郭朝晖,肖细元,陈同斌,等. 湘江中下游农田土壤和蔬菜的重金属污染[J]. 地理学报,2008,63(1):3-11.
 Guo C H, Xiao X Y, Chen T B, et al. Heavy metal pollution of soils and vegetables from midstream and downstream of Xiangjiang River[J]. Acta Geographica Sinica, 2008,63(1):3-11.
- [48] 方传棣,成金华,赵鹏大,等. 长江经济带矿区土壤重金属 污染特征与评价[J]. 地质科技情报,2019,38(5):230-239.
 - Fang C D, Cheng J H, Zhao P D, *et al.* Characteristics and evaluation of heavy metal pollution in soils of mining areas in the Yangtze River Economic Belt [J]. Geological Science and Technology Information, 2019, **38**(5): 230-239.
- [49] Li S Y, Jia Z M. Heavy metals in soils from a representative rapidly developing megacity (SW China): levels, source identification and apportionment [J]. CATENA, 2018, 163: 414-423.
- [50] Shi T R, Ma J, Wu F Y, et al. Mass balance-based inventory of heavy metals inputs to and outputs from agricultural soils in

- Zhejiang Province, China[J]. Science of the Total Environment, 2019, **649**: 1269-1280.
- [51] 李宏薇,尚二萍,张红旗,等. 耕地土壤重金属污染时空变异对比—以黄淮海平原和长江中游及江淮地区为例[J]. 中国环境科学,2018,38(9):3464-3473.
 - Li H W, Shang E P, Zhang H Q, et al. Comparative research on spatio-temporal variability of heavy metal pollution in cultivated soils-a case study of Huang- Huai-Hai Plain and middle reaches of the Yangtze River and Jianghuai Region [J]. China Environmental Science, 2018, 38(9): 3464-3473.
- [52] 王锐,邓海,严明书,等. 重庆市酉阳县南部农田土壤重金属污染评估及来源解析[J]. 环境科学,2020,41(10):4749-4756.
 - Wang R, Deng H, Yan M S, et al. Assessment and source

- analysis of heavy metal pollution in farmland soils in southern Youyang County, Chongqing[J]. Environmental Science, 2020, 41(10): 4749-4756.
- [53] 宁运旺, 张永春, 汪吉东, 等. 土壤-植物-人类系统中锌与富锌农产品的开发[J]. 江苏农业科学, 2009, **37**(3): 1-4. Ning Y W, Zhang Y C, Wang J D, *et al.* Research of zinc in soil-plant-human system and development of zinc enrichment agricultural products [J]. Jiangsu Agricultural Sciences, 2009, **37**(3): 1-4.
- [54] 李勖之, 孙丽, 杜俊洋, 等. 农用地土壤重金属锌的生态安全阈值研究[J]. 环境科学学报, 2022, **42**(7): 408-420. Li X Z, Sun L, Du J Y, *et al.* Soil ecological safety thresholds for zinc in agricultural land[J]. Acta Scientiae Circumstantiae, 2022, **42**(7): 408-420.

《环境科学》再获"百种中国杰出学术期刊"称号

2022年12月29日,中国科技论文统计结果发布会在北京举行,会议发布了"百种中国杰出学术期刊" 获奖名单.《环境科学》连续21次荣获"百种中国杰出学术期刊"称号."百种中国杰出学术期刊"是根据中国科技学术期刊综合评价指标体系进行评定.该体系利用总被引频次、影响因子、基金论文比、他引总引比等多个文献计量学指标进行统计分析,对期刊分学科进行评比,其评价结果客观公正,为我国科技界公认,并具有广泛影响.

HUANJING KEXUE

Environmental Science (monthly)

Vol. 44 No. 6 Jun. 15, 2023

CONTENTS

Research Status and Trend Analysis of Environmental and Health Risk and Control of Persistent, Mobile, and Toxic Chemicals	
Assessment of the Multidimensional Performances of Food Waste Utilization Technologies in China	YANG Guang, SHI Bo-fen, ZHOU Chuan-bin (3024)
$Spatial\ Network\ of\ Urban\ Heat\ Environment\ in\ Beijing-Tianjin-Hebei\ Urban\ Agglomeration\ Based\ on\ MSPA\ and\ Circuit\ Theory\ \cdots$	
Relationship Between Urban Spatial Pattern and Thermal Environment Response in Summer: A Case Study of Hefei City	CHEN Yuan-yuan, YAO Xia-mei, OU Chun, et al. (3043)
$Assessment \ of \ Emission \ Reduction \ Effect \ of \ Major \ Air \ Pollution \ Control \ Measures \ on \ PM_{2.5} \ Concentrations \ During \ 13th \ Five-Year \ Pollution \ Control \ Measures \ on \ PM_{2.5} \ Concentrations \ During \ 13th \ Five-Year \ Pollution \ Control \ Measures \ on \ PM_{2.5} \ Concentrations \ During \ 13th \ Five-Year \ Pollution \ Control \ Measures \ on \ PM_{2.5} \ Concentrations \ During \ 13th \ Five-Year \ Pollution \ Control \ Measures \ on \ PM_{2.5} \ Concentrations \ During \ PM_{2.5$	ar Period in Tianjin ·····
2.5 000000000000000000000000000000000000	XIAO Zhi-mei, XU Hong, CAI Zi-ying, et al. (3054)
Effect of Clean Heating on Carbonaceous Aerosols in PM _{2,5} During the Heating Period in Baoding	LUO Yu-qian, ZHANG Kai, ZHAO Yu-xi, et al. (3063)
Transport Influence and Potential Sources of PM _{2.5} Pollution for Nanjing	XIE Fang-jian, ZHENG Xin-mei, DOU Tao-tao, et al. (3071)
Impact of Atmospheric Circulation Patterns on Ozone Changes in the Pearl River Delta from 2015 to 2020	WANG Yao, LIU Run, XIN Fan (3080)
Effects of Tropical Cyclones on Ozone Pollution in Hainan Island	
Analysis of Causes and Sources of Summer Ozone Pollution in Rizhao Based on CMAQ and HYSPLIT Models	
Health Benefit Evaluation for PM _{2.5} as Well as O _{3.8h} Pollution Control in Chengdu, China from 2016 to 2020	ZHANG Ying, TIAN Qi-qi, WEI Xiao-yu, et al. (3108)
Impacts of COVID-19 Lockdown on Air Quality in Shenzhen in Spring 2022 Emission Inventory of Airborne Pollutants from Biomass Combustion in Guizhou Province	
Emission Inventory of Airborne Pollutants from Biomass Compustion in Guizhou Province Main Chemical Components in Atmospheric Precipitation and Their Sources in Xi'an	
Distribution, Respiratory Exposure, and Traceability of Atmospheric Microplastics in Yichang City	LILL: ming. WANG Chap. CONG Wan wan, et al. (2152)
Hydrochemical Evolution in the Yarlung Zangbo River Basin	LIO LI-HING, WANG CHAO, GOING WEII-WEII, et al. (5152)
Temporal and Spatial Distribution Characteristics and Source Analysis of Nitrate in Surface Water of Wuding River Basin	
Seasonal Variation Characteristics and Pollution Assessment of Heavy Metals in Water and Sediment of Taipu River	
Pollution Characteristics and Risk Assessment of Antibiotics in Beijun River Basin in Beijing	
Tracking Riverine Nitrate Sources and Transformations in the Yiluo River Basin by Nitrogen and Oxygen Isotopes	
Distribution Characteristics and Risk Assessment of PPCPs in Surface Water and Sediments of Lakes in the Lower Reaches of the	
Distribution Gharacteristics and tusk assessment of 11 cfs in Junate water and setuments of Lakes in the Lower reacties of the	WII Yu-sheng HIJANG Tian-vin ZHANG Jia-gen et al. (3217)
Characteristics and Driving Mechanisms of Shallow Groundwater Chemistry in Xining City	III Chun-yan VII Kai-ning 7HANC Ving et al. (3228)
Groundwater Pollution Risk Assessment in Plain Area of the Yarkant River Basin	
Composition Structure and Influence Factors of Bacterial Communities in the Miyun Reservoir	
Photo-Degradation Mechanism and Pathway for Tetracycline in Simulated Seawater Under Irradiation of Visible Light	
Adsorption Characteristics and Mechanism of Ammonia Nitrogen in Water by Nano Zero-valent Iron-modified Biochar	
Removal Performance and Mechanism of Potassium Permanganate Modified Coconut Shell Biochar for Cd(II) and Ni(II) in A	quatic Environment
	··· ZHANG Feng-zhi, WANG Dun-qiu, CAO Xing-feng, et al. (3278)
Phosphorus Adsorption in Water and Immobilization in Sediments by Lanthanum-modified Water Treatment Sludge Hydrochar	HE Li-wenze, CHEN Yu, SUN Fei, et al. (3288)
Factors Affecting Nitrate Concentrations and Nitrogen and Oxygen Isotope Values of Effluents from Waste Water Treatment Plant	
Effects of Wastewater Treatment Processes on the Removal Efficiency of Microplastics Based on Meta-analysis	
Assessment of Critical Loads of Nitrogen Deposition in Natural Ecosystems of China	HUANG Jing-wen, LIU Lei, YAN Xiao-yuan, et al. (3321)
Impacts of Climate Change and Human Activities on NDVI Change in Eastern Coastal Areas of China	JIN Yan-song, JIN Kai, WANG Fei, et al. (3329)
Ecosystem Carbon Storage in Hangzhou Bay Area Based on InVEST and PLUS Models	
Soil Stoichiometry Characterization in the Oasis-desert Transition Zone of Linze, Zhangye	
Vertical Differences in Grassland Bacterial Community Structure During Non- Growing Season in Eastern Ulansuhai Basin	
Distribution Pattern of Bacterial Community in Soil Profile of Larix principis-rupprechtii Forest in Luya Mountain	MAO Xiao-ya, LIU Jin-xian, JIA Tong, et al. (3376)
Effects of Vegetation Types on Carbon Cycle Functional Genes in Reclaimed Soil from Open Pit Mines in the Loess Plateau	
Effects of Biochar Application on Soil Bacterial Community Diversity and Winter Wheat Growth in Wheat Fields	
Effects of Different Planting Years of Dendrocalamus brandisii on Soil Fungal Community	
$ \hbox{Effects of Biochar Amendment on N_2O Emission and Its Functional Genes in Pepper Growing Soil in Tropical Areas } \\$	
Effects of Mulching and Application of Organic and Chemical Fertilizer on Greenhouse Gas Emission and Water and Nitrogen Us	e in Summer Maize Farmland
0 11 0	
Effects of Different Types of Plastic Film Mulching on Soil Quality, Root Growth, and Yield	
Pollution Assessment and Source Analysis of Heavy Metals in Atmospheric Deposition in a Lead-zinc Smelting City Based on PM	
Characterization and Health Risk of Heavy Metals in PM _{2.5} from Road Fugitive Dust in Five Cities of Yunnan Province	
Pollution Characteristics and Risk Assessment of Heavy Metals in Surface Dusts and Surrounding Green Land Soils from Yellow I	Kiver Custom Tourist Line in Lanzhou
Source Apportionment and Pollution Assessment of Soil Heavy Metal Pollution Using PMF and RF Model: A Case Study of a Typ	oral Industrial Park in Northwest China
Source Analysis of Soil Heavy Metals in Agricultural Land Around the Mining Area Based on APCS-MLR Receptor Model and G	
Source Analysis of Son Deavy Metals in Agricultural Land Around the mining Area based on ArCs-Maa Receptor Model and G	Costatistical Method
Source Analysis of Heavy Metals in Typical Farmland Soils Based on PCA-APCS-MLR and Geostatistics	ZHANG Chuan-hua, WANG Zhong-shu, LIU LI, et al. (3500)
Characteristics and Risk Evaluation of Heavy Metal Contamination in Paddy Soils in the Three Gorges Reservoir Area	
Health Risk Assessment and Environmental Benchmark of Heavy Metals in Cultivated Land in Wanjiang Economic Zone	
Evaluation and Source Analysis of Soil Heavy Metal Pollution in a Planting Area in Wanquan District, Zhangjiakou City	
Heavy Metal Concentration, Source, and Pollution Assessment in Topsoil of Chuzhou City	
Analysis on the Distribution Characteristics and Influence Mechanism of Migration and Transformation of Heavy Metals in Mining	wasteland
Analysis of the Distribution Characteristics and financial incommission of figure and financial financial information of ficary includes in similar	
Ecological Risk Assessment and Source Apportionment of Heavy Metals in Mineral Resource Base Based on Soil Parent Materials	
Enrichment Characteristics of Heavy Metals and Health Risk in Different Vegetables	
Health Risk Assessment of Heavy Metals in Soil and Wheat Grain in the Typical Sewage Irrigated Area of Shandong Province	
Prediction of Cadmium Uptake Factor in Wheat Based on Machine Learning	