

ISSN 0250-3301 CODEN HCKHDV HUANJING KEXUE

- 主办 中国科学院生态环境研究中心
- ■出版科学出版社

2019

Vol.40 No.8 第40卷 第8期

ENVIRONMENTAL SCIENCE

第40卷 第8期 2019年8月15日

目 次

```
2016年京津冀地区红色预警时段 PM2.5污染特征与浓度控制效果 ……… 张冲,郎建垒,程水源,王晓琦(3397)
北京地区秋冬季大气污染特征及成因分析………………… 徐冉,张恒德,杨孝文,程水源,张天航,江琪(3405)
濮阳市秋冬季大气细颗粒物污染特征及来源解析
ボニョウ、エット、ペットの では、 ボール では、 ボー
   …………… 胡昕怡, 高冰丽, 陈坦, 王洪涛, 金军, 饶竹, 朱雪芹, 王雪郡, 魏抱楷, 战楠, 刘彦廷, 戚敏(3501)
外源输入对底泥疏浚新生表层磷恢复及迁移的影响 ……… 李鑫, 耿雪, 王洪伟, 龚琬晴, 文帅龙, 钟继承, 李大鹏(3539)
新疆喀什三角洲地下水 SO<sub>4</sub><sup>-</sup> 化学特征及来源 …… 魏兴,周金龙,乃尉华,曾妍妍,范薇,李斌(3550)
饮用水快速砂滤池优势微生物群落的代谢功能解析 …… 胡万超,赵琛,王巧娟,刘锐平,柏耀辉(3604)
光催化/活性炭/纳滤组合工艺处理二级出水及对膜污染的控制 草外逊,张守红,张英,吴思婷(3618)
光催化/活性炭/纳滤组合工艺处理二级出水及对膜污染的控制 范科文,李星,杨艳玲,周志伟(3626)
多种材料对水中氨氮的吸附特性 焦巨龙,杨苏文,谢宇,金位栋,闫玉红,徐彬(3633)
不同氨氮浓度对 4 株常见藻株生长及酶活性的影响 常婷,许智慧,程鹏飞,徐继林,周成旭(3642)
缺氧 MBBR 耦合部分厌氧氨氧化强化城市生活污水深度脱氮 …… 杨岚,彭永臻,李健伟,高锐涛,王茗,李夕耀(3668)连续流系统中好氧段及沉淀段对污泥及其缺氧段脱氮能力的影响 …… 薛欢婷,袁林江,刘小博,孙恒锐(3675)
异养硝化细菌 Acinetobacter junii NP1 的同步脱氮除磷特性及动力学分析 ·································
    两种土壤增效剂对稻田氨挥发排放的影响 …………… 周玉玲, 侯朋福, 李刚华, 王绍华, 杨林章, 薛利红, 丁艳锋(3746)
铁锰氧化物在不同水分条件下对土壤 As 的稳定化作用 …………… 周海燕, 邓一荣, 林龙勇, 曹梦华, 钟立荣(3792)
生物质炭对双季稻水稻土微生物生物量碳、氮及可溶性有机碳氮的影响…… 刘杰云, 邱虎森, 汤宏, 沈健林, 吴金水(3799)
有机物料对紫色土微生物量碳、氮及氮素供应的影响 ……………………………………………… 汪月,张名豪,赵秀兰(3808)
土地利用方式对土壤团聚体稳定性和有机碳含量的影响………… 罗晓虹, 王子芳, 陆畅, 黄容, 王富华, 高明(3816)
宁南山区退耕还林还草对土壤氮素组成及其转化酶活的影响 ················高涵,肖礼,牛丹,倪银霞,黄懿梅(3825)不同浸提剂条件下生物炭溶解性有机物的浸出规律 ··············何品晶,张昊昊,仇俊杰,邵立明,吕凡(3833)
基于成组生物毒性测试的 PM<sub>2.5</sub>毒性 ················ 江晓栋, 薛银刚, 魏永, 许霞, 刘菲, 薛柯, 施昕澜, 顾铭(3840)
《环境科学》征订启事(3587)
                       《环境科学》征稿简则(3595) 信息(3611,3705,3745)
```


广州饮用水水源地多环芳烃分布、来源及人体健康风 险评价

宋玉梅1, 王畅2, 刘爽1,3, 潘佳钏1, 郭鹏然1*

(1.广东省测试分析研究所广东省化学危害应急检测技术重点实验室,广东省水环境污染在线监测工程技术研究中心, 广州 510070; 2. 中山大学公共卫生学院, 广州 510080; 3. 兰州理工大学石油化工学院, 兰州 730050)

摘要:饮用水源水体中残留微量多环芳烃(PAHs)对人体健康存在危害.以广州饮用水水源地为研究对象,采集广州部分水 厂水源水体及底泥样品,考察了样品中16种 PAHs含量及分布,采用美国环保署(USEPA)的RAGS风险评估模型,对水体 中 PAHs 人体健康风险进行了评估. 结果表明,广州饮用水水源地水体中 PAHs 的质量浓度未超过相应的水质标准限值,水 体悬浮颗粒物和底泥中 🔰 PAHs 含量处于低至中等水平,水源地水体 PAHs 暴露的单项非致癌风险指数和总非致癌风险指 数均小于 1,非致癌风险可以忽略. 水源地水体 PAHs 单项致癌风险和总致癌风险在 5.53×10-7~5.34×10-6,可能存在致 癌风险但低于最大可接受风险水平. 水源地 PAHs 为混合型污染源输入, 包括石油泄漏、石油燃烧和木材、煤以及生物质的 不完全燃烧. 水体中 PAHs 与底泥中 PAHs 含量密切相关, PAHs 在两相间的分布存在平衡分配.

关键词:饮用水源地;多环芳烃(PAHs);分布特征;人体健康风险;源解析

中图分类号: X52; X820.4 文献标识码: A 文章编号: 0250-3301(2019)08-3489-12 **DOI**: 10.13227/j. hjkx. 201811006

Distribution, Sources, and Health Risk Assessment of PAHs in Water Supply Source Regions of Guangzhou

SONG Yu-mei¹, WANG Chang², LIU Shang^{1,3}, PAN Jia-chuan¹, GUO Peng-ran^{1,*}
(1. Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Engineering and Technology Research Center for Online Monitoring of Environment Water Pollution, Guangdong Institute of Analysis, Guangzhou 510070, China; 2. School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; 3. College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China)

Abstract: Trace polycyclic aromatic hydrocarbons (PAHs) in drinking water sources have significant harmful effects on human health. Water and sediment samples from water source regions of three water treatment plants in Guangzhou were collected and the distributions of 16 kinds of PAHs were analyzed. The human risk of PAHs in the water samples was also evaluated using the Risk Assessment Guidance for Superfund (RAGS) of the United States Environmental Protection Agency (USEPA). The results showed that PAHs in the samples from the three water source regions did not exceed the corresponding standard limit for water quality, and the content of PAHs in suspended solids and sediments was below the medium level. The non-carcinogenic risks (HQ and HI) of PAHs in the water samples were less than 1, and the non-carcinogenic risk was negligible. In addition, $Risk_{ingest}$, $Risk_{dermal}$, and $Risk_{T}$ for the waters were all in range of 5.53×10^{-7} to 5.34×10^{-6} , indicating that a carcinogen risk was possible but acceptable. The results of the isomer ratio method indicated that the PAHs in the water sources of the three water plants had a mixed input of pollution, including petroleum discharge, petroleum combustion, and incomplete combustion of wood, coal, and biomass. The total organic carbon (TOC) content of the water and sediment samples was positively correlated with the accumulation and enrichment of low-ring PAHs, and there was a significant positive correlation between PAHs and similar molecules in the sediments. The \sum PAHs in the water and sediment samples were also strongly correlated.

Key words: drinking water source; polycyclic aromatic hydrocarbons (PAHs); distribution characteristics; human health risk; source apportionment

多环芳烃 (polycyclic aromatic hydrocarbons, PAHs)是一类持久性有机污染物, 广泛存在于各种 环境介质中. 大部分 PAHs 对生物会产生免疫毒 性、致癌性和致基因突变性等不利影响,且被证实 会对生物产生内分泌干扰效应[1]. 美国环保署 1976 年将 16 种 PAHs 作为优先控制污染物^[2,3]. 2014 年 全球 16 种 PAHs 排放量为 51 万 t, 而我国排放量约 12.5万 t[4]. PAHs 通过废水的排放、大气沉降、地 表迁移、石油泄漏等多种形式进入饮用水源地, 在 我国不同地区饮用水源地的水体和底泥中都不同程

收稿日期: 2018-11-01; 修订日期: 2019-02-25

基金项目: 国家自然科学基金项目(21777150); 广东省科技计划项 目(2017A040405040, 2016A040403061);广州市科技计 划项目(201803030042)

宋玉梅(1984~), 女, 硕士, 副研究员, 主要研究方向 为毒害污染物环境化学行为研究及风险评价, E-mail: symei2011@163.com

* 通信作者,E-mail:prguo@fenxi.com.cn

度地检测出了 PAHs,如黄浦江、太湖流域和西江等^[5~8]. 我国传统的饮用水处理(混凝-过滤工艺)难以有效去除源水中的痕量 PAHs.由于长期暴露在低剂量 PAHs 的水体中对人体造成潜在毒性危害,因此有必要对饮用水源地中 PAHs 的潜在健康风险进行分析和识别.

由于城市生活污水、城市垃圾、船舶通航、工业废水和上游农业污水等影响,珠江广州段水体和底泥中 PAHs 出现富集,且底泥中 PAHs 含量水平已超过国外底泥风险评价标准^[9]. 因而,考察广州市饮用水水源地和珠江水广州段的水源河段 PAHs,研究其水体和底泥中 PAHs 的人体健康危害风险对保护饮用水安全和人体健康具有重要现实意义.

近年应用较为广泛的环境健康风险评价模型主要是美国国家科学院(National Academy of Sciences, United States, NAS)四步法与美国环保署 1989 年发布 Risk Assessment Gui for Superfund(RAGS)模型, RAGS模型与 NAS 四步法类似的风险评价方法,但比 NAS 四步法更加具体,强调对污染场地各种参数的收集,对于地表水的评价,其操作性更强.本研究考察广州市水源地水体及底泥中 16 种优先控制 PAHs 的含量分布,综合水源地水体和底泥 PAHs的暴露特征,采用美国 EPA RAGS模型评价,研究了广州市水源地 PAHs 健康风险,并对广州市水源地 PAHs 进行了溯源,以期为水源地 PAHs 污染控制和风险管理等提供理论基础和科学依据.

1 材料与方法

1.1 仪器与试剂

气相色谱-三重串联四级杆质谱仪(Agilent7890A GC和Agilent7000AMS)、K-D浓缩器(欣维尔),TOC-L分析仪(日本岛津公司),冷冻干燥机(博医康,FD-1C-80),低温冷却液循环泵(巩义市予华仪器有限责任公司,DLSB-5L/20),Milli-pore超纯水装置(法国,Millipore Corporation),恒温水浴锅(常州澳华仪器有限公司,HH-6),旋转蒸发仪(德国BuchiRotavapor®R-100),定容氮吹仪(北京八方世纪科技有限公司,BF-2000F),固相萃取真空装置(天津博纳艾杰尔科技有限公司,VM12),数显鼓风干燥箱(上海博迅实业有限公司医疗设备厂,GZX-9240MBE),蛇形索氏提取器(欣维尔),分析天平(BSA224S,Sartorius).

标准试剂:16 种 PAHs 标准样品[萘、苊烯、苊、芴、菲、蒽、荧蒽、芘、苯并(a)蒽、**菌**、苯并(b)荧蒽、苯并(k)荧蒽、苯并(a)芘、茚并(1,2,3-cd)芘、二苯并(a,h)蒽和苯并(g,h,i)苝],回

收率指示物(萘-d8、苊-d10、**萹**-d12 和苝-d12)和内标物(六甲基苯)购自 AccuStandard 公司.

试剂:丙酮(HPLC, 百灵威科技有限公司)、正己烷(农残级、CNWTechnologies)、二氯甲烷(农残级、CNWTechnologies)、无水硫酸钠(GR, 天津市科密欧化学试剂有限公司, 用前需在 450℃下烘烧12 h, 冷却至室温后储备于密封广口瓶中)、盐酸(GR)、氢氧化钠(GR)、玻璃纤维滤纸(Whatman GF/F, ϕ 47 mm)、Envi-18SPE 柱(美国 Supelclean 公司, 6 mL, 500 mg).

中性氧化铝(99%, Acros-organics)、超纯硅胶(60~200 μ m, Acros-organics),铜粉(GR, 国药集团化学试剂有限公司)分别在120℃和180℃条件下活化12 h, 冷却至室温,加入其质量3%的蒸馏水活化,超声振荡30 min,放置12 h 平衡,加入正己烷浸没其表面备用.

实验所用玻璃器容器皆在重铬酸洗液中浸泡 24 h以上,180℃烘干,并依次用丙酮、二氯甲烷和 正己烷润洗.

1.2 样品采集与分析

1.2.1 样品采集

本实验选择广州 3 个水厂水源地设置采样位点,分布在东部(XT)、西部(JC)和南部(SW)水厂水源地,具体位点位置如图 1 所示. 表层水样和表层底泥样品采样时间为 2013 年 3 ~ 4 月及 2014 年 3 ~ 4 月. 使用不锈钢水样采样器采集各水厂取水处表层水样(距水面 0.5 m 深),装入 10 L 棕色玻璃瓶,用浓度为 4 mol·L⁻¹的盐酸(HCl)调节 pH = 2,每个位点采集 3 个样品. 采用彼德森底泥采样器采集各水厂水源地表层底泥样品,装入经氮气吹扫的密封袋中,放入装有冰块的恒温箱中运回实验室后,于 - 20℃冰箱内保存至分析,每个位点采集 3 个样品.

1.2.2 样品处理

水样样品:用氢氧化钠将水样 10 L 调至中性,用玻璃纤维滤纸(450℃灼烧)过滤. 滤膜用锡箔纸包好,放入 – 20℃的冰箱冷冻待分析. 滤后水样用Envi-18SPE 柱(美国 Supelclean 公司,6 mL,500 mg)富集,控制流速为 5 ~ 6 mL·min $^{-1}$. 将滤后 SPE 柱抽干 3 h 以上,用 15 mL 二氯甲烷分 3 次洗脱,在 K-D 浓缩器上浓缩至 1.0 mL,加入 10 mL 正己烷溶剂置换,转移至带刻度浓缩管中,在柔和高纯氮气下吹干浓缩至 0.5 mL,加入内标物六甲基苯 100 μ L(250 μ g·L $^{-1}$),待上机分析.

悬浮颗粒物样品:将上述处理水样附着悬浮颗 粒物的滤纸冷冻干燥,剪碎,用抽提干净的滤纸包

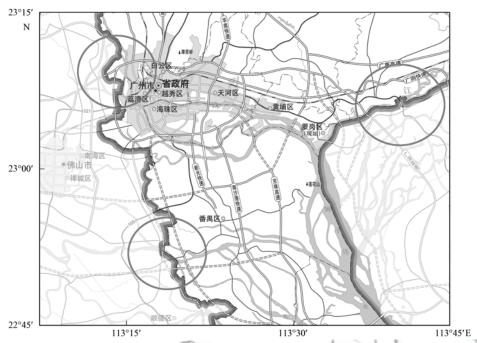


图1 广州3个水厂水源地采样点布设示意

Fig. 1 Locations of the three water plants in Guangzhou

好,加入回收率指示物萘-d8、苊-d10、**茄**-d12 和苝-d12,加入 0.5 g 高纯活性铜粉脱硫,其余操作步骤同底泥样品处理.

底泥样品:经真空冷冻干燥后,研磨过 60 目筛. 称取 10 g 样品,加入回收率指示物萘-d8、苊-d10、菌-d12 和花-d12,加入 2 g 高纯活性铜粉脱硫,用 200 mL 二氯甲烷素氏提取 48 h. 经无水硫酸钠干燥后在 K-D 浓缩器上浓缩至 1.0 mL,加入 10 mL 农残级正己烷进行溶剂置换,70℃浓缩至 1.0 mL.浓缩液过硅胶/氧化铝柱(2:1)(先用农残级正己烷15 mL 不间断冲洗 3 次)净化,用 20 mL 农残级正己烷/二氯甲烷(体积分数 7:3)淋洗,再用 50 mL 农残级正己烷/二氯甲烷(体积分数 3:7)淋洗,合并淋洗液并在 K-D 浓缩器上浓缩至 1.0 mL. 用 10 mL 正己烷分 3 次洗涤,转移至带刻度浓缩管中,在柔和高纯氮气下吹干浓缩至 0.5 mL,加入内标物六甲基苯 100 μL(250 μg·L⁻¹),待上机分析.

1.2.3 样品分析

样品 PAHs 的测定使用气相色谱-三重串联四级杆质谱仪以分段选择离子模式进行测定,色谱柱为 Agilent DB-5MS(30 m × 0.25 mm × 0.25 μm). 载气为高纯氦气,柱流量为 1.2 mL·min $^{-1}$,进样口温度为 280 $^{\circ}$ C,不分流进样,进样量为 1.0 μL. 色谱升温程序:初始柱温 70° C,保持 2 min,第 1 阶段 25 $^{\circ}$ C·min $^{-1}$ 程序升温至 235° C,第 3 阶段 20 $^{\circ}$ C·min $^{-1}$ 程序升温至 235° C,第 3 阶段 20 $^{\circ}$ C·min $^{-1}$ 程序升温至 280° C 并保留 13 min,质谱离子源为

EI, 离子源温度为230℃, 连接线温度为280℃.

水样样品总有机碳用 TOC-L 分析仪测定, 底泥样品总有机碳用重铬酸钾氧化-还原容量法测定.

1.2.4 质量控制

为保证实验结果的可靠性,实验中采取全程空 白、平行样、回收率指示物及内标物对分析过程进 行质量控制,并采用标准添加法以降低基质效应的 影响. 每个抽提样品用回收率指示物控制整个操作 流程的回收率. 水样萃取过程中回收率指示物萘- $46.86\% \pm 1.41\% \ 80.34\% \pm 4.02\% \ 79.88\% \pm$ 2.10% 和 76.90% ± 2.41%. 底泥样品抽提过程中 回收率指示物萘-d8、苊-d10、**扁**-d12 和菲-d12 的回 收率分别为:66.02% ±3.92%、94.67% ±4.23%、 94.10% ±9.56%和97.68% ±9.16%.对基质加标 样(n=6)进行测定,根据 U. S. EPA 方法检测限测 定公式计算出本实验流程对各种目标化合物的检测 限和回收率,判断本实验方法对实际样品中目标化 合物检测数据的可信度. 水样和底泥样 PAHs 检出 限分别为 0.005 ~ 8.6 ng·L⁻¹ 和 0.03 ~ 0.86 ng·g-1. 本方法目标化合物回收率为 52.5% ~ 138.5%, 符合 EPA 规定的标准.

1.3 多环芳烃健康风险暴露损害评价和方法

1.3.1 多环芳烃暴露模型

饮用水源地 PAHs 通过经口途径直接摄入和经皮肤接触 2 种暴露途径进入人体. 参考 US EPA 健康风险评价方法^[10~12]、中国人群暴露参数手册^[13]

(2)

以及国内外相关研究成果 $^{[14]}$, 经各种途径摄入的 PAHs 暴露量按公式(1) ~(2)计算 $^{[10]}$.

经饮用水途径直接摄入日均暴露量:

$$ADI_{ingest} = \frac{c_{w} \times IR \times EF \times ED}{BW \times AT}$$
 (1)

经皮肤接触水体途径摄入日均暴露量:

$$\mathrm{ADI}_{\mathrm{dermal}} \; = \; \frac{c_{\scriptscriptstyle \mathrm{w}} \, \times \, K_{\scriptscriptstyle \mathrm{p}} \, \times \, \mathrm{SA} \, \times \, \mathrm{ET} \, \times \, \mathrm{EF} \, \times \, \mathrm{ED} \, \times \, \mathrm{CF}}{\mathrm{BW} \, \times \, \mathrm{AT}}$$

式中, ADI_{ingest} 、 ADI_{dermal} 分别为饮用水和皮肤接触水体途径的日均暴露量, $\mu g \cdot (kg \cdot d)^{-1}$; c_w 为水中PAHs 的质量浓度, $\mu g \cdot L^{-1}$;IR 为成人饮用水每日摄入量, $L \cdot d^{-1}$; K_P 为与水接触时 PAHs 在皮肤中的渗透系数(表 2);SA 为与水接触的皮肤表面积, cm^2 ;ET 为暴露时间, $min \cdot d^{-1}$;CF 为单位转换因子, $L \cdot cm^{-3}$;ED 为暴露期限,a;EF 为暴露频率, $d \cdot a^{-1}$;BW 为成人人体体重,kg;AT 为平均暴露时间,d. 相关参数见表 1.

表 1 PAHs 日均暴露量计算参数取值

Table 1 Parameters of the daily average exposure

of PAHs used in calculations 取值 文献 项目 由式(4)计算 ADI/μg·(kg·d) -经饮用水途径 IR/L·d⁻¹ 1.9(成人) [13] ADI/μg•(kg•d) 由式(5)计算 [10] 表(2) [15, 16]经皮肤接触 16000(成人) 水体途径 ET/min·d-10 CF/L·cm⁻³ 1×10^{-3} [13] ED/a 76.49(广东) [13] $EF/d \cdot a^{-1}$ 365 [13] 暴露行为参数 BW/kg [13] 62. 76.49 ×365 AT∕d [13]

1.3.2 多环芳烃健康风险评价方法

本研究中 16 种 PAHs 都被认为是致癌风险高的有机污染物质或可疑致癌物质[17]. 采用美国 EPA 推荐的健康风险评价方法[10]评估 PAHs 的健康风险, PAHs 致癌和非致癌效应按式(3)~(8)计算评估.

单污染致癌风险和非致癌指数:

$$Risk_{i} = \sum_{j=1}^{3} ADI_{ij} \times SF_{ij}$$

$$(Risk_{i} \leq 0.01)$$
(3)

$$\begin{aligned} \operatorname{Risk}_{i} &= \sum_{j=1}^{3} \left[1 - \exp(-\operatorname{ADI}_{ij} \times \operatorname{SF}_{ij}) \right] \\ &\qquad \left(\operatorname{Risk}_{i} > 0.01 \right) \end{aligned} \tag{4}$$

$$HQ_i = \sum_{j=1}^{3} \frac{ADI_{ij}}{RfD_{ij}}$$
 (5)

总致癌风险和总非致癌指数:

$$Risk_{T} = \sum_{i=1}^{16} Tisk_{i}$$
 (6)

$$HI = \sum_{i=1}^{16} HQ_i \tag{7}$$

综合健康风险:

$$R_{\rm T} = {\rm Risk}_{\rm T} + {\rm HI}$$
 (8)

式中, Risk, 为 PAHs, 的单项致癌风险指数; Risk, 为16种PAHs通过2种暴露途径所致的总致癌风 险指数; ADI_{ii} 为 PAHs i 在第 j 种暴露途径的日均暴 露量, μg·(kg·d)⁻¹; SF_{ii}为 PAHs i 在第 j 种暴露途 径的致癌物斜率因子, kg·d·mg⁻¹; RfD;; 为 PAHs i 在第j种暴露途径的非致癌参考剂量, kg·d·mg⁻¹; HO 为 PAHs i 的单项非致癌风险指数: HI 为 16 种 PAHs 通过 2 种暴露途径所致的总非致癌风险指数; $R_{\rm T}$ 为 16 种 PAHs 通过 2 种暴露途径所致的综合健 康风险. Risk, 或 Risk, 在 1×10⁻⁴ 为最大可接受风 险水平, 其≤10⁻⁶为可忽略致癌风险水平[18]; HQ; 或 HI 大于1 为存在非致癌风险, 其小于1 为非致 癌风险,风险较小或者可以忽略. 据 US EPA 综合 危险信息系统(IRIS)中信息[15]、风险评价信息系 统(RAIS)数据^[19]和相关资料^[16, 20-22],各参数见 表 2.

2 结果与分析

2.1 广州水厂水源地 PAHs 含量分布

广州水厂水源地 2013~2014 年度水相、水体 悬浮颗粒物以及底泥中 16 种 PAHs 的含量见表 3, 据我国地表水环境质量标准^[23] (BaP ≤ 2.8 ng·L⁻¹)、生活饮用水卫生标准^[24](∑PAHs ≤ 0.002 mg·L⁻¹)、美国环保署颁布的国家水质标 准^[25]和加拿大环境质量准则^[26]中规定的 PAHs 质 量浓度限值,广州3个水厂水源地水体中 PAHs 质 量浓度均未超过相应的水质标准限值. 广州 3 个水 厂水源地水相、颗粒物和底泥的 \(\sum_{PAHs} 含量范 围分别为 86.15~177.35 ng·L⁻¹、821.92~60737 ng·g⁻¹和144.55~1681.0 ng·g⁻¹, 其中2013年度 XT 水厂水源地 ∑ PAHs 含量在这 3 种介质中皆较 高. 总体而言, 水体(包括水相和颗粒物)和底泥中 ∑ PAHs 含量 2014 年度较 2013 年度有所降低,可 能是由于水源地 2014 年的降雨量远高于 2013 年和 2012年,对水体污染物有稀释作用.同时,据表4 所示, 2014年度广州3个水厂水源地水体和底泥中 TOC 质量浓度均低于 2013 年度, 且已有研究表明,

表 2 PAHs 暴露质量浓度计算及风险估算参数取值¹⁾

Table 2	Parameters for	the calculation	of exposure	concentrations and	risk	estimation for	or PAHs
---------	----------------	-----------------	-------------	--------------------	------	----------------	---------

			水中化合物的	致癌斜率因	子 SF ^[15, 19]	非致癌参考剂量]		
PAHs		CAS 编号	皮肤渗透系数	∕kg•d	• mg ⁻¹	/mg•(kg	·d) -1	毒性等效因子	D-	
TAIIS		CAD 3m 3	K _p [15, 16]	经口摄人	皮肤接触	经口摄人	皮肤接触	$(\text{TEF}_{\text{BaP}})^{[20]}$	(无量纲)[22]	
			/cm•h -1	SF_o	SF_d	SF_o	RfD_d			
萘	NAP	91-20-3	0.069	0.0073	0.0073	0. 02	0.016	0. 001	1	
苊烯	ANY	208-96-8	0. 138	0.0073	0.0073	0.06	0.0186	0.001	_	
苊	ANA	83-32-9	0. 155	0.0073	0.0073	0.06	0.06	0.001	1	
芴	FLU	86-73-7	0. 214	0.0073	0.0073	0. 04	0.02	0.001	1	
菲	PHE	85-01-8	0.300	0.0073	0.0073	0. 03	0.03	0.001	_	
蒽	ANT	120-12-7	0. 300	0.073	0.073	0.3	0. 228	0.01	1	
荧蒽	FLT	206-44-0	0. 360	0.0073	0.0073	0. 04	0.04	0.001	1	
芘	PYR	129-00-0	0.510	0.0073	0.0073	0.03	0.0093	0.001	1	
苯并(a)蒽	BaA	56-55-3	0.810	0.73	0.73	0.03	0.03 *	0. 1	1	
	CHR	218-01-9	0.810	0.073	0.073	0.03	0.03 *	0.01	1	
苯并(b)荧蒽	BbF	205-99-2	1. 200	0.73	0.73	0. 03	0.03 *	0. 1	1	
苯并(k)荧蒽	BkF	207-08-9	1. 180	0.73	0.73	0. 03	0.03 *	0. 1	1	
苯并(a)芘	BaP	50-32-8	1. 200	7. 3	7.3	0.03	0.03 *	1	1	
茚并(1,2,3-cd)芘	IPY	193-39-5	1.900	0.73	0.73	0. 03	0.03 *	0.1	mi p	
二苯并(a, h)蒽	DBA	53-70-03	2.700	7. 3	7.3	0. 03	0. 03 *	1	1/16	
苯并(g, h, i) 菲	BPE	191-24-2	2.068	0.073	0.073	0. 03	0.03*	0. 01	/-	
1)RfD _d 按照文献[22]中(HJ 25. 3-2014)公式:RfD _d = RfD _o ×ABS _{gi} 计算得出										
	表 3 水体和底泥中 PAHs 含量的统计 ¹⁾									
	/	1	Table 3 Stat	istics for the I	PAH content of	f water and sedimer	II Q U	1	121	

		/ 1			Table	3 St	atistics	for the	PAH o	content	of wate	er and	sedimer	nt 🐧	V			4	0.1
项目	参数	年份	NAP	ANY	ANA	FLU	PHE	ANT	FLT	PYR	BaA	CHR	BbF	BkF	BaP	IPY	DBA	BPE	$\sum PAHs$
61	水相	2013	57. 10	2.06	8.60	17.70	37. 45	4. 29	5. 24	3.45	0.12	0.47	0.56	1.07	0.37	0.00	0.00	0.16	138. 62
7	$/\text{ng} \cdot \text{L}^{-1}$	2014	35. 80	1.45	3.77	6. 79	15.30	1.96	1. 76	6.89	0.33	0.72	0.65	8.60	1. 53	0.08	0.09	0.43	86. 15
JC	颗粒物	2013	1 378	4.00	0.00	8.00	28 781	820	425	528	434	41	2 993	2 910	0.00	0.00	0.00	0.00	38 321
水源地	$/\text{ng}\cdot\text{g}^{-1}$	2014	6 9 1 5	0.00	0.00	311	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	942	2 801	831	4 750	16 549
R	底泥	2013	156	21.60	14. 90	49.80	240.00	15.00	86	110	2. 94	7.83	1.31	15.90	2.63	0.92	0. 14	0.07	725.04
1	/ng·g ⁻¹	2014	142	15.90	9.90	42.50	126.00	16. 40	40.4	154	4. 99	9.50	2.06	6. 26	5. 19	2. 10	2. 25	2. 33	581.78
(*)	水相	2013	49. 75	3. 32	10. 37	18. 95	36. 20	4. 51	6. 03	4. 13	0. 19	0.78	0.51	0.92	0. 12	0.00	0.00	0.00	135. 76
1	/ng·L ⁻¹	2014	49. 91	3. 52	2. 25	5.99	58.94	2.70	15. 65	17. 12	0.82	1.01	0.21	18. 15	1.89	0.10	0.00	0.00	178. 26
SW	颗粒物	2013	3 209	0.00	0.00	0.00	15 422	44.0	51.00	1 888	0.00	0.00	7 854	6 645	0.00	0.00	0.00	0.00	35 112
水源地	$/ng \cdot g^{-1}$	2014	497	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	219	10.00	96.00	0.00	821.92
	底泥	2013	24.00	2. 18	2.69	7. 33	64.40	5.49	51.30	60.90	10.60	15. 30	9.78	27. 80	36. 10	8. 22	0.00	5. 38	331.47
	/ng·g -1	2014	37. 80	3. 03	3.30	12. 90	40.80	8. 89	18. 70	16. 70	7. 31	9. 37	4.61	7.00	12. 20	6. 52	2.68	6. 85	198. 66
	水相	2013	74. 30	3.49	12.65	24. 35	40.80	4. 51	6. 82	6. 24	0. 25	0.77	1.05	1.66	0.18	0.00	0.00	0. 31	177. 35
	/ng·L -1	2014	68. 55	4. 02	1.38	4. 22	32. 53	2.66	9.08	11.58	0.70	0.72	0.35	11. 18	1.43	0.10	0.00	0.00	148. 50
XT	颗粒物	2013	3 367	0.00	0.00	0.00	47 664	608	264	364	294	0.00	5 027	3 149	0.00	0.00	0.00	0.00	60 737
水源地	$/\text{ng}\cdot\text{g}^{-1}$	2014	4 674	0.00	358	184	0.00	0.00	0.00	0.00	0.00	0.00	18 285	11 721	0.00	0.00	0.00	0.00	35 221
	底泥	2013	20. 10	1.68	5. 36	10.50	192	11.90	283	392	98. 70	103	102.00	96.90	256	45. 10	9.02	53.70	1 681
	/ng·g -1	2014	26. 40	2. 26	1.85	7. 27	21.80	4. 82	10. 90	11.80	5. 23	6.34	2.92	23.90	6.97	4. 80	2.41	4. 88	144. 55
加拿大 环境质 量准则	水体 /ng·g ⁻¹		1 100		5 800	3 000	400	12	40	25	3.8*	3.8*	3.8*	3.8*	3.8*	3.8*	3.8*	3.8*	

¹⁾颗粒物含量按原富集水体积换算(原富集水体积为 10 L); 底泥 PAHs 污染等级^[30, 31], 0 ~ 100 ng⋅g ⁻¹(低) 、100 ~ 1 000 ng⋅g ⁻¹(中) 、1 000 ~5 000 ng·g⁻¹(高)和 >5 000 ng·g⁻¹(超高);*为美国水质标准限值

底泥的 PAHs 与有机质的质量分数有关, 存在吸附 作用^[8],这些因素可能是水体和底泥中 ∑PAHs 的 2014 年度较 2013 年度有所降低的原因.

与国内其他区域的饮用水源地相比[6,27~29],广 州 3 个水厂水源地 2013 和 2014 年度水相 \sum PAHs 质量浓度介于松花江水源地(100 ng·L⁻¹)和南京饮 用水(234.96 ng·L⁻¹)之间. 2013 年度 3 个水厂水 源地的水体悬浮颗粒物中 \(\sum_{PAHs} 均高于太湖流 域水源地(671.9 ng·g-1)和松花江(26.40 ng·L-1). 2014 年度 3 个水厂水源地水体悬浮颗粒 物中 \sum PAHs 均高于太湖流域水源, XT 水厂水源 地水体悬浮颗粒物中 \(\sum_{PAHs} 高于松花江, 其他

表 4 2013~2014 两个年度各水厂水源地 TOC 质量浓度

Table 4 TOC content of water sources for each

water plant from 2013 to 2014

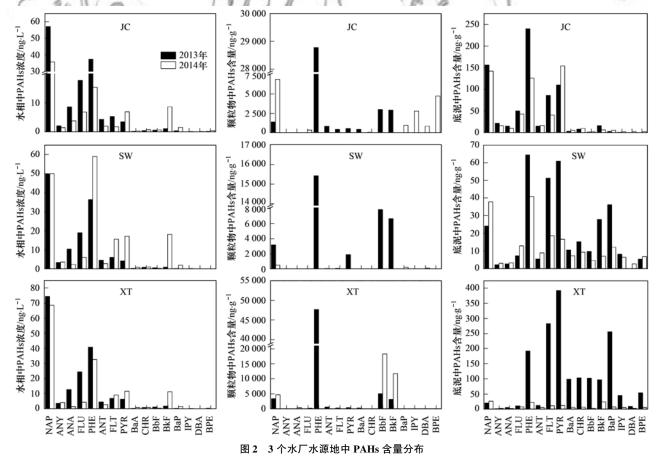
	1			
水厂	项目	2013	2014	平均值
JC	水体/mg·L ⁻¹	5. 1	3. 16	4. 13
	底泥/%	10. 3	9. 46	9. 88
SW	水体/mg·L ⁻¹	4. 08	2. 94	3. 51
	底泥/%	1. 2	1. 15	1. 17
XT	水体/mg·L ⁻¹	5. 66	3. 19	4. 42
	底泥/%	1. 45	0. 16	0. 80

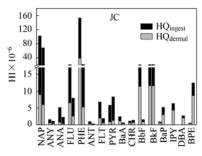
两个水厂水源地均低于松花江. 广州 3 个水厂水源地 2013 和 2014 年度底泥 \sum PAHs 含量普遍高于河北省滦河水源地(115.3 ng·g⁻¹)和松花江(178.0 ng·g⁻¹),但低于太湖流域水源地. 据评价底泥PAHs 污染程度等级划分值[^{30,31]},研究区底泥PAHs 污染程度属于低中水平.

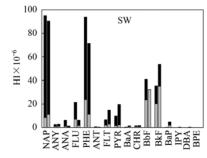
广州 3 个水厂水源地的水相、水体悬浮颗粒物和底泥中 PAHs 年均含量分布见图 2. 2013 和 2014年,3 个水厂水源地水相中 NAP 质量浓度明显较高,其次为 PHE,而 BaA、CHR、BbF、BaP、IPY、DBA 和 BPE 质量浓度较低;水体悬浮颗粒物中有较多 PAHs 物质未检出,而检出的 PAHs 含量都相对较高,3 个水厂水源地 PAHs 含量分布较相似,

PHE 含量较高,其次是 NAP、BbF 和 BkF,而 JC 水厂水源地的颗粒物除上述 4 种 PAHs 含量较高外,IPY 与 BPE 含量也较高;总体而言,水体中低环 PAHs(2~3 环)平均质量浓度明显高于高环 PAHs (4~6 环),JC、SW 和 XT 水厂水源地低环 PAHs 质量浓度分别为高环 PAHs 的 4.79、2.78 和 3.82 倍,这可能是 PAHs 的水溶性随着自身环数的增加而减少,因此水体中低环 PAHs 的质量浓度会明显高于高环 PAHs 含量分布差异较大,JC 水厂水源地中低环 PAHs 含量较高,而 SW 和 XT 水厂水源地中主要是高环 PAHs 含量较高,其中 SW 水源地 NAP 含量也较高.

底泥中低环 PAHs 与高环 PAHs 比值较水体中低. 分析可能原因, 高环 PAHs 正辛醇-水分配系数 (K_{ow}) 较大, 在水中的溶解度较小, 促使高环 PAHs 从水相中分配到生物体内或底泥中^[34], 同时微生物只能利用吸收底泥液相中的有机物, 而难以利用固相中的有机物^[35], 这造成四环或四环以上的 PAHs 难于被生物降解而在底泥中累积. 颗粒物中 16 种PAHs 在 2013 年和 2014 年大部分未检出,可能是PAHs 与水体颗粒物结合加快其光降解速度^[36]. 颗粒物和水相样品中低环 PAHs 组分分布状况较为一



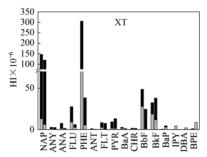

Fig. 2 Distribution of PAHs in the water sources of the three water plants

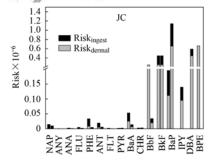

致,以PHE 和 NAP 含量最高. 颗粒物中高环 PAHs 以 BbF 和 BkF 含量较高,这可能是 BbF 和 BkF 较其 他高环 PAHs 更不易受光降解的影响^[37].

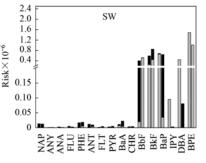
2.2 广州水厂水源地 PAHs 人体健康风险评价

广州水厂水源地中各 PAHs 经不同途径的单项 非致癌指数见图 3. 从中可知,在 3 个水厂水源地

水体中,16 种 PAHs 经由直接摄入饮用水途径和经皮肤接触水体途径暴露的非致癌风险指数 HQ 和HI 均小于1,广州水厂水源地中 PAHs 的非致癌风险可以忽略.广州水厂水源地中 PAHs 的 HI 指数主要由 HQ_{ingest}贡献.3个水厂水源地多环芳烃 PHE和 NAP的 HI 值较高.




图 3 个水厂水源地中 PAHs 非致癌风险指数


Fig. 3 Non-carcinogenic risk index of PAHs in the water sources of the three water plants

广州水厂水源地中 16 种 PAHs 经不同途径的单项致癌指数见图 4. 水源地中各 PAHs (除 BPE 外)经直接摄入饮用水途径和经皮肤接触水体途径暴露的致癌风险(Risk_{ingest}和 Risk_{dernal}) < 10⁻⁶, 水源地中 PAHs 经此 2 种途径暴露的致癌风险可以忽略,且 BPE 经此 2 种途径暴露的致癌风险远低于最大可接受水平. 水源地中多环芳烃致癌风险主要是 BbF、BkF、BaP 和 DBA 经饮用水途径暴露和 BPE 经皮肤接触水体途径暴露所致.

广州3个水厂水源地中 PAHs 经不同途径的总

非致癌指数、总致癌风险指数及综合健康风险指数 见表 5. 从中可知, 16 种 PAHs 经 2 种途径的 HI < 1,表明 3 个水厂水源地中 PAHs 非致癌风险可忽略,水源地中 PAHs 不会对广州居民产生非致癌健康危害. 16 种 PAHs 经 2 种途径的致癌风险(Risk_{ingest}、Risk_{dermal}和 Risk_T)介于 5.53 × 10⁻⁷和 5.34 × 10⁻⁶之间,表明 3 个水厂水源地 PAHs 不会对居民产生致癌危害,而总致癌风险 Risk_T 2014 年大于 2013 年,水源地 PAHs 致癌风险应予以关注. 3 个水厂水源地 PAHs 总非 致癌指数 HI 是 2014

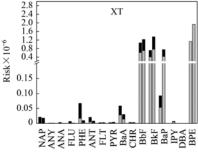


图 4 3 个水厂水源地中 PAHs 致癌风险指数

Fig. 4 Carcinogenic risk index of PAHs in the water sources of the three water plants

表 5 3 个水厂水源地中 PAHs 总非致癌危害指数、总致癌风险及综合健康风险指数

Table 5 Total non-carcinogenic hazard index, total cancer risk, and comprehensive health

项目	JC 水厂	水源地	SW 水厂	^一 水源地	XT 水厂水源地			
	2013 年	2014 年	2013 年	2014 年	2013 年	2014 年		
$\mathrm{HI}_{\mathrm{ingest}}$	2. 56 × 10 ⁻⁴	1. 13 × 10 ⁻⁴	2. 25 × 10 ⁻⁴	2. 01 × 10 ⁻⁴	4.41×10^{-4}	2. 26 × 10 ⁻⁴		
$\mathrm{HI}_{\mathrm{dermal}}$	8.42×10^{-5}	4. 81×10^{-5}	8.92×10^{-5}	7. 12×10^{-5}	1. 55×10^{-4}	1. 01 \times 10 $^{-4}$		
HI	3.41×10^{-4}	1. 62×10^{-4}	3. 15 \times 10 $^{-4}$	7. 12×10^{-5}	5.96×10^{-4}	3. 27 \times 10 $^{-4}$		
$\operatorname{Risk}_{\operatorname{ingest}}$	5.53×10^{-7}	9. 24×10^{-7}	7.96×10^{-7}	1. 16×10^{-6}	9.32×10^{-7}	1.48×10^{-6}		
$\operatorname{Risk}_{\operatorname{dermal}}$	1.32×10^{-6}	2.97×10^{-6}	2.02×10^{-6}	3.29×10^{-6}	2.26×10^{-6}	3. 86×10^{-6}		
Risk_T	1. 87 \times 10 $^{-6}$	3. 89×10^{-6}	2.81×10^{-6}	4.45×10^{-6}	3. 19×10^{-6}	5. 34×10^{-6}		
R_T	3.42×10^{-4}	1. 66×10^{-4}	3. 17 \times 10 ⁻⁴	2. 77×10^{-4}	5.99×10^{-4}	3.32×10^{-4}		

年的小于 2013 年, 综合健康风险指数 R_T 是 2014 年的小于 2013 年, 表明广州 3 个水厂水源地水质变好.

不同采样期采集水样中的污染物浓度存在一定 的差异, 丰水期水样中污染物浓度往往偏低, 枯水 期水样中污染物浓度往往偏高, 当水体中污染物浓 度较大时,不同采样期对风险评价结果影响较大, 当水体中污染物浓度较低时,这种影响较小,因此 将采样时间设为交叉期,不仅对评价结果影响不 大,且减少了采样次数.不同年份由于管控方法和 措施的不同会出现污染物排放总量和种类的差别, 从而导致不同年份的风险评价结果存在差异. 然 而,不同年份的比较能反映污染物污染程度和人体 健康风险的变化趋势. 分析两个年份广州市 3 个水 厂水源地 PAHs 人体健康风险变化趋势发现管控效 果较明显, 广州 3 个水厂水源地水质变好. 不同的 健康风险评价模型的评价结果会有一定差异, RAGS 模型作为应用最为广泛的人体健康风险评价 模型之一,应用于地表水 PAHs 健康风险评价存在 许多优点,评价结果更具代表性.

3 讨论

3.1 广州水厂水源地 PAHs 的来源 同分异构体比值法常用于判断 PAHs 来源,本文

选用 Fla/(Fla + PYR)、ANT/(ANT + PHE)、IPY/ (IPY + BPE)和 BaA/(BaA + CHR)分析 PAHs 的来 源. 其中 Fla/(Fla + PYR) < 0.4、ANT/(ANT + PHE) <0.1、IPY/(IPY + BPE) < 0.2 和 BaA/(BaA + CHR) < 0.2 时, 主要来源为石油源; 0.4 < Fla/(Fla +PYR) < 0.5、0.2 < IPY/(IPY + BPE) < 0.5 和 0.2 <BaA/(BaA+CHR)<0.35 时,主要来源为石油燃 烧; Fla/(Fla + PYR) > 0.5、IPY/(IPY + BPE) > 0.5 和 BaA/(BaA + CHR) > 0.35 时, 主要来源为草、木、 煤等生物质燃烧源; 另外 ANT/(ANT + PHE) > 0.1 时, 代表燃烧源[38~40]. 根据图 5(a) 及 5(b) 4 组同分 异构体比值结果, 表明 JC 水厂水源地水体中 PAHs 主要来源于石油泄漏和石油、木材、煤以及生物质的 不完全燃烧, 石油泄漏和石油燃烧是 SW 和 XT 水厂 水源地水体中 PAHs 输入的主要源头. 据图 5(c) 及 5 (d)表明, 3 个水厂水源地 PAHs 来源类型与高低环 PAHs 残留浓度的指示结果[31]较一致, JC 水厂水源 地底泥中 PAHs 主要来源是石油泄漏和石油燃烧;石 油、木材、煤以及生物质的不完全燃烧是 SW 和 XT 水厂水源地 PAHs 输入的主要源头. 不同的环境介质 中 PAHs 来源有一定的差异,这可能与 PAHs 自身的 理化性质差异有关.

3.2 广州水厂水源地水体和底泥中 PAHs 的相关性如表 6 所示,根据正态性检验(Kolmogorov-

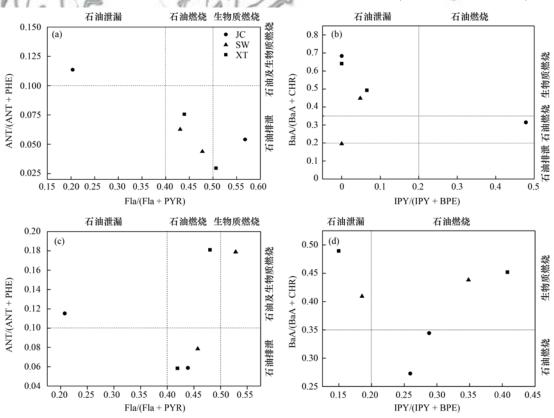


图 5 水体和底泥中 PAHs 同分异构体比值

Fig. 5 Diagnostic ratios of PAHs in the water and sediment samples

	Table 6 Correlation coefficient matrix of TOC and PAHs in the water and sediment samples from the three water plants in 2013-2014	samples from the three water plants in 2013-2014
	TOC NAP ANY ANA FLU PHE ANT FLT PYR BAA CHR BBF BKF BAP IPY ^b DBA ^b BPE ^b \sum Pahs TOC ^b nap ^b any ^b ana Flu ^b PHE a	ANA FLU ^b
J0C	1 0.62 -0.05 0.90* 0.93** 0.90* 0.98** -0.23 -0.64 0.69 -0.48 0.41 -0.43 -0.84* -0.88* -0.78 0.27 0.85* 0.43 -0.37 0.39 -0.03 0.82*	0.39 -0.03
NAP	1 0.63 0.46 0.49 0.74 0.61 0.20 -0.08 0.65 -0.16 0.83* 0.40 -0.56 -0.70 -0.85*-0.09 0.87*-0.14 -0.54 -0.54 -0.28 -0.43 0.20	-0.28 -0.43
ANY	$1 -0.022 -0.002 0.208 0.045 0.69 0.69 0.69 0.13 0.48 0.64 0.87^* -0.10 -0.30 -0.34 -0.70 0.42 -0.89^* -0.49 -0.49 -0.84^* -0.71 -0.57 $	-0.84* -0.71
ANA	$1 \qquad 0.995^{**} 0.807 0.885^{*} -0.31 -0.61 0.35 -0.31 0.40 -0.46 -0.88^{*} -0.70 -0.37 -0.24 0.76 0.54 -0.45 -0.43 0.19 0.14 0.63 -0.43 0.14 $	0.19 0.14
FLU	1 0.846* 0.925*** -0.24 -0.59 0.43 -0.31 0.39 -0.45 -0.87* -0.70 -0.68 0.40 0.79 0.54 -0.43 0.22 0.14 0.66	0.22 0.14
PHE	$1 \qquad 0.885^* \qquad 0.08 -0.29 0.78 -0.10 0.39 -0.23 -0.63 -0.88^* -0.68 0.03 0.97^{**} \qquad 0.31 -0.37 -0.37 0.12 0.09 0.63 0.63 0.97^{**} \qquad 0.31 -0.37 0.12 0.09 0.63 0.98 $	0.12 0.09
ANT	$1 \qquad -0.09 -0.54 0.70 -0.40 0.40 -0.36 -0.84^* -0.88^* -0.68 0.03 0.85^* 0.31 -0.37 0.35 0.09 0.76 0.3$	0.35 0.09
FLT	$1 \qquad 0.87^* 0.30 \qquad 0.74 -0.05 \qquad 0.58 0.36 0.03 -0.17 -0.58 0.17 -0.66 -0.20 -0.20 -0.49 -0.31 -0.43 -0.43 -0.43 -0.43 -0.44$	-0.49 -0.31
PYR	$1 -0.11 0.88^* - 0.19 0.67 0.69 0.27 0.07 -0.76 -0.20 -0.94^{***} -0.43 -0.43 -0.67 -0.66 -0.75 $	-0.67 -0.66
BaA	1 -0.18 0.17 -0.10 -0.28 -0.33 -0.27 0.27 0.27 0.26 -0.03 -0.03 -0.03 0.31 0.64	0.35 0.31
CHR	1 -0.29 0.38 0.57 0.09 0.19 -0.46 -0.07 -0.55 -0.55 -0.55 -0.66 -0.38 -0.62	-0.66 -0.38
BbF	$1 \qquad 0.53 -0.67 -0.51 -0.78 -0.15 0.58 -0.31 -0.60 -0.60 -0.45 -0.71 -0.09$	-0.71
BkF	1 0.21 0.03 -0.34 -0.88* 0.00 -0.94*** -0.43 -0.43 -0.81 -0.77 -0.78	-0.77
BaP	1 0.88" 0.78 0.03 -0.66 -0.20 0.54 -0.15 0.31 -0.51	0.31
IPY	1 0,90" 0.16 -0.62 -0.21 0.40 0.40 0.31 0.15 0.01	0.31 0.15
DBA	1 0.36 -0.66 0.10 0.44 0.18 0.44 -0.15	0.18 0.44
BPE	1 -0.52 0.76 0.21 0.21 0.38 0.38 0.14	0.38 0.58
\sum PA	PAHs 1 0.26 -0.43 -0.43 -0.43 -0.07 -0.09 0.47 -0.0	-0.09
T0C	1 0.49 0.95** 0.83* 0.67	0.95** 0.83*
NAP	1 1.00** 0.59** 0.77 0.59	0.77
ANY	1 0.95** 0.77 0.67	0.77
ANA	1 0.94** 0.83*	
FLU	90 1	$1 \qquad 0.67 0.87^* -0.10 0.05 -0.60 -0.03 -0.60 -0.60 -0.60 -0.49 -0.09 -0.49 0.09$
PHE	Told of	1 0.77 0.66 0.66 -0.20 0.37 -0.20 0.09 -0.20 -0.60 -0.14 -0.26 0.74
ANT		1 0.29 0.47 -0.45 0.26 -0.43 -0.49 -0.43 0.20 -0.14 -0.37 0.48
FLT		$1 0.95^{**} 0.26 0.66 0.26 0.49 0.26 -0.43 -0.03 0.14 0.98^{**}$
PYR	THE STATE OF THE S	1 0.14 0.71 0.14 0.14 0.14 0.14 0.14 0.00 0.98**
BaA	Bah	ŧ
CHR		$1 0.71 0.43 0.71 0.71 0.71 0.14 0.60 0.92^*$
BbF	BbF	$1 0.71 1.00^{**} 1.00^{**} 0.43 0.94^{**} 0.91^{*}$
BkF	BkF	$1 0.71 0.71 0.14 0.54 0.86^{\circ}$
BaP	Bap	1 1.00** 0.43 0.94** 0.90*
IPY		1 0.43 0.94** 0.86*
DBA	DBA S S S S S S S S S S S S S S S S S S S	1 0.66 0.79
BPE	348	1 0.87*
W N	∑ PAHs	
		A Property of the Property of

1)*表示 P < 0.05, **表示 P < 0.01; 水体包括水相和颗粒物; b 表示 Spearman 相关性分析(其他为 Pearson 相关性分析)

Smirnov)方法对各参数进行检验,大部分参数(P> 0.05) 服从正态分布, 采用 Pearson (正态分布)或 Spearman(非正态分布)相关分析法分别对水体和底 泥 TOC 与 PAHs 间的相关性进行分析. 2013~2014 年各水厂水源地水体中 TOC 与 PAHs 的相关系数矩 阵见表 6. 据表中 ∑ PAHs 的数据, 广州 3 个水厂 水源地水体中, 〉PAHs 与 2~3 环 PAHs 存在显著 正相关, 这表明广州 3 个水厂水源地水体低环 PAHs 是 PAHs 的主要污染物质,与目前研究结果 一致,我国受到 PAHs 污染水体中多数以低环 PAHs 污染为主^[7, 41~43]. 水体 \sum PAHs 与 4 环 PAHs 不存 在显著相关性: 与 5~6 环 PAHs(BbF、BaP、IPY、 DBA和BPF)呈中等以上程度相关,以负相关为主, 这可能是高环 PAHs 正辛醇-水分配系数(Kow)较 大, 在水中的溶解度较小, 主要从水中分配到生物 体内或底泥中. TOC 与低环 PAHs (ANA、FLU、 PHE 和 ANT)及 ∑ PAHs 之间存在显著正相关, 这 表明 TOC 影响着 PAHs 在水体中的分布.

2013~2014 年各水厂水源地底泥中 TOC 与 PAHs 的相关系数矩阵见表 6. TOC 与低环芳烃(2, 3 环芳烃: NAP、ANY、ANA、FLU、PHE 和 ANT) 互 相之间呈正相关, 且大部分呈中等程度正相关, 结 果表明底泥中低环 PAHs 含量与底泥中总有机碳 (TOC)的质量分数密切相关,可能是底泥中起吸附 作用的颗粒物主要为黏土矿物和有机质,黏土矿物 与疏水性有机物 PAHs 的吸附能力很弱, 因此在吸 附过程中起主导作用的一般为有机质, 底泥中有机 质的质量分数对其吸附能力有重大影响[44~47],而 各水厂水源地底泥中 TOC 的质量分数及有机质类 型更有利于低环 PAHs 聚集. 高环芳烃(4,5,6 环 芳烃:FLT、PYP、BaA、CHR、BbF、BkF、BaP、IPY、 DBA 和 BPE)与 \(\sum_{PAHs} 互相之间呈显著正相关, 说明3个水厂水源地底泥中的主要污染物为高环 PAHs, 进一步说明底泥中 PAHs 主要源于燃烧过 程. 低环 PAHs 与低环 PAHs 之间相关性强, 高环 PAHs 与高环 PAHs 之间相关性强,这可能是相近 分子量物质之间积聚的结果.

水体中 \sum PAHs 和底泥中 \sum PAHs 呈显著正相关,这可能是由于水体和底泥 PAHs 互相间的迁移交换作用,水体 PAHs 经过复杂的过程沉积富集于底泥中,底泥中 PAHs 经过解吸、溶解、沉积物中的颗粒物在各种水力条件的作用和水生生物的扰动下的再悬浮等途径释放到水体;水体中 TOC 与底泥中 \sum PAHs 呈显著正相关,这可能是 PAHs 容

易吸附在 TOC 颗粒上, 随 TOC 颗粒物迁移(沉淀) 到底泥中.

4 结论

- (1)广州饮用水水源地水体中 PAHs 的质量浓度未超过相应的水质标准限值,水体悬浮颗粒物和底泥中 \sum PAHs 含量处于低中等水平,水体和底泥中 \sum PAHs 含量 2014 年度较 2013 年度有所降低.
- (2)广州水厂水源地水体中以低环 PAHs 为主. 3 个水厂水源地底泥中 PAHs 含量分布差异较大, JC 水厂水源地底泥中低环 PAHs 含量较高,而 SW 和 XT 水厂水源地底泥中高环 PAHs 含量较高.
- (3)3个水厂水源地 PAHs 经饮用水途径和皮肤接触途径暴露的非致癌健康风险可以忽略. 3个水厂水源地 PAHs 经饮用水途径和皮肤接触途径暴露的致癌风险均未超过最大可接受风险水平,不会对居民产生致癌危害.
- (4)3个水厂水源地 PAHs 均为混合型污染源输入,包括石油泄漏、石油燃烧和木材、煤以及生物质的不完全燃烧. 水体中 PAHs 与底泥中 PAHs 含量密切相关,PAHs 在两相间的分布存在平衡分配.

参考文献:

- [1] Wenzl T, Simon R, Anklam E, et al. Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European Union [J]. TrAC Trends in Analytical Chemistry, 2006, 25(7): 716-725.
- [2] Malik A, Singh K P, Mohan D, et al. Distribution of polycyclic aromatic hydrocarbons in Gomti River system, India[J]. Bulletin of Environmental Contamination and Toxicology, 2004, 72(6): 1211-1218.
- [3] Qiao M, Wang C X, Huang S B, et al. Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China [J]. Environment International, 2006, 32(1): 28-33.
- [4] 童克难. 我国年燃煤会释放五亿吨多环芳烃? [N]. 中国环境报, 2017-02-09(01).
- [5] Liu Y, Chen L, Zhao J F, et al. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of rivers and an estuary in Shanghai, China[J]. Environmental Pollution, 2008, 154(2): 298-305.
- [6] 于英鹏, 刘敏. 太湖流域水源地多环芳烃分布、溯源与生态风险评估[J]. 水资源保护, 2017, **33**(3): 82-89. Yu Y P, Liu M. Distribution, pollution sources, and ecological risk assessment of PAHs in water source area of Taihu Basin[J]. Water Resources Protection, 2017, **33**(3): 82-89.
- [7] Chen B L, Xuan X D, Zhu L Z, et al. Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China [J]. Water Research, 2004, 38 (16): 3558-3568.

- [8] Deng H M, Peng P A, Huang W L, et al. Distribution and loadings of polycyclic aromatic hydrocarbons in the Xijiang River in Guangdong, South China[J]. Chemosphere, 2006, 64(8): 1401-1411.
- [9] 罗孝俊, 陈社军, 麦碧娴, 等. 珠江三角洲地区水体表层沉积物中多环芳烃的来源、迁移及生态风险评价[J]. 生态毒理学报, 2006, 1(1): 17-24.

 Luo X J, Chen S J, Mai B X, et al. Source, transport and risk assessment of PAHs in surface sediments from Pearl River Delta
 [J]. Asian Journal of Ecotoxicology, 2006, 1(1): 17-24.
- [10] US EPA. Risk assessment guidance for superfund, Vol. I. Human health evaluation manual. Part A. (Interim final) [R]. Washington, DC: Office of Emergency and Remedial Response, 1989.
- [11] US EPA. Risk assessment guidance for superfund. Vol. I, Human health evaluation manual. Part B, Development of riskbased preliminary remediation goals [R]. Washington, DC: Office of Emergency and Remedial Response, 1991.
- [12] US EPA. Risk assessment guidance for superfund-Vol. I,
 Human health evaluation manual (Part E), Supplemental
 guidance for dermal risk assessment [R]. Washington, DC:
 Office of Emergency and Remedial Response, 2004.
- [13] 环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京: 中国环境科学出版社, 2013.
- [14] Wang Y B, Liu C W, Kao Y H, et al. Characterization and risk assessment of PAH-contaminated river sediment by using advanced multivariate methods [J]. Science of the Total Environment, 2015, 524-525: 63-73.
- [15] US EPA. Dermal exposure assessment: principles and applications [R]. Washington DC: Office of Health and Environmental Assessment, 1992. 5-39-5-46.
- [16] 李新荣, 赵同科, 张文新, 等. 区域环境中多环旁烃的皮肤接触暴露水平[J]. 环境化学, 2010, **29**(5): 899-903.

 Li X R, Zhao T K, Zhang W X, *et al.* Dermal contact exposure to polycyclic aromatic hydrocarbons in regional environment[J].

 Environmental Chemistry, 2010, **29**(5): 898-903.
- [17] Chen S C, Liao C M. Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources[J]. Science of the Total Environment, 2006, 366(1): 112-123.
- [18] US EPA. Guidelines for exposure assessment [R]. Washington DC: Environmental Protection Agency, 1986. 34042-34054.
- [19] U. S. Department of Energy, Office of Environmental Management. Risk assessment information system [EB/OL]. https://rais.ornl.gov/cgi-bin/tools/TOX_search, 2018.
- [20] Nisbet I C T, LaGoy P K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs) [J]. Regulatory Toxicology and Pharmacology, 1992, 16(3): 290-300.
- [21] 刘新, 王东红, 马梅, 等. 中国饮用水中多环芳烃的分布和健康风险评价[J]. 生态毒理学报, 2011, **6**(2): 207-214. Liu X, Wang D H, Ma M, *et al.* Distribution and health risk assessment of polycyclic aromatic hydrocarbons in drinking water of China[J]. Asian Journal of Ecotoxicology, 2011, **6**(2): 207-214.
- [22] HJ 25.3-2014, 污染场地风险评估技术导则[S]. HJ 25.3-2014, Guidelines for risk assessment of contaminated sites[S].
- [23] GB 5749-2006, 生活饮用水卫生标准[S]. GB 5749-2006, Standards for drinking water quality[S].
- [24] GB 3838-2002, 地表水环境质量标准[S].
 GB 3838-2002, Environmental quality standards for surface water

- [S].
- [25] US EPA. National recommended water quality criteria [R]. Washington, DC; US EPA Office of Water, Office of Science and Technology, 2009.
- [26] Canadian Council of Ministers of the Environment. Canadian water quality guidelines for the protection of aquatic life [EB/OL]. http://st-ts.ccme.ca/en/index.html, 2018.
- [27] Cao Z G, Liu J L, Luan Y, et al. Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbons in the Luan River, China[J]. Ecotoxicology, 2010, 19(5): 827-837.
- [28] Ma W L, Liu L Y, Qi H, et al. Polycyclic aromatic hydrocarbons in water, sediment and soil of the Songhua River Basin, China [J]. Environmental Monitoring and Assessment, 2013, 185(10): 8399-8409.
- [29] Wu B, Zhang Y, Zhang X X, et al. Health risk from exposure of organic pollutants through drinking water consumption in Nanjing, China [J]. Bulletin of Environmental Contamination and Toxicology, 2010, 84(1): 46-50.
- [30] Baumard P, Budzinski H, Garrigues P, et al. Concentrations of PAHs (polycyclic aromatic hydrocarbons) in various marine organisms in relation to those in sediments and to trophic level [J]. Marine Pollution Bulletin, 1998, 36(12): 951-960.
- [31] An N N, Liu S L, Yin Y J, et al. Spatial distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in the reservoir sediments after impoundment of Manwan Dam in the middle of Lancang River, China [J]. Ecotoxicology, 2016, 25 (6): 1072-1081.
- [32] 王成龙, 邹欣庆, 赵一飞, 等. 基于 PMF 模型的长江流域水体中多环芳烃来源解析及生态风险评价 [J]. 环境科学, 2016, 37(10): 3789-3797.
 Wang C L, Zou X Q, Zhao Y F, et al. Source apportionment and ecological risk assessment of polycyclic aromatic hydrocarbons in surface water from Yangtze River, China: based on PMF model [J]. Environmental Science, 2016, 37(10): 3789-3797.
- [33] 宋宁宁, 冯嘉申, 于洋, 等. 大庆市不同环境介质中多环芳 烃污染特征对比及来源解析[J]. 环境科学, 2017, **38**(12): 5272-5281.

 Song N N, Feng J S, Yu Y, *et al.* Comparison of characteristics and source apportionment of polycyclic aromatic hydrocarbons in different environmental media in the urban area of Daqing City [J]. Environmental Science, 2017, **38**(12): 5272-5281.
- [34] Meulenberg R, Rijnaarts H H M, Doddema H J, et al. Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability [J]. FEMS Microbiology Letters, 1997, 152(1): 45-49.
- [35] 陈华林,陈英旭. 污染底泥修复技术进展[J]. 农业环境保护,2002,21(2):179-182.
 Chen H L, Chen Y X. Progresses of remediation techniques for Polluted sediment[J]. Agro-Environmental Protection, 2002,21(2):179-182.
- [36] 黄国兰,庄源益,戴树桂. 颗粒物上多环芳烃的光转化作用[J]. 南开大学学报(自然科学),1997,30(1):98-101.

 Huang G L, Zhuang Y Y, Dai S G. Study on photochemical transformation of PAHs deposited upon particulates [J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 1997, 30 (1):98-101.
- [37] DeMott R P, Gauthier T D, Wiersema J M, et al. Polycyclic aromatic hydrocarbons (PAHs) in Austin sediments after a ban on pavement sealers [J]. Environmental Forensics, 2010, 11 (4): 372-382.
- [38] Xiao R, Bai J H, Wang J J, et al. Polycyclic aromatic

hydrocarbons (PAHS) in wetland soils under different land uses in a coastal estuary: toxic levels, sources and relationships with soil organic matter and water-stable aggregates [J]. Chemosphere, 2014, $\bf 110$: 8-16.

境

- [39] Zheng W D, Lichwa J, Yan T. Impact of different land uses on polycyclic aromatic hydrocarbon contamination in coastal stream sediments[J]. Chemosphere, 2011, 84(4): 376-382.
- [40] Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition [J]. Organic Geochemistry, 2002, 33(4): 489-515.
- [41] Chen Y Y, Zhu L Z, Zhou R B. Characterization and distribution of polycyclic aromatic hydrocarbon in surface water and sediment from Qiantang River, China [J]. Journal of Hazardous Materials, 2007, 141(1): 148-155.
- [42] Zhou J L, Maskaoui K. Distribution of polycyclic aromatic hydrocarbons in water and surface sediments from Daya Bay, China [J]. Environmental Pollution, 2003, 121 (2): 269-281.

- [43] Doong R A, Lin Y T. Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan [J]. Water Research, 2004, 38(7): 1733-1744.
- [44] Nkedi-Kizza P, Rao P S C, Johnson J W. Adsorption of diuron and 2, 4, 5-T on soil particle-size separates [J]. Journal of Environmental Quality, 1983, 12(2): 195-197.
- [45] Lee C L, Kuo L J, Wang H L, et al. Effects of ionic strength on the binding of phenanthrene and pyrene to humic substances: three-stage variation model [J]. Water Research, 2003, 37 (17): 4250-4258.
- [46] Pignatello J J, Ferrandino F J, Huang L Q. Elution of aged and freshly added herbicides from a soil[J]. Environmental Science & Technology, 1993, 27(8): 1563-1571.
- [47] 王晓慧, 毕春娟, 韩景超. 再悬浮过程中河流底泥 PAHs 的迁移与释放[J]. 环境科学, 2014, 35(6): 2185-2192. Wang X H, Bi C J, Han J C. Delivery and release of sediment PAHs during resuspension[J]. Environmental Science, 2014, 35(6): 2185-2192.

HUANJING KEXUE

Environmental Science (monthly)

Vol. 40 No. 8 Aug. 15, 2019

CONTENTS

Characteristics of PM2.5 Pollution and the Efficiency of Concentration Control During a Red Alert in the Beijing-Tianjin-Hebei Region	on, 2016 ·····
2.5	ZHANG Chong, LANG Jian-lei, CHENG Shui-yuan, et al. (3397)
Concentration Characteristics of PM _{2.5} and the Causes of Heavy Air Pollution Events in Beijing During Autumn and Winter	
Elemental Composition Characteristics of PM _{2.5} and PM ₁₀ , and Heavy Pollution Analysis in Hefei	LIU Ke-ke, ZHANG Hong, LIU Gui-jian (3415)
Pollution Characteristics and Source Apportionment of Fine Particulate Matter in Autumn and Winter in Puyang, China	
Pollution Characteristics and Sources of Carbonaceous Components in PM _{2.5} in the Guanzhong Area	
Molecular Composition and Source Apportionment of Fine Organic Aerosols in Autumn in Changchun	WU Xia, CAO Fang, ZHAI Xiao-yao, et al. (3438)
Effects of Urban Expansion and Changes in Urban Characteristics on PM _{2.5} Pollution in China	WANG Gui-lin, ZHANG Wei (3447)
Effect of a Wet Flue Gas Desulphurization System on the Emission of PM _{2,5} from Coal-Fired Power Plants	DENG Jian-guo, MA Zi-zhen, LI Zhen, et al. (3457)
Pollution Characteristics and Emission Coefficients for Volatile Organic Compounds from the Synthetic Leather Industry in Zhejiang F	Province
	XU Jia-qi, WANG Zhe-ming, SONG Shuang, et al. (3463)
Particle Size Distribution and Population Characteristics of Airborne Bacteria Emitted from a Sanitary Landfill Site	
Distribution of Total Microbes in Atmospheric Bioaerosols in the Coastal Region of Qingdao	
Distribution, Sources, and Health Risk Assessment of PAHs in Water Supply Source Regions of Guangzhou	
Distribution of 16 Polycyclic Aromatic Hydrocarbons in Dianchi Lake Surface Sediments After the Integrated Water Environment Con	
2 to 10 to 1	HII Xin-vi GAO Bing-li CHEN Tan et al. (3501)
Distribution Characteristics and Source Analysis of Polycyclic Aromatic Hydrocarbons in Salinized Farmland Soil from the Oil Mining	
Distribution conductivities and course stratigue of Polycycle Fromate Trydocurbons in Culturate Furnitural Con Itom the Cit straining	
Wind Field Influences on the Spatial Distribution of Cyanobacterial Blooms and Nutrients in Meiliang Bay of Lake Taihu, China	
Spatial and Temporal Distribution Characteristics and the Retention Effects of Nutrients in Xiangjiaba Reservoir	The state of the s
Effects of Exogenous Inputs on Phosphorus Recovery and Transport in Newborn Surface Layers from Sediment Dredging	
Chemical Characteristics and Sources of Groundwater Sulfate in the Kashgar Delta, Xinjiang	
Groundwater Chemistry Characteristics and the Analysis of Influence Factors in the Luochuan Loess Tablelands	
Analysis of River Zooplankton Community Characteristics in Autumn in Beijing	
Benthic Diatom Communities in the Main Stream of Three Gorges Reservoir Area and Its Relationship with Environmental Factors	
Environmental Response and Ecological Function Prediction of Aquatic Bacterial Communities in the Weihe River Basin	· · · · · · · · · · · · · · · · · · ·
Community Composition of nirS-type Denitrifying Bacteria in the Waters of the Lower Reaches of the Fenhe River and Its Relationship	ip with Inorganic Nitrogen ·····
Metabolic Functional Analysis of Dominant Microbial Communities in the Rapid Sand Filters for Drinking Water	
Control Measure Effects on the Effluent Quality from Extensive Green Roofs Based on Stabilized Sludge Recycling	
Impacts of Vegetation on Quantity and Quality of Runoff from Green Roofs	HANG Sun-xun, ZHANG Shou-hong, ZHANG Ying, et al. (3618)
Organic Matter Removal and Membrane Fouling Control of Secondary Effluents Using a Combined Nanofiltration Process	FAN Ke-wen, LI Xing, YANG Yan-ling, et al. (3626)
Adsorption Properties of Ammonia Nitrogen in Aqueous Solution by Various Materials	JIAO Ju-long, YANG Su-wen, XIE Yu, et al. (3633)
Effects of Different Concentrations of Ammonia Nitrogen on the Growth and Enzyme Activity of Four Common Algae Strains	····· CHANG Ting, XU Zhi-hui, CHENG Peng-fei, et al. (3642)
Treatment of Highly Concentrated Swine Wastewater and Its Degradation Processes Using Three Matrix Materials	LIU Ming-yu, XIA Meng-hua, LI Yuan-hang, et al. (3650)
Phosphorus Removal Performance and Mechanism of Modified Zeolite Using Alum Sludge Acidified Extraction Liquid	
Advanced Denitrification of Municipal Wastewater Achieved via Partial ANAMMOX in Anoxic MBBR	
Effect of an Aerobic Unit and a Sedimentation Unit on Sludge and Nitrogen Removal in an Anoxic Unit in a Continuous-flow System	
	···· XUE Huan-ting, YUAN Lin-jiang, LIU Xiao-bo, et al. (3675)
Performance and Mechanisms of Advanced Nitrogen Removal via FeS-driven Autotrophic Denitrification Coupled with ANAMMOX	
Simultaneous Conversion Conditions of Ammonia and Sulfate in ANAMMOX Systems	
Potential Source Environments for Microbial Communities in Wastewater Treatment Plants (WWTPs) in China	
Comparison of the Microbial Community Structure in Nitrifying Processes Operating with Different Dissolved Oxygen Concentrations	
Simultaneous Nitrogen and Phosphorus Removal and Kinetics by the Heterotrophic Nitrifying Bacterium Acinetobacter junii NP1	
Realization of Limited Filamentous Bulking with Type 0092 Filamentous Bacteria as the Dominant Filamentous Bacteria in Shortcut 1	
neanzanon of Limited Fhamemous burking with Type 0022 Fhamemous bacteria as the Dominant Fhamemous bacteria in Shortest 1	
Nitrification, Denitrification, and N ₂ O Production Under Saline and Alkaline Conditions	
Effect of Biochar on Ammonia Volatilization in Saline-Alkali Soil	
Effect of Two Soil Synergists on Ammonia Volatilization in Paddy Fields	
Determination of Heavy Metal Geochemical Baseline Values and Its Accumulation in Soils of the Luanhe River Basin, Chengde · · · ·	
Migration and Source Analysis of Heavy Metals in Vertical Soil Profiles of the Drylands of Xiamen City	
Heavy Metal Pollution Characteristics and Influencing Factors in Baoji Arban Soils	
Stabilizing Effects of Fe-Ce Oxide on Soil As(V) and P	
Stabilization of Arsenic-Contaminated Soils Using Fe-Mn Oxide Under Different Water Conditions	
Effects of Biochar Amendment on Soil Microbial Biomass Carbon, Nitrogen and Dissolved Organic Carbon, Nitrogen in Paddy Soils	
Effects of Organic Amendments on Microbial Biomass Carbon and Nitrogen Uptake by Corn Seedlings Grown in Two Purple Soils \cdots	
Effects of Land Use Type on the Content and Stability of Organic Carbon in Soil Aggregates	LUO Xiao-hong, WANG Zi-fang, LU Chang, et al. (3816)
Effects of Converting Farmland into Forest and Grassland on Soil Nitrogen Component and Conversion Enzyme Activity in the Mountain	ainous Area of Southern Ningxia
	GAO Han, XIAO Li, NIU Dan, et al. (3825)
Leaching Behavior of Dissolved Organic Matter in Biochar with Different Extracting Agents	
Toxicity of PM _{2.5} Based on a Battery of Bioassays ····	····· JIANG Xiao-dong, XUE Yin-gang, WEI Yong, et al. (3840)