藻类有机物的特性以及对超滤膜的污染

李甜1,董秉直2,刘铮1

(1. 同济大学环境科学与工程学院,上海 200092;2. 同济大学长江水环境教育部重点实验室,上海 200092)

摘要:采用凝胶色谱、亲疏水性、荧光色谱等方法研究铜绿微囊藻类有机物的特性.结果表明,铜绿微囊藻类有机物(AOM)主要由亲水性组分构成,占78%,比紫外吸光度仅为1.1 L/(mg·m).超滤膜法测定结果表明,藻类有机物中相对分子质量>30000的有机物占40%以上,并且主要由中性亲水性组分构成.荧光色谱分析表明,AOM中含有蛋白质类和腐殖质类物质. 膜过滤试验表明,藻类有机物对超滤膜造成严重的通量下降,这可归结为大分子的中性亲水性组分堵塞膜孔的缘故.

关键词:饮用水处理;藻类有机物;分子量分布;膜污染;荧光色谱

中图分类号:X52 文献标识码:A 文章编号 0250-3301(2010)02-0318-06

Characteristic of Algogenic Organic Matter (AOM) and Its Effect on UF Membrane Fouling

LI Tian¹, DONG Bing-zhi², LIU Zheng¹

(1. School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, Tongji University, Shanghai 200092, China)

Abstract :Algogenic organic matter (AOM) was extracted from blue-green algae (*Cyanobacteria*) and its characteristics was determined by various methods including high-pressure size-exclusion chromatography (HP-SEC), hydrophobic and hydrophilic fraction and fluorescence excitation emission matrix (EEM). The results showed that AOM was composed of hydrophilic fraction predominantly , account for 78%. The SUVA of AOM was only 1.1 L/(mg \cdot m). The analysis for relative molecular weight (M_r) demonstrated that organic matter greater than 30 000 accounted for above 40% and mostly was composed of neutral hydrophilic compound. EEM analyses revealed that protein-like and humic substances existed in AOM. A test for membrane filtration exhibited that AOM could make ultrafiltration membrane substantial flux decline , which can be attributed to membrane pore clog caused by neutral hydrophilic compound with larger MW.

Key words : drinking water treatment ; algogenic organic matter (AOM) ; molecular weight fractionation ; membrane fouling ; fluorescence excitation emission matrix

湖泊是我国重要的饮用水水源. 湖泊受污染后, 会生长大量的藻类. 藻类在生长过程中,会利用水中 的营养物质在进行合成作用的同时也代谢产生了藻 类有机物(algogenic organic matter, AOM). 藻类通 过细胞外的新陈代谢作用形成了胞外有机物 (EOM),通过细胞内的自身分解作用形成胞内有机 物(IOM)^[12]. 近年来,国内的很多湖泊如太湖、滇 池、巢湖等都先后出现了蓝藻暴发的现象. 2007 年 太湖蓝藻暴发事件的发生导致了整个太湖流域发生 了大规模的饮用水危机.

藻类在生长过程中,通过新陈代谢的作用向水 中释放其衍生物,即藻类有机物(AOM). 国外对 AOM 的组成进行了大量的研究,有报道认为,AOM 是由低聚糖、多聚糖、蛋白质、缩氨酸、氨基酸以及其 他疑似有机酸等的一系列物质组成^[3];而也有报道 认为,AOM 包含有羟基乙酸、碳水化合物、多聚糖、 氨基酸、缩氨酸、有机磷、酶、维生素、荷尔蒙、抑制剂 和毒素^[4]. 这些研究结果的不一致说明了 AOM 成 分的复杂性.采用各种技术去除藻类一直是研究的 热点. 邹有红等^[5]进行了聚合氯化铝铁(PAFC)去 除微污染水体中藻类的研究,发现在 H₂O₂ 的预氧 化下,PAFC 有一个较高的除藻率. 夏树威等^[6]的研 究表明,吸附、氧化等是控制藻细胞代谢产物(藻毒 素、geosmin 与 2-MIB 等致嗅微量有机物等)的关键 工艺. 近年来,膜技术也逐渐开始在饮用水处理中得 到应用. 膜去除藻类有其独特的优势. 膜可利用膜 孔的大小选择性地截留水中各种杂质,由于藻的尺 寸远大于膜孔孔径,因此,膜几乎可以百分之百截留 藻类^[7,8]. 膜技术对可溶性有机物的去除主要取决 于膜 的 截 留 分 子 量^[9,10] 以及 膜 和 有 机 物 的 特 性^[11,12]. 膜在去除藻类有机物应用上的障碍是膜污 染^[13]. Her 等^[14]研究了 NF 膜对 AOM 的去除,发现

收稿日期 2009-03-20 ;修订日期 2009-06-16

基金项目"十一五"国家科技支撑计划项目(2006BAJ08B02);国家 水体污染控制与治理科技重大专项(2008ZX07421-006)

作者简介 :李甜(1985~),女,硕士研究生,主要研究方向为饮用水 膜深度处理技术, E-mail:tian08120926@163.com

AOM 对 NF 膜造成了严重的膜污染. 超滤膜对天然 有机物(NOM)的去除试验表明超滤膜能显著提高 对可溶性有机碳的去除^[15],由于 AOM 的组成不同 于天然有机物,因而它对超滤膜污染的影响也更令 人关注.对于膜处理,应更关注 AOM 对膜污染的能 力和机制.目前,国内在 AOM 对膜污染的研究方面 鲜见报道.

本研究的主要目的就是从 AOM 中分析亲疏水 性各组分的相对分子质量分布情况,研究 AOM 中 各种组分对超滤膜污染的能力,此外,还进一步探讨 了 AOM 对超滤膜污染的机制.

1 材料与方法

1.1 藻类培养和分离

采用太湖流域常见的蓝藻(铜绿微囊藻),藻种 来自中国科学院水生生物研究所.培养基为中国科 学院水生生物研究所提供的藻种配方 BG11,并根据 配方自配而成的培养基.蓝藻在可编程光照培养箱 (SPX 智能型,上海浦东荣丰科学仪器有限公司)中 经过12h光照12h黑暗交替培养至稳定生长期.

取稳定生长期的含藻水,用 0.45 μm 膜(混合 纤维素酯,上海兴亚净化材料厂生产)过滤,过滤后 的水样即为 AOM.

1.2 AOM 的亲疏水性分布

将过 0.45 μm 膜后的水(AOM)经过固相萃取 装置(SUPELCO VISIPREPTM DL)进行亲疏水性分 离,将 AOM 分成强疏水性、弱疏水性、极性亲水性 和中性亲水性 4 种成分^[16].将 AOM 调节浓度至 TOC 为 20 mg/L 即 2I(分成 4 组)调节 pH 为 2.0, 分别过 XAD-8 和 XAD-4 型树脂,再将出水的 pH 调 节至 8.0 后过 IRA-958 型树脂,出水即组成了 AOM 中的中性亲水性组分.将过水后的 XAD-8 和 XAD-4 型树脂分别用 0.1 mol/L的 NaOH 溶液进行洗脱,过 水后的 IRA-958 型树脂用 1 mol/L的 NaOH 和 NaCl 的混合液进行洗脱 3 种洗脱液分别组成了 AOM 中 的强疏水性组分、弱疏水性组分、极性亲水性组分. 将 AOM 及 4 种组分调节 pH 为 7.0,测其 TOC (SHIMADZU,TOC-V_{CPH}),并计算回收率和 4 种组分 各占比例.

1.3 AOM 及4种亲疏水性组分的分子量分布

将 AOM 及 4 种亲疏水性组分调节 TOC 为 5 mg/L,分别通过截留相对分子质量为1 000、3 000、10 000、30 000的超滤膜,以氮气为驱动压力,测定分子量分布.超滤器(Amicon 8400)为 Millipore 公司生

产,过滤水样时,采用磁力搅拌器进行搅拌,搅拌速 度为100 r/min,以防止浓差极化.每次过滤水样为 300 mL,有70%的水样通过超滤膜.测定过膜后的 水样的TOC,并计算AOM及4种亲疏水性组分的分 子量分布.水样过膜前,将超滤膜用超纯水(Milli-Q)洗至进出水TOC相一致.本实验还通过凝胶色 谱测定了AOM以及4种亲疏水性组分的分子量 分布.

1.4 AOM 及 4 种亲疏水性组分的荧光色谱图

以氙灯为光源,将 AOM 及4种亲疏水性组分进 行荧光扫描.所采用的荧光色谱仪为 HITACHI 公司 生产,型号 F-4500.荧光扫描时激发波长和发射波 长的范围都为 200~600 nm,狭缝宽度为 10 nm,扫 描间隔为 5 nm,扫描速度为12 000 nm/min,电压 400 V.将测定的数据用 Matlab 软件进行处理,绘制 成等高线图.

1.5 AOM 及 4 种亲疏水性组分的膜比通量变化和 有机物的去除

以氮气为驱动压力,将 AOM 及 4 种亲疏水性组 分调节 TOC 为 5 mg/L,采用截留相对分子质量为 15 × 10⁴ PVDF(中国科学院生态环境研究中心生 产)膜进行膜过滤试验.试验前,先用超纯水(Milli-Q)过滤,待其通量稳定后再过滤水样.水样过滤通 量 J 与初始膜通量 J_0 的比值(J/J_0)作为试验通量. 每次过滤水量为 800 mL.

2 结果与讨论

2.1 AOM 的亲疏水性分布

图 1 为 AOM 的 4 种组分所占的比例. AOM 中 大部分有机物为亲水性组分,其中中性亲水性最多, 为 56.8%;其次为极性亲水,为 21.8%;而弱疏水性 成分仅为 6.6%.这表明亲水性组分占 AOM 的 78.6%.一般的天然原水,强疏水性组分如腐殖酸, 约占总有机碳(total organic carbon, TOC)的 50% 左 右;弱疏水性组分如富里酸,约为 25%;而亲水性组 分仅为 25%^[17].孙飞^[18]研究了南方多种水源的有 机物亲疏水的组分分布,发现疏水性和亲水性组分 大约各为 50%.由此可见,与一般天然原水相比, AOM 中的亲水性组分明显占多数. AOM 的 SUVA 为 1.1 L/(mg·m),这也说明了它具有很强的亲 水性.

2.2 AOM 及4种组分的相对分子质量分布

图 2 为 AOM 及 4 种组分的相对分子质量分布. 图 2 表明,铜绿微囊藻类有机物中相对分子质量

图 1 AOM 的亲疏水性分布 Fig. 1 Hydrophobic and hydrophilic fractionation of AOM

>3×10⁴的占40%,而相对分子质量范围在1×10⁴ ~3×10⁴的占26%,这说明铜绿微囊藻类有机物中 主要由大分子的有机物构成.就各个组分而言,相对 分子质量>3×10⁴的极性亲水和中性亲水分别为 47%和45%.这结果进一步说明AOM主要由大分 子的亲水性有机物构成.许多研究指出,这些亲水性 组分主要为多糖类、氨基酸和蛋白质等有机 物^[1920].上述的研究表明,就相对分子质量的分布 而言,藻类有机物不同于一般的天然有机物.一般的 天然有机物中的大分子有机物所占比例很小,一般 低于10%.例如,一些研究者测定了长江、黄浦江和 淮河的相对分子质量分布,发现>30000的有机物 的比例均不足10%^[21].

采用凝胶色谱测定的 AOM 以及各组分的相对 分子质量分布如图 3 所示.可以看出,AOM 可由 3 部分组成,第1部分是由相对分子质量100 000的大 分子构成;第2部分的相对分子质量在900~3500; 第3部分由相对分子质量小于1000的有机物组成. 凝胶色谱测定的结果与超滤膜法的大致相同,说明 >30000的有机物主要集中在相对分子质量 10 × 10⁴,这部分有机物主要是亲水性组分,如氨基酸和 蛋白质等.图3显示相对分子质量在 900 ~ 3 500范 围,疏水性组分有强烈的响应,说明疏水性有机物主 要集中在该分子量范围;而相对分子质量在 100 ~ 400,亲水性组分表现出强烈的响应,而疏水性组分 的响应较弱,说明这部分的低分子有机物主要为亲 水性.

图 3 AOM 以及各组分的凝胶色谱图 Fig. 3 HPSEC of AOM and four fractions

2.3 AOM 及4种亲疏水性组分的荧光色谱图

AOM 及4种亲疏水性组分的荧光色谱图见图 4 ,横坐标为发射(emission ,Em)波长,纵坐标为激发 (excitation, Ex)波长,图中括号内为发射波长、激发 波长、吸收峰高.对荧光有响应的疏水性有机 物^[22 23]主要以腐殖酸为代表,而亲水性有机物主要 以氨基酸和蛋白质[24,25]为代表.因此,笔者也测定 了这些有机物的荧光光谱,由此判断 AOM 的组成. 由图 4 可知 ,AOM 出现 4 个峰 ,其中响应最为强烈 的为(Em435、Ex350)和(Em460、Ex260). 对照氨 基酸、蛋白质和腐殖酸的荧光光谱,可以看出前一区 域的是氨基酸和蛋白质,而后一区域的是腐殖酸类. 前一区域的荧光响应比后一区域的强烈,说明 AOM 中的亲水性组分的含量较高. 由此可知 AOM 是腐 殖质和亲水物质的混合物质.强疏水组分在 (Em465, Ex375)有强烈的响应,这与腐殖酸的响应 区域(Em480, Ex310) 甚为接近, 说明它主要由腐殖 酸类构成.对于中性亲水性组分,它的荧光光谱特征 是在(Em425, Ex285~345)上有强烈的响应,而这 一区域的荧光响应与氨基酸和蛋白质的荧光响应相 似 这说明中性亲水性组分主要由氨基酸和蛋白质 类物质构成.

图 4 AOM 的荧光色谱图 Fig. 4 EEMs of AOM

2.4 AOM 及4种亲疏水性组分的膜比通量变化和 有机物的去除

图 5 为 AOM 及 4 种组分的膜过滤通量变化情况.可以看出,AOM 对超滤膜造成了严重的膜污染, 过滤结束时的通量仅为初始通量的 12%.造成如此 严重的通量下降的原因可归结为 AOM 含有较高的 大分子有机物.虽然疏水性组分也造成了明显的通 量下降,但其程度不如 AOM.该现象可解释为 2 种 组分的大分子较低(见图 2). 中性亲水性组分的通 量下降与 AOM 相似,这可认为是中性亲水性的大 分子所占比例与 AOM 相同的缘故. 极性亲水组分 的通量下降最为缓慢. 但是,与中性亲水性相同,极 性亲水性组分也具有较高的大分子. 为何极性亲水 性组分没有造成严重的膜污染?这种现象可解释为 极性亲水具有极性官能团,因而会与膜表面(同样 也带有极性官能团)产生静电排斥作用,从而大大 减少了组分在膜表面的积累,降低了膜对通量的阻力.中性亲水性组分由于不带电荷,不会与膜表面产 生静电排斥作用,因而容易接近膜,继而沉积在膜表面.大量的大分子有机物将膜孔堵塞,导致严重的通 量下降.

Fig. 5 Membrane flux decline of AOM and four fractions

膜对 AOM 以及各组分的去除效果如图 6 所示. 由此可知,超滤膜对 AOM 以及各组分均有较好的 去除效果,对于 TOC,去除率均超过了 20%,而弱疏 水组分甚至达到了 30%. 膜对 AOM 以及各组分的 去除率明显高于其它原水.例如,周贤娇等[26]采用 相同的膜对自来水进行类似的研究,结果表明有机 物以及各组分的去除率仅为 5% 左右,远低于 AOM. 这种现象可归结为 AOM 中具有较多的大分子有机 物,由于膜孔的筛分作用,膜对这部分的有机物具有 很好的截留效果 同时 这也可以说明超滤膜对藻类 有机物的去除与对一般天然有机物去除有很大的不 同,它与藻类有机物的特性有很大关系.膜过滤 AOM 前后的相对分子质量分布变化如图 7 所示.由 此可见 经膜过滤后 相对分子质量为 10×10^4 的峰 消失,说明这部分的有机物基本为膜所截留.相对分 子质量为 10 × 10⁴ 的有机物的尺寸大小接近于膜孔

的尺寸,进入膜孔后,容易造成堵塞,因此造成了严 重的通量下降.从图7还可以看出,膜对于中等以及 较小相对分子质量的有机物也有较好的截留效果. 这可解释为,大分子有机物首先将膜孔堵塞,使膜孔 缩小,继而对中等以及较小相对分子质量的有机物 产生截留作用.另一种原因是,大分子的有机物为膜 所截留,造成严重的浓差极化.膜表面形成的浓差极 化层对中等以及较小相对分子质量的有机物产生截 留作用.

3 结论

(1)铜绿微囊藻类有机物呈现为亲水性,该亲水性组分占总有机物的78%,而且比紫外吸光值
(SUVA)小,仅为1.1 L/(mg·m).

(2)大分子的亲水性有机物在藻类有机物中占 较大比例,超过40%,它的相对分子质量在10×10⁴ 左右.

(3)荧光色谱分析表明,铜绿微囊藻类有机物 中含有蛋白质、氨基酸和腐殖酸类物质.

(4)藻类有机物对超滤膜造成严重的膜污染, 这可归结为大分子的亲水性有机物堵塞膜孔所致.

(5)超滤膜对藻类有机物的去除与藻类有机物 的特性有很大关系.

参考文献:

- Henderson R K, Baker A, Parsons S A, et al. Characterisation of algogenic organic extracted from cyanobacteria, green algae and diatoms [J]. Wat Res, 2008, 42(13):3435-3445.
- [2] Fogg G E. The ecological significance of extracellular products of phytoplankton photosynthesis [J]. Bot Mar, 1983, 26(1): 3-14.
- [3] Pivokonsky M, Kloucek O, Pivokonska L. Evaluation of the production, composition and aluminum and iron complexation of

algogenic organic matter [J]. Wat Res , 2006 , **40** (16) : 3045-3052.

- [4] Wetzel R G. Limnology [M]. Philadelphia : W B Saunders Company , 1975.
- [5] 邹有红,李文兵,周蓬蓬,等.聚合氯化铝铁去除微污染水体 中藻类的研究[J].环境工程学报,2009,3(1):108-112.
- [6] 夏树威,刘海,张萍. 饮用水供水过程中藻类及其代谢产物的 去除与再生长控制[J]. 城镇供水,2009,1 29-32.
- [7] 于莉君,赵虎,李圭白,等.粉末活性炭-混凝-超滤联用处理 含藻水的研究[J].中国给水排水,2008,**24**(19):51-54.
- [8] Liang H, Gong W J, Chen J, et al. Cleaning of fouled ultrafiltration (UF) membrane by algae during reservoir water treatment [J]. Desal, 2008, 220(1-3): 267-272.
- [9] Cho J, Amy G, Pellegrino J. Membrane filtration of natural organic matter : comparison of flux decline, NOM rejection, and foulants during filtration with three UF membranes [J]. Desal, 2000, 127 (3) 283-298.
- [10] Cho J, Amy G, Pellegrino J. Membrane filtration of natural organic matter : factors and mechanisms affecting rejection and flux decline with charged ultrafiltration (UF) membrane [J]. J Membr Sci , 2000 , 164 (1-2):89-110.
- [11] Schäfer A I, Fane A G, Waite T D. Fouling effects on rejection in the membrane filtration of natural waters [J]. Desal, 2000, 131 (1-3):215-224.
- [12] Teixeira M R, Rosa M J. pH adjustment for seasonal control of UF fouling by natural waters [J]. Desal, 2003, 151 (2): 165-175.
- [13] Kwon B , Park N , Cho J. Effect of algae on fouling and efficiency of UF membranes [J]. Desal , 2005 , 179(1-3): 203-214.
- [14] Her N, Amy G, Park H R, et al. Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling [J]. Wat Res, 2004, 38(6):1427-1438.
- [15] Chang Y J, Choo K H, Benjamin M M, et al. Combined adsorption-UF process increases TOC removal [J]. Water Works

Assoc, 90(5):90-92, 100-102.

- [16] Carroll T, King S, Gray S R, et al. The fouling of microfiltration membranes by NOM after coagulation treatment [J]. Wat Res, 2000, 34(11):2861-2868.
- [17] Zularisam A W, Ismail A F, Salim R. Behaviours of natural organic matter in membrane filtration for surface water treatment—a review [J]. Desal, 2006, 194(1-3):211-231.
- [18] 孙飞.影响超滤膜通量的因素研究[D]. 上海:同济大学,2008.
- [19] Lee N H , Amy G , Croue J P. Low-pressure membrane (MF/ UF) fouling associated with allochthonous versus autochthonous natural organic matter [J]. Wat Res , 2006 , 40 (12): 2357-2368.
- [20] Amy G. Fundamental understanding of organic matter fouling of membranes [J]. Desal, 2008, 231(1-3):44-51.
- [21] 董秉直,曹达文,陈艳. 饮用水膜深度处理技术[M]. 北京:化学工业出版社,2006.
- [22] Sierra M M D, Giovanela M, Parlanti E, et al. 3D-fluorescence spectroscopic analysis of HPLC fractionated estuarine fulvic and humic acids [J]. J Braz Chem Soc, 2006, 17(1):113-124.
- [23] Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation - Emission matrix regional integration to quantify spectra for dissolved organic matter [J]. Environ Sci Technol, 2003, 37(24):5701-5710.
- [24] Kimura K, Yamamura H, Watanabe Y. Irreversible fouling in MF/UF membranes caused by natural organic matters (NOMs) isolated from different origins [J]. Sep Sci Technol, 2006, 41 (7):1331-1344.
- [25] Provenzano M R , Gigliotti G , Cilenti A , et al. Spectroscopic and thermal investigation of hydrophobic and hydrophilic fractions of dissolved organic matter [J]. Comp Sci Uti , 2006 , 14(3): 191-200.
- [26] 周贤娇,董秉直.不同组分的有机物对膜过滤通量下降的影响[J].环境科学,2009,**30**(2):432-438.