猫跳河流域梯级水库夏-秋季节溶解无机碳 (DIC) 含量及其同位素组成的分布特征

李干蓉1, 刘丛强2*, 陈楫1, 王宝利2, 李军2, 李思亮2, 刘小龙2, 汪福顺3

(1. 贵州师范大学生命科学学院, 贵阳 550001; 2. 中国科学院地球化学研究所环境地球化学国家重点实验室, 贵阳 550002; 3. 上海大学环境与化工学院, 上海 201800)

摘要: 于 2007 年 7 月 (夏季)、10 月 (秋季) 两次对猫跳河流域河流-水库水体样品进行了采集, 分析其水化学组成特征, 溶解无机碳 (DIC) 含量及其同位素组成, 研究了猫跳河流域河流-水库的碳素地球化学行为, 目的是阐明梯级水库拦截后河流的碳素含量和碳同位素 (δ13C) 组成的分布特征。水体 DIC 及其同位素 (δ13C) 组成的总体特征为: DIC 含量夏高于秋季, 夏季 DIC 含量为 1.35 ~ 2.84 mmol/L, 平均值为 2.12 mmol/L, 秋季 DIC 含量为 2.03 ~ 3.98 mmol/L, 平均值为 2.67 mmol/L, δ13C 值则相反, 夏季较秋季偏正, 其 δ13C 值变化范围是 -10.3‰ ~ -5.1‰, 平均值是 -8.6‰, 秋季是 -13.0‰ ~ -6.9‰, 平均值为 -9.0‰。表明夏季藻类光合作用释放富集 C3, 水体富集 C3。夏季水库的 DIC 含量随着深度的加深而增大, 而 δ13C 值则随着深度的加深而偏负, 表面层水体受藻类生物作用影响较大, 下层水体主要受有机质的降解影响。DIC 含量从上游至下游呈逐渐降低的趋势, 而 δ13C 值从上游至下游呈逐渐偏负的趋势, 表明河流受水库拦截后河流水化学性质发生了改变。水坝建成对于河流水生系统 C 具有一定的拦截作用。

关键词: 猫跳河; 溶解无机碳; 碳同位素

Dissolve Inorganic Carbon and Its Carbon Isotope Composition in Cascade Reservoir of the Maotiao River During Summer and Autumn

LI Gan-rong1, LIU Cong-qiang2, CHEN Chuan1, WANG Bao-lii2, LI Jun2, LI Si-liang2, LIU Xiao-long2, WANG Fu-shun3

(1. School of Life Science, Guizhou Normal University, Guiyang 550001, China; 2. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; 3. School of Environmental and Chemical Engineering, University of Shanghai, Shanghai 201800, China)

Abstract: Water samples along water column in the front of dams and samples at 0.5 m below surface water from tributary rivers were collected in July and October, 2007. The water chemistry concentrations of dissolve inorganic carbon and its carbon isotopic compositions were determined, in order to investigate the geochemical behavior of carbon in the Maotiao River. This study aimed to understand the variations of the concentrations of dissolve inorganic carbon (DIC) and δ13C during its transport along the cascade reservoirs and river system. The results showed that DIC concentrations in summer were lower than that in autumn. In summer, the DIC concentrations were 1.35-2.84 mmol/L with an average value of 3.12 mmol/L; and in autumn they fell into 2.03-3.98 mmol/L, with an average value of 2.67 mmol/L. The δ13C in surface water along Maotiao River ranged from -10.3‰ to -5.1‰ in summer, with a value of -8.6‰, and in autumn, δ13C became more negative, and had a range from -13.0‰ to -6.9‰, with an average value of -9.0‰. Generally, DIC in surface water showed a trend to decrease from the upper reaches to lower reaches along Maotiao River, and δ13C gradually became more negative downstream. On the water column, DIC concentrations were higher in hypolimnion while δ13C showed a reverse trend with higher values occurred in epilimnion. The results indicated that the hydrochemistry of river could be significantly changed by river damming processes. As for carbon reservoir, it should be an important place for the transformation among the different carbon species.

Key words: Maotiao River; dissolve inorganic carbon (DIC); carbon isotopes

随着人类活动的日趋频繁, 对能源资源的利用速率加快, 尤其对水能资源的利用不断加大, 导致河流的自然性质和作用过程受到人类活动的强烈冲击。其中, 修建水利工程开发水能、南水北调等对河流的拦截和调蓄可算是对河流及流域生态系统最为突出的人为影响事件。然而, 随着大坝建设的快速发展, 河流水化学环境逐步受到重要影响, 河流-水库
系统源生要素的生物地球化学循环也因此而发生明显变化。

因此, 本研究以喀斯特地区大江河流域梯级水系为实验对象, 对大江河流域的河流与水库溶解无机碳 (DIC) 同位素组成特征进行分析, 目的在于揭示水系演化过程中 DIC 及其碳同位素组成的时空变化规律及控制因素, 并进一步解释河流多次拦截后梯级水系的各个阶段演化过程、特征等生物地球化学信息提供科学依据。

1 研究区概况

贵州省处于世界岩溶发育最复杂、类型最齐全、分布面积最大和亚热带岩溶区域中, 也是我国碳酸盐岩分布面积最大、岩溶发育的省区。大江河流域是乌江南岸的一条支流, 从安顺流经平坝、清镇、贵阳、修文等地最后入乌江, 全长 181 km。河流总落差为 549.6 m, 平均比降 0.306%, 流域属亚热带温和湿润气候, 雨量充沛, 年均气温 13.8°C, 年均降水量 1300 mm。大江河源头有 3 条支流, 沿途有4条支流汇入, 大江河主河段目前开发了 7 个梯级电站, 分别是红枫 (HF)、百花 (BH)、李官 (LG)、修文 (XW)、窄口 (ZKX)、红林 (HL)、红岩 (HY), 其发电时间分别为: 1960 年 5 月, 1966 年 6 月, 1992 年 1 月, 1961 年 6 月, 1970 年 9 月, 1979 年 7 月, 1974 年 7 月[21]。截止 2008 年, 运营时间分别为红枫 48 a, 百花 42 a, 李官 16 a, 修文 47 a, 窄口 38 a, 红林 29 a, 红岩 34 a。

2 采样及分析方法

本研究选取大江河流域河段 (图 1), 分别于 2007 年 7 月和 10 月河流上河川取了 17 个样点, 进行了 2 次观测和采样分析, 其中, 在红枫湖分层采样 (表层, 3 m, 6 m, 10 m, 15 m, 25 m), 其余百花湖、修文水库、红岩水库进行了分层采样 (表层, 5 m, 10 m, 15 m, 25 m), 受到野外采样条件的限制, 未对李官进行样品采集, 窄窄口未进行分层采样。采样期间河流正处于夏汛期和秋季平水期, 现场测定温度 (°C), pH 值和溶解氧 (DO) 等参数, 用盐酸滴定法分析水样碱度。

![图 1 研究区位置及采样点示意图](image)

Fig. 1 Map showing the location of the Muotiao River and the sampling sites

水样直接灌装入 100 mL 的塑料瓶中, 且在水样中加入 HgCl2 毒化抑制微生物活动, 不留气泡, 用封口胶 (Parafilm 膜) 密封后盖紧, 用于实验室测定 DIC 碳同位素组成。过滤水样分装, 用于测定阳离子的 (Ca2+, Mg2+, K+, Na+) 的水样中加入超纯 HNO3 酸化至 pH < 2, 用于测定阴离子 (SO42-, Cl- 和 NO3-) 的样品直接灌装, 所有的样品皆密封保存, 在中国科学院地理化学研究所分别用 ICP-OES 和 IC (Dionex ICS-90) 测定。按照 Atekwana 的方法, 在实验室测定 δ13C 标准, 具体步骤是: 将水样注入进 20 mL 已抽好真空并放有磷酸和小磁棒的玻璃瓶中, 在水浴 50°C 加热, 在本试验室建立的真空线上萃取, 通过冷阱分离, 收集纯化的 CO2 气体, 再用 MAT-252 质谱仪测定 δ13C 值。测定值相对于国际标准 PDB, δ13C 分析误差为 ± 0.02‰。其使用公式为:

\[\delta^{13}C_{	ext{DIC}}(\%o) = \left(\frac{R_{SA} - R_{PDB}}{R_{PDB}} \right) \times 1000 \] (1)

式中, RSA 表示样品测量值, R_{PDB} 表示国际标准值。

3 结果与分析

3.1 水化学特征
河水水体温度夏季平均值 23.9℃，秋季为 18.0℃；水体 pH 值夏季在 7.24 ~ 9.37 之间，平均值为 7.85；秋季 pH 值在 7.45 ~ 8.05 之间，平均值为 7.62。水体温度表层平均值为 25.1℃，底部为 19.0℃；秋季表层水体温度低于 17.0℃。水体溶解氧夏季在 3.15 ~ 14.99 mg/L 之间，秋季在 1.2 ~ 6.77 mg/L 之间；水体上层水体（≥10 m）夏季溶解氧在 1.73 ~ 14.99 mg/L，而水体下部 10 ~ 30 m 范围溶解氧（除百花湖为厌氧环境外）平均 2.44 mg/L，秋季在 3.16 ~ 6.67 mg/L，而水体下部 10 ~ 30 m 范围溶解氧平均值 3.4 mg/L。

研究区属碳酸盐岩地区，流域盆地的地质背景基本控制了水体化学主要特征。从图 2 可以看出，研究区阳离子组成主要落在 Ca^{2+} 和 Mg^{2+} 一侧，说明研究区内的水体中 Ca^{2+} 和 Mg^{2+} 为主要的阳离子。阴离子组成主要落在 HCO_{3}^{-} 和 SO_{4}^{2-} 一侧，夏季 HCO_{3}^{-} 含量处于31.7% ~ 88.1%，平均值为 52.3%；SO_{4}^{2-} 含量处于 2.5% ~ 11.9%，平均值为 6.0%；秋季 HCO_{3}^{-} 含量处于 29.1% ~ 82.2%，平均值为 53.5%；SO_{4}^{2-} 含量处于 2.6% ~ 7.1%，平均值为 5.3%。表明研究区水体均属碳酸盐岩为主的水体。

3.2 流域与水库碳酸钙的饱和指数
CaCO_{3} 的饱和指数 (saturation index, SI) 可以作为判定河水化学稳定性指标。其计算方法为:

\[\text{SI(CaCO}_3\text{)} = \log \left(\left[\text{Ca}^{2+} \right] \times \left[\text{CO}_3^{2-} \right] / K_{sp} \right) \]

式中，\([\text{Ca}^{2+}]\)、\([\text{CO}_3^{2-}]\) 分别表示 Ca^{2+} 和 CO_3^{2-} 的活度；\(K_{sp}\) 为 CaCO_{3} 的溶度积。当 SI > 0 时，溶液处于 CaCO_{3} 的过饱和状态，在适宜条件下，溶液可沉淀出固体 CaCO_{3}；故此时的水具有沉积性；当 SI < 0 时，表示溶液中实际的\([\text{CO}_3^{2-}]\) 含量小于饱和平衡时应有的\([\text{CO}_3^{2-}]\) 浓度，此时溶液处于碳酸钙未饱和状态，这种水如果与固体 CaCO_{3} 相遇，就会发生溶解作用，故此时的水具有侵蚀性；当 SI = 0 时，表示溶液中各种化合态的实有浓度等于该溶液饱和平衡时的有浓度，此时溶液恰好处于碳酸钙溶解饱和状态，不会出现碳酸钙再溶解或沉淀的趋势，故此时的水具有稳定性。

通过计算 CaCO_{3} 的饱和指数，发现夏季猫跳河流域源水及武湖下泄水，流域 7 号点修文水库下泄水外均呈过饱和状态，秋季除 1、2、3 号源头与入乌江口外之外，均呈不饱和状态。对于水库而言，夏季表层水体过饱和，下层水体不饱和，而秋季除红岩水库外，其他均不饱和。总体上，从河流的上游向下游 CaCO_{3} 的饱和指数呈逐渐增大的趋势，水体表层与深层变化明显，呈现出季节变化差异（图 3）。

图 (a) 中虚线表示坝塘位置
图 3 流域河流与水库 CaCO_{3} 的饱和指数的季节变化
Fig. 3 Seasonal variation of SI in runoff and the drainage basin of the Maotiao River
3.3 溶解无机碳含量及其同位素组成

从图4可以看出，对于猫跳河流域的 DIC 含量而言，夏季以百花湖下泄水最高（2.84 mmol/L），红枫湖库区表层水最低（1.35 mmol/L），而秋季则以源头最高（3.98 mmol/L），红枫湖库区表层水仍为最低（2.09 mmol/L）。河流 δ¹³C_DIC 值夏季以百花湖为较偏正，为 -5.14‰，7号点河川最低，为 -10.33‰，平均值为 -8.63‰；夏季以源头，4号支流为较偏正，为 -6.93‰，6号点最低，为 -13.06‰，平均值为 -9.01‰。河流水深表层水体 DIC 含量及其同位素值的季节性变化最为明显，在水体表层，δ¹³C_DIC 显示出明显的季节性差异。

图4 猫跳河 DIC 含量及其稳定同位素 δ¹³C_DIC

Fig.4 DIC concentrations and its δ¹³C_DIC in river water along the Maidian River

猫跳河流域各梯级水库的表层水体 δ¹³C_DIC 较下泄水明显偏正，夏季变化较秋季变化明显。表层水体的 CaCO₃ 过饱和，下泄水呈现不饱和状态（图5）。产生这种现象的原因在于表层光合作用吸收了大量的溶解 CO₂，下层水体由于光照强度不足，导致呼吸作用增强，释放 CO₂，同时下层水体中有机质的降解也会使得溶解的 CO₂ 增加，从而引起水体的 SI 上下逐渐减小。

在水柱剖面上，夏季表层水体 DIC 的平均含量为 1.76 mmol/L，下层水体 DIC 的平均含量为 2.11 mmol/L；秋季表层水体 DIC 的平均含量为 2.36 mmol/L，下层水体 DIC 的平均含量为 2.36 mmol/L。其中，夏季较秋季 DIC 含量垂直变化明显，表层和底层含量差异较大，而在水柱垂直剖面上，δ¹³C_DIC 基本上是随着水深的增加而逐渐偏正，上层水体的 δ¹³C_DIC 值偏正，夏季表层水体的 δ¹³C_DIC 平均值为 -6.86‰。

图5 各水库表层水与下泄水的 δ¹³C_DIC

Fig.5 Seasonal variations of SI in the surface and release water of the reservoirs

秋季平均值为 -9.04‰，夏季底层水体的 δ¹³C_DIC 值偏正，平均值为 -8.53‰，秋季为 -9.11‰；夏季表层水体 δ¹³C_DIC 值平均比底层水体偏正 1.67‰，秋季变化不大。因此，δ¹³C_DIC 值显示的季节性差异，夏季分层时上、下层水体间 δ¹³C_DIC 差异较秋季明显，如图6。

4 讨论

研究表明水体溶解无机碳的同位素组成受以下3个方面因素影响：①入库水体的 DIC 同位素组成；②水-气界面 CO₂ 交换；③光合作用与呼吸作用[12]。由于猫跳河流域属于典型的碳酸盐岩区，其 DIC 的来源主要是流域碳酸岩石化学风化产物和流域输入的有机质分解释放的 CO₂ 带入，入库水体 DIC 的碳同位素组成主要受到输入水体中的河水和地下水的影响。一般说来，机械侵蚀以输送有机碳为主，化学侵蚀以输送无机碳为主[6]。研究报道：乌江流域土壤有机质形成的 δ¹³C_DIC 值冬季为 -19‰，夏季为 -16‰。流域碳酸盐岩风化形成的 DIC 其 δ¹³C_DIC 值约为 0‰～2.0‰[17]。其次，对于水-气界面的 CO₂ 交换过程，大气 CO₂ 溶于水中形成的 HCO₃⁻ 其 δ¹³C 值约为 0‰～2.5‰[22-23]。再次，水体内部生物光合、呼吸作用及有机质的降解过程，也是影响水体中溶解无机碳的因素之一。淡水中水生光合作用利用溶解 CO₂ 合成有机碳的过程时存在大约为 20‰～23‰的同位素分馏[23-24]，从而使得剩余水体内的 δ¹³C_DIC 组成具有偏正趋势[17, 23]；而呼吸作用则使有
机质分解产生呼吸作用 DIC，该过程不存在较大的同位素分馏，但有机质解释释放大量较轻的^{12}C，可以使水体中δ^{13}C_{DIC}值偏负，同时也增加水体 DIC 含量。

4.1 溶解无机碳含量及其同位素组成时空分布特征

在本研究的观测期间，河流水体夏季 DIC 含量及δ^{13}C_{DIC}值明显呈正相关关系，但在秋季则相关性较弱，pH 值则与 δ^{13}C_{DIC}呈较弱的正相关关系（图 7）。总体上，夏季的 pH 值，δ^{13}C_{DIC}值较秋季高，且夏季水体的 pH 值变化范围较秋季的更大，夏季 DIC 含量比秋季低。这可能因，首先，丰水期间表水体及水体具有稀释作用，使得其 DIC 含量较高；其次，夏季水-气界面的 CO_{2} 交换，以及流域河流-水库表层水体 CaCO_{3} 的沉淀，可导致较^{12}CO_{2} 的释放进入水体中，从而使水体中δ^{13}C_{DIC}值偏正；第三，由于夏季光照强度较高，使得表层水体光合作用增强，主要吸收无机碳中的^{12}C，使得水体 DIC 含量降低，而 δ^{13}C_{DIC}偏负。综合以上因素表明，夏季表水体降低水体的 DIC 含量，但不改变水体 δ^{13}C_{DIC}值。水体的过饱和使得水-气交换对 δ^{13}C_{DIC}值影响较小，所以光合作用是影响 δ^{13}C_{DIC}值季节变化的主要因子。

在垂直剖面上，δ^{13}C_{DIC}随水体深度增加呈偏负趋势：水体 DIC 含量随水深的增加逐渐上升，这种趋势在夏季最为显著，见图 6。DIC 含量及δ^{13}C_{DIC}呈明显的负相关关系，pH 值与 δ^{13}C_{DIC}呈正相关关系，见图 8，这种现象在夏季较秋季更为明显。这一现象的原因在于：随着秋季水体水温分层现象逐渐消失，上下层水体混合，在水库底部形成的吸气作用 DIC 散发致表层，使得枯水期表层水体 DIC 含量较高，而 δ^{13}C_{DIC}偏负。由于水体水体垂直剖面上水温分层结构可以维持在整个夏季，有效限制了水库上、下水团的混合，上下层水体交换不畅，同时秋季为生物主要的生长季节，这使得整个水柱剖面上 DIC 及其碳同位素组成发生显著差异（图 6）。

4.2 水库拦截与溶解无机碳含量及其碳同位素组成的变化特征

已有研究表明，水库拦截时间越长，营养水平逐渐增高，其演化水平越高。水体 DIC 及其碳同位素
图 7 猫跳河流域水体 DIC 含量，pH 与 Δ13C_{DIC} 的关系

Fig. 7 Correlations of Δ13C_{DIC} to DIC and Δ13C_{DIC} to pH along the Maotiao River

图 8 猫跳河流域水库 pH, DIC 含量与 Δ13C_{DIC} 的关系

Fig. 8 Correlations of Δ13C_{DIC} to DIC and Δ13C_{DIC} to pH in reservoirs along the Maotiao River

素组成受水库生物地球化学过程的影响也越大[11]。从图 4 可以看出: 由于受到梯级水坝拦截，DIC 含量从上游到下游整体呈减少趋势，碳同位素值则逐渐偏负。由于受水坝拦截的影响，进入库区水温相对平缓，水量较大，加之水库内部水生植物的光合作用，因此，必将对河流进入的 DIC 含量起到稀释的作用。但是，由于水库内部过程的影响，表层主要以光合作用为主，而下层是以呼吸作用为主，导致表层水体的 DIC 含量较下层低，见图 6。这一现象随着河流远离库区而不断减弱，但是到了下一级水坝，经过拦截之后，又会出现相同的情况。同时在水库表层由于 CaCO₃ 的过饱和也会降低溶解 CO₂ 的量。因此，由图 4 和图 5 可以看出，水坝的拦截对于 DIC 含量的影响也同样显示出梯级效应。

由于上游到下游 CaCO₃ 的过饱和，即可能导致碳酸钙的大量沉淀，同时支流河水的不断汇入，向下 游河水流速逐渐变得缓慢，水体内部植物光合作用不断加强，吸收溶解态 CO₂ 的量逐渐增大，同时这也成为河水 DIC 含量向下游减少的一个重要原因。在垂直剖面上，表层水体中碳酸钙的 SI ≫ 0（图 3），表明表面水体受光照的影响，光合作用使得大量 的 CO₂ 被吸收，而下层水体却 < 0。由于受到下层水
体中的有机质的降解，增加了水体中的溶解 CO₂的浓度。在每一个水样之前，作为一段河流而言，猫跳河流域DIC向下层游是呈现出逐渐降低的趋势，而δ¹³C值也出现相应的偏左。由于各水样均为中下层水样，下层水样由于受到呼吸作用导致溶解 CO₂量的增加，进而促使下层水的 CaCO₃的不饱和。

5 结论

（1）天然河流被拦截形成片断化的“蓄水河流”后，河水化学性质发生了变化。研究表明，猫跳河流域河-水系体系中的离子以 HCO₃⁻和 SO₄²⁻为主，离子总量以 Ca²⁺和 Mg²⁺为主，河流拦截后水化学特征发生了显著的变化，总体上，研究结果可以表明：水坝拦截对于河流中碳具有显著的拦截改造作用。

（2）夏季光照较好，光合作用优先使用C₂，残余水体富集¹³C，秋季有机质降解强烈，使得残余水体亏损¹³C，对于水库而言，水体表层δ¹³C值较水库底层偏正，这一结果在夏季尤为明显，说明光合作用是影响水库碳水体同位素组成的主要因素。

（3）猫跳河流域的水体中溶解无机碳（DIC）及其同位素（δ¹³C）组成总体特征表现为：DIC 含量从上游至下游呈现逐渐降低的趋势。而 δ¹³C 值从上游至下游呈逐渐偏负的趋势，猫跳河流域表层碳酸钙的饱和指数从上游至下游是逐渐增大，上述结果表明流域内水体中 DIC 主要受流域碳酸盐岩风化影响为主，同时水坝建成对于河流生物要素 C 具有一定程度的拦截改造作用。

致谢：对中国科学院地理研究所环境地球化学国家重点实验室邓龙年工程师、安宁工程在样品分析及文章撰写过程中给予的帮助表示衷心感谢！

参考文献

