Relationship of Biosorption Capacity of Heavy Metal Ions by Saccharomyces cerevisiae and Their Ionic Characteristics

CHEN Can, WANG Jian-long

(Laboratory of Environmental Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China)

Abstract: Utilizing similar methods and ideas of QSAR in metal toxicity assessment, we tried to establish the relationship between the ion characteristics of heavy metals and the biosorption capacity by waste biomass of Saccharomyces cerevisiae, obtained from a local brewery. The biosorption experiment was carried out and the maximum biosorption capacity (q_{max}) was determined by the Langmuir isotherm model. The values of q_{max} decreased in order on mole basis: Pb^{2+} > Ag^{+} > Cu^{2+} > Zn^{2+} > Cd^{2+} > Co^{2+} > Sr^{2+} > Ni^{2+} > Ca^{2+}. The biomass prefer to bind class B ions (Pb^{2+} and Ag^{+}), then borderline ions, and last hard ions (Sr^{2+} and Ca^{2+}) based on the HASB principle. Twenty two parameters of physicochemical characteristics of ions were selected to correlate q_{max}. Linear regression analysis showed that only one parameter, i.e., the covalent index X_{m}r was correlated well to q_{max} for all metal ions tested. The greater the covalent index value of metal ion was, the greater was the potential to form covalent bonds with biological ligands and the larger was the metal ion biosorption. Classification of metal ions (for divalent ion or for soft-hard ion) improved the models. More properties such as polarizing power Z'/r or the first hydrolysis constant (lgK_{sh}) or ionization potential IP were statistically significant. X_{m}r seemed to be suitable to account for metal ions containing soft ions whereas Z'/r or (lgK_{sh} or IP) suitable for only soft ions or metal ions without soft ions.

Key words: ion characteristics; QSAR; biosorption; Saccharomyces cerevisiae; heavy metal ions

生物吸附法是一种新兴的废水处理方法，适宜处理大体积低浓度重金属废水。近年来发表了大量关于生物吸附的文章，大部分集中于反应条件的研究，其次是利用仪器分析和表面分析等方法，如红外IR，扫描电镜SEM，透射电镜TEM方法研究金属离子的吸附机理。关于金属离子本身性质对吸附容量的影响，还鲜见报道[1].

QSAR（quantitative structure activity relationships）广泛应用于有机物药物学和毒理学研究，在金属离子毒性评价领域中也有所应用。由于金属离子种类、络合作用与生物体的相互关系复杂，离子毒性预测和评价较为困难。金属离子特征-活性关系表明，金属阳离子与某些物理化学结构参数确实存在某种关系，可以评价和预测离子毒性[2]. 近年来金属离子毒性评价领域研究逐渐活跃[3-8].

金属离子性质-活性关系的研究，其理论基础是金属离子的分类、金属离子与生物体表面官能团的相互作用、HSAB（hard soft acid base principle）理论。重金属生物吸附中，离子被吸附的重要机理包括络合和离子交换等，羧基、羟基、氨基及巯基等在离子吸附中发挥了重要作用[9-14]. 因此，可以尝试将离子
毒性研究的 QSAR 方法和成果应用于金属离子生物吸附领域，探索离子性质对生物体吸附量的影响。研究表明，金属离子与生物体相互作用机理，甚至预测重金属离子的吸附量。Avery 等[11]利用 HSAB 原则成功地解释了酵母吸附 Cr⁶⁺, Mn³⁺, Zn²⁺, Cu²⁺, Cd²⁺, Ti⁴⁺的行为，以及离子与生物细胞表面配体结合的键的性质。Tsevos 等[12]的工作表明，基于 HSAB 原则的金属离子的 Pearson 分类方法，对于解释 Pd, Au, U, Y, Ag, Ni 离子之间竞争吸附现象，是一个有用的工具。

利用废弃的酿酒酵母处理重金属废水，可以达到以废治废的目的。本研究利用工业废弃的酿酒酵母 Saccharomyces cerevisiae 作为吸附剂，吸附 10 种金属离子，包括 Ag⁺, Cs⁺, Zn²⁺, Pb²⁺, Ni²⁺, Cu²⁺, Co²⁺, Sr²⁺, Cd²⁺, Cr³⁺。根据 Nieboer 离子分类[13]和 Pearson 分类[14]，并稍作调整，将金属离子分为 3 类：A 类，硬离子 (Sr²⁺ 和 Ca²⁺), B 类，软离子 (Pb²⁺ 和 Ag⁺) 以及中间离子 (Zn²⁺, Ni²⁺, Cu²⁺, Co²⁺, Cr³⁺)。利用 Langmuir 模型计算得到金属离子最大理论吸附量 qₘₐₓ，并以其表征吸附容量。选择 22 种结构参数表征金属离子的各类理化性质，利用经济计量学软件 Evies 4.1 对 qₘₐₓ 与离子性质 (结构参数) 进行模拟，得到一系列线性模型，并在显著性水平 0.05 上通过 F 检验。

1 材料与方法

1.1 吸附剂

废弃的酿酒酵母由燕京啤酒厂提供。研磨后过 100 目（150 μm）筛，保存于干燥器中备用。

1.2 吸附试验

由去离子水将分析纯金属硝酸盐分别配制成 Ag⁺, Cs⁺, Zn²⁺, Pb²⁺, Ni²⁺, Cu²⁺, Co²⁺, Sr²⁺, Cd²⁺, Cr³⁺ 浓度 10 mmol/L 的储备液，使用前稀释。

取 0.1 g 酵母粉置于 100 mL 三角瓶，量取 50 mL 重金属离子溶液倒入三角瓶中，迅速置于恒温摇床中振荡 (30 ℃, 150 r/min)，一定时间后取下离心分离 (12 000 r/min, 5 min)，收集上清液进行分析。为避免缓冲溶液中的成分可能干扰酵母对金属离子的吸附，溶液 pH 值用缓冲溶液调节。金属离子溶液的初始 pH 值用优级纯硝酸调节为 4.0 左右，以避免或减少金属离子的沉淀。

ICP-AES (全谱直读等离子体发射光谱仪，仪器型号：美国热电 IRIS Intrepid II XSP) 或者火焰原子吸收法 (AAS 6 Vario) 测定上清液金属离子的浓度。

吸附等温线试验中离子初始浓度设计为：0.16, 0.32, 0.6, 1.0, 1.6, 2.0, 3.0, 4.0, 6.0 和 8.0 mmol/L。预实验表明，除 Cr³⁺ 吸附平衡需要 18 h 外，其他离子 3 h 即可达到吸附平衡。

1.3 吸附容量的确定

利用 Langmuir 方程的线性表达式：

\[
1/q_m = 1/q_{\text{max}} + 1/(q_{\text{max}} b) c_e
\]

拟合吸附等温线数据得到参数 qₘₐₓ 作为金属离子吸附容量。式中，qₘₐₓ 是平衡吸附量；cₑ 是平衡浓度 (mmol/L)；qₘₐₓ 是理论饱和吸附容量 (mmol/g)；b 是 Langmuir 常数，与吸附能量有关。

1.4 金属离子性质和模型拟合方法

选择了 22 种结构参数 (变量) 表征金属离子的各种物理化学性质。其中，参数 AN, r (Å), ΔIP (eV), ΔE₀ (eV), Xₚ, ln K₀H₁, Xₘ, Z₁, Z₂, r, AN/ΔIP, σ₀ 的数值来源于文献[15]；OX, AR, AW, IP, AR/AW 来源文献[6]；Z₁, Z₂, r 和 N 来源于文献[16]；Z₁/r, Z₁/AR², Z₁/r, Z₁/AR 可根据文献[6, 15]计算。

各参数简单说明如下：

AN = 原子序数, 可反映离子大小; r = Pauling 离子半径 (Å); ΔIP = 元素在 OX 以及 OX⁻¹ 状态间电离势的变化 (eV); ΔE₀ = 电化学势, 反映离子电离能力 (V); Xₚ = Pauling 电负性, 反映接受电子能力; ln K₀H₁ = 第一水解常数自然对数的绝对值, 反映离子水解能力; Xₘ, Z₁, r, σ₀ = 比值指数, 反映共价相互作用相对于离子相互作用的重要性; Z₁/r = 极化力或离子指数 (Z = 离子电荷), 反映静电相互作用和形成离子键的趋势; AN/ΔIP = 原子序数/电离势变化, 影响金属离子与配体的相互作用; σ₀ = 极化指数; 定义为 (Coordinated bond energy of the metal fluoride) – (Coordinate bond energy of the metal iodide)/ (Coordinate bond energy of the metal fluoride); OX 氧化数; AR = 原子半径; AW = 原子量; IP = 电离势, 反映了轨道能; AR/AW = 原子半径和原子量之比, 反映离子电离电势; Xₚ = 有效离子电荷; Z₁/r, Z₁/r 和 Z₁/r², 类似于 Z₁/r² = 极化力的其他表达形式; Z₁/AR² 以及 Z₁/AR = 极化力参数。根据 Wolterbeek 等建议[6]，在选择离子性质时，应首先采用更一般、更易获得的物化性质。例如，用原子半径 Ar 代替离子半径 r, 因此仿照极化力参数的表达式，将 r 改为 Ar, 产生 2 个极化力参数 Z₁/Ar² 以及 Z₁/Ar = 阳离子价层电子数，反映了电子构型。

离子特性与 qₘₐₓ 之间的线性模型通过经济计量学软件 Evies 4.1 得到，显著性水平设为 α = 0.05.
2 结果与讨论

2.1 最大理论吸附量 \(q_{\text{max}} \)

利用 Langmuir 方程计算，计算得到 S. cerevisiae 吸附各种重金属离子的最大吸附容量，列于表 1.

表 1 根据 Langmuir 方程计算的 S. cerevisiae 吸附重金属的最大吸附容量

<table>
<thead>
<tr>
<th>金属离子</th>
<th>(q_{\text{max}}/\text{mmol} \cdot \text{g}^{-1})</th>
<th>(R^2)</th>
<th>离子分类</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb^{2+}</td>
<td>0.413</td>
<td>0.917</td>
<td>B 类(软离子)</td>
</tr>
<tr>
<td>Ag^{+}</td>
<td>0.385</td>
<td>0.991</td>
<td>B 类(软离子)</td>
</tr>
<tr>
<td>Cr^{3+}</td>
<td>0.247</td>
<td>0.935</td>
<td>中间离子</td>
</tr>
<tr>
<td>Cr^{6+}</td>
<td>0.161</td>
<td>0.976</td>
<td>中间离子</td>
</tr>
<tr>
<td>Zn^{2+}</td>
<td>0.148</td>
<td>0.956</td>
<td>中间离子</td>
</tr>
<tr>
<td>Cd^{2+}</td>
<td>0.137</td>
<td>0.954</td>
<td>中间离子</td>
</tr>
<tr>
<td>Cd^{3+}</td>
<td>0.128</td>
<td>0.967</td>
<td>中间离子</td>
</tr>
<tr>
<td>Sn^{2+}</td>
<td>0.114</td>
<td>0.973</td>
<td>A 类(硬离子)</td>
</tr>
<tr>
<td>Ni^{2+}</td>
<td>0.108</td>
<td>0.977</td>
<td>中间离子</td>
</tr>
<tr>
<td>Cs^{+}</td>
<td>0.092</td>
<td>0.982</td>
<td>A 类(硬离子)</td>
</tr>
</tbody>
</table>

以摩尔为基础(\(\text{mmol/g} \))，酿酒酵母对重金属离子的亲和力顺序为: \(\text{Pb}^{2+} > \text{Ag}^+ > \text{Cr}^{3+} > \text{Cu}^{2+} > \text{Zn}^{2+} > \text{Cd}^{2+} > \text{Co}^{2+} > \text{Sr}^{2+} > \text{Ni}^{2+} > \text{Cs}^+ \)，吸附容量 \(q_{\text{max}} \) 亲和力顺序表明，细胞对软离子的吸附量最高 (\(\text{Pb}^{2+} \) 和 \(\text{Ag}^+ \)), 其次是中间离子 (\(\text{Cr}^{3+} \), \(\text{Cu}^{2+} \), \(\text{Zn}^{2+} \), \(\text{Cd}^{2+} \), \(\text{Co}^{2+} \)), 吸附量最低的是硬离子 (\(\text{Sr}^{2+} \) 和 \(\text{Cs}^+ \)). 作为中间离子, \(\text{Ni}^{2+} \) 吸附量偏低，低于硬离子 \(\text{Sr}^{2+} \).

Tobin 等\[17\]报道，R. arthrius 甚至不吸附碱金属 \(\text{K}^+ \), \(\text{Na}^+ \) 和 \(\text{Cs}^+ \) 等硬离子。这与许多文献报道吻合或接近\[1\]. 例如，Rhizopus arthrius 的吸附量为\[18\]（以摩尔为基础): \(\text{Pb}^{2+} > \text{Cu}^{2+} > \text{Cd}^{2+} > \text{Zn}^{2+} > \text{Mn}^{2+} > \text{Sr}^{2+} \); 糖蜜渣的理论吸附量为\[19\]（利用 Langmuir 模型计算)：\(\text{Pb}^{2+} > \text{Cu}^{2+} > \text{Zn}^{2+} > \text{Cd}^{2+} > \text{Ni}^{2+} \). Rhizopus arthrius 的吸附量\[17\]: \(\text{UO}_2^{2+} > \text{Cr}^{3+} > \text{Pt}^{2+} > \text{Ag}^+ > \text{Ba}^{2+} > \text{La}^{3+} > \text{Zn}^{2+} > \text{Hg}^{2+} > \text{Cd}^{2+} > \text{Cu}^{2+} > \text{Mn}^{2+} > \text{Na}^+ \), \(\text{K}^+ \), \(\text{Rb}^+ \), \(\text{Cs}^+ \) 均为 0.

通常，软离子主要以共价键与生物体配体相互作用，而硬离子主要通过静态相互作用与生物相互作用。\(\text{Ni}^{2+} \) 吸附量低, Reddall 等\[19\]也有所报道, 认为离子交换是糖蜜渣吸附 \(\text{Ni}^{2+} \) 唯一机理。\(\text{Sr}^{2+} \) 是硬离子，生物吸附中仍然存在一定程度的共价结合，尽管离子结合作用比重大得多\[11\]. 本研究再一次证明, HSAB 理论是一种有用的工具, 可对金属生物吸附行为做出一定的解释。

在相同反应条件下, 酿酒酵母对各种重金属离子亲和力顺序性的不同，反映了金属离子性质对吸附容量 \(q_{\text{max}} \) 的影响。

2.2 离子性质与 \(q_{\text{max}} \) 的线性模型关系

2.2.1 所有受试金属离子

利用经济计量学软件 EViews 4.1 分析了金属离子特性与 \(q_{\text{max}} \) 之间的关系，见表 2, 其中的统计学参数如下: \(n \) = 样本数 (参加模型拟合的金属离子个数); \(R^2 \) = 决定系数; \(R^2_{\text{adj}} \) = 调整复相关系数的平方; \(\text{SE} \) = 模型回归标准偏差; \(F \) 值 (\(F \) 检验); \(p \) = 显著概率; MAPE = 预测值与实验值的平均绝对百分误差 (mean absolute percent error).

结果表明 (表 2), 22 种结构参数中仅其共价指数 \(X_{\text{max}}^2 \) r 特别显著，而 \(\text{AR} / \text{AW} \) 以及 \(Z^* \) 仅一般显著 (未显示)。\(X_{\text{max}}^2 \) r 可以解释 \(q_{\text{max}} \) 的 67% 的变化，模型预测平均百分误差约 27%.

表 2 金属离子最大吸附容量 (\(q_{\text{max}} \))与离子性质之间的关系 (\(n = 10 \))

<table>
<thead>
<tr>
<th>离子性质</th>
<th>(q_{\text{max}})</th>
<th>(R^2)</th>
<th>(R^2_{\text{adj}})</th>
<th>(\text{SE})</th>
<th>(F)</th>
<th>(p)</th>
<th>MAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb^{2+}</td>
<td>0.029 ± 0.061</td>
<td>0.70</td>
<td>0.67</td>
<td>0.067</td>
<td>19.04</td>
<td>0.002</td>
<td>27.36</td>
</tr>
</tbody>
</table>

各种重金属离子的 \(X_{\text{max}}^2 \) r 与其理论最大吸附容量之间的关系如图 1 所示。

图 1 金属离子的最大吸附容量 \(q_{\text{max}} \) 与共价指数 \(X_{\text{max}}^2 \) r 之间的关系

Fig. 1 Relationship between maximum biosorption capacity with corresponding covalent index values.

图 1 表明，金属离子的共价指数越大，相应的吸附量越大。Brady 等\[10\]报道了 \(X_{\text{max}}^2 \) r 与冷冻干燥细胞 R. arthrius 对金属离子 \((\text{Sr}^{2+}, \text{Mn}^{2+}, \text{Zn}^{2+}, \text{Cu}^{2+}, \text{Pb}^{2+}) \) 的平衡吸附量和 R. nigricana 对金属离子 (\(\text{Fe}^{2+}, \text{Ag}^+, \text{Fe}^{3+}, \text{Pb}^{2+}, \text{Cu}^{2+}, \text{Cd}^{2+}, \text{Sr}^{2+}, \text{Zn}^{2+}, \text{Ni}^{2+}, \text{Li}^+, \text{Al}^+ \)) 的理论吸附容量呈正相关关系。
表3 金属离子(二价)最大吸附容量(q_{max})与离子性质之间的关系 (n = 8)

<table>
<thead>
<tr>
<th>模型</th>
<th>R²</th>
<th>R²_{adj}</th>
<th>SE</th>
<th>F</th>
<th>p</th>
<th>MAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_{max} = -0.026 + 0.005 (AV)</td>
<td>0.83</td>
<td>0.79</td>
<td>0.049</td>
<td>24.01</td>
<td>0.004</td>
<td>24.20</td>
</tr>
<tr>
<td>q_{max} = 0.060 (X_{m}^{-r})</td>
<td>0.89</td>
<td>0.87</td>
<td>0.039</td>
<td>39.77</td>
<td>0.001</td>
<td>22.30</td>
</tr>
<tr>
<td>q_{max} = 0.039 + 0.026 (AV/ΔIP)</td>
<td>0.59</td>
<td>0.50</td>
<td>0.076</td>
<td>7.07</td>
<td>0.045</td>
<td>32.30</td>
</tr>
<tr>
<td>q_{max} = 0.002 + 0.002 (AW)</td>
<td>0.84</td>
<td>0.81</td>
<td>0.047</td>
<td>25.94</td>
<td>0.004</td>
<td>23.14</td>
</tr>
<tr>
<td>q_{max} = -0.24 + 0.28 (Z^{+})</td>
<td>0.65</td>
<td>0.58</td>
<td>0.069</td>
<td>9.35</td>
<td>0.028</td>
<td>30.38</td>
</tr>
</tbody>
</table>

表4 金属离子(中间离子与硬离子)最大吸附容量(q_{max})与离子性质之间的关系 (n = 8)

<table>
<thead>
<tr>
<th>模型</th>
<th>R²</th>
<th>R²_{adj}</th>
<th>SE</th>
<th>F</th>
<th>p</th>
<th>MAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_{max} = -0.013 + 0.077 (OX)</td>
<td>0.75</td>
<td>0.71</td>
<td>0.026</td>
<td>17.76</td>
<td>0.005</td>
<td>15.94</td>
</tr>
<tr>
<td>q_{max} = 0.042 + 0.011 (ΔIP)</td>
<td>0.65</td>
<td>0.59</td>
<td>0.031</td>
<td>11.19</td>
<td>0.015</td>
<td>15.24</td>
</tr>
<tr>
<td>q_{max} = 0.273 - 0.013 (lg K_{OH})</td>
<td>0.83</td>
<td>0.80</td>
<td>0.021</td>
<td>29.21</td>
<td>0.002</td>
<td>12.01</td>
</tr>
<tr>
<td>q_{max} = 0.079 + 0.11 (Z^{+}/r)</td>
<td>0.87</td>
<td>0.85</td>
<td>0.019</td>
<td>39.21</td>
<td>0.001</td>
<td>10.20</td>
</tr>
<tr>
<td>q_{max} = 0.047 + 0.006 (IP)</td>
<td>0.80</td>
<td>0.77</td>
<td>0.023</td>
<td>24.42</td>
<td>0.003</td>
<td>11.80</td>
</tr>
<tr>
<td>q_{max} = 0.077 + 0.019 (Z^{+}/r)</td>
<td>0.77</td>
<td>0.73</td>
<td>0.025</td>
<td>19.74</td>
<td>0.004</td>
<td>12.97</td>
</tr>
<tr>
<td>q_{max} = 0.069 + 0.07 (Z/AR)</td>
<td>0.63</td>
<td>0.57</td>
<td>0.031</td>
<td>10.20</td>
<td>0.019</td>
<td>15.92</td>
</tr>
<tr>
<td>q_{max} = 0.053 + 0.055 (Z^{+}/r)</td>
<td>0.77</td>
<td>0.73</td>
<td>0.025</td>
<td>20.09</td>
<td>0.004</td>
<td>13.01</td>
</tr>
<tr>
<td>q_{max} = 0.044 + 0.069 (Z/AR)</td>
<td>0.69</td>
<td>0.64</td>
<td>0.029</td>
<td>13.47</td>
<td>0.010</td>
<td>14.52</td>
</tr>
<tr>
<td>q_{max} = 0.102 + 0.02 (Z^{-}/r)^{1}</td>
<td>0.14</td>
<td>0.00</td>
<td>0.048</td>
<td>0.945</td>
<td>0.369</td>
<td>17.46</td>
</tr>
</tbody>
</table>

注：变量Z^{+}/r在0.05水平上对q_{max}不显著(α = 0.05)
11gK_{o1}数值越小[20]。11gK_{o1}和q_{max}间的密切关系揭示了水解现象在金属生物吸附过程中的重要作用，特别是半径小、电荷高的原子，极化力大，水合能力大，水解能力更强，易于形成微沉淀（microprecipitate），比如Pb^{2+}、Cr^{3+}具有较高的吸附量可能与其所带电荷大、具有强烈水解能力有关[17]。Newman等发现11gK_{o1}能很好地预测金属离子毒性，被认为反映了金属离子与中间配体如含氧基团的结合趋势[3]。极化力表达式中，Z/r拟合效果最好，不过其他极化力参数Z/r^2和Z/r拟合效果也非常显著。似极化力参数Z/rAr^2、Z/Ar拟合效果稍差，但是仍然显著，值得注意的是考虑了有效核电荷和电子构型的极化力参数Z/r^2和q_{max}似乎不存在线性关系。在对中间离子（不含硬离子）的拟合中也可得到同样的规律（未显示）。另外，更易得到数值，更具普遍性的参数IP拟合效果优于ΔIP、ΔE_{0}（V）、X_{m}、σ_{p}，Z/r^2和q_{max}没有明显的直接的关系。

2.3 离子性质与q_{max}关系的进一步讨论

对于含有软离子的离子，共价指数X_{m}与r是所有22个变量中拟合效果最好的共价参数，预测值最大。对于不含软离子的离子，水解常数、电离势以及极化力成为q_{max}预测中最有价值的3个结构参数。极化力越大，11gK_{o1}数值越小，离子水解能力越大，易水解离子可形成金属氢氧化物等微沉淀，可能是金属生物吸附作用机理之一，部分解释了Pb^{2+}和Cr^{3+}离子的吸附量高的现象。

有时，不同的离子参数反映了离子相同的性质，或者相同的离子性质影响不同的离子参数值大小。例如，电离势IP反映了电负性X_{m}，二者都表示电子亲和力、离子电荷，离子半径都影响共价指数和离子指数，但是，这些离子性质往往不能同时较好地拟合q_{max}，即使拟合效果较好的离子性质，有时也难以从生物吸附角度给出有价值的物理意义，探讨吸附机理，另外，离子配体的相互作用，受到反应条件的影响，如离子初始浓度、pH值等，都会影响生物吸附机理。因此在利用Q SAR模型，用离子性质来解释吸附现象时应该注意反应条件，得出的结论应谨慎。

尽管离子对吸附容量的解释有其局限性，但是本研究表明，利用Q SAR方法，研究离子性质对生物吸附的影响是可行的，为探讨离子—生物体的相互作用机理提供了新的思路和方法。显然，还需要做更多的工作，来了解离子性质—生物吸附行为之间的相互关系，从而理解隐藏在其中的生物吸附机理。

3 结论

（1）酿酒酵母Langmuir理论最大吸附容量q_{max}的大小顺序（以摩尔为基础）是：Pb^{2+} > Ag^{+} > Cr^{3+} > Cu^{2+} > Zn^{2+} > Cd^{2+} > Co^{2+} > Sr^{2+} > Ni^{2+} > Ca^{2+}。酵母细胞对软离子（Pb^{2+}和Ag^{+}）的吸附量高，其次是中间离子（Cr^{3+}，Zn^{2+}，Cd^{2+}，Co^{2+}），硬离子（Sr^{2+}和Ca^{2+}）吸附量最低，符合酸碱（HSAB）原则。作为中间离子Ni^{2+}吸附量偏低。

（2）用22种重金属离子特性参数对所有受试离子q_{max}进行拟合，发现共价指数X_{m}与r拟合效果最好，可解释q_{max}67%的变异。离子的X_{m}r数值越高，吸附量越大，离子与细胞的共价结合程度越高，对配体的亲和力顺序是：S > N > O。

（3）对金属离子按照价态分类拟合，或者按照酸碱原则进行分类拟合，可以改善模型。极化力、水解常数、电离势等多种物化性质与不含软离子的离子之间的理论最大吸附量也表现出良好的线性关系。

参考文献：

