万山汞矿区地表与大气界面间汞交换通量研究

王少锋1,2, 冯新斌1*, 仇广乐1,2, 付学吾1,2
(1. 中国科学院地球化学研究所, 贵阳 550002; 2. 中国科学院研究生院, 北京 100039)

摘要: 本文采用动力学通量箱与高时间分辨率大气自动采样仪联用技术对万山汞矿区不同季节、不同地点与大气界面间汞交换通量和大气汞含量进行的测定。结果表明，由于活动源（如采矿、冶炼等）和地表强烈汞蒸散，万山汞矿区大气汞含量高出背景区1~3倍数量级。在冶炼厂附近平均值可达1 101.8 ng/m³, 最低值可达 17.8 ng/m³, 显示万山汞矿区已遭受较严重的大气汞污染。万山汞矿区土壤与大气界面间汞交换非常强烈, 土壤向大气的汞交换通量最高可达 27 827 ng/(m²·h), 大气汞沉降通量最高可达 9 434 ng/(m²·h)。万山汞矿区土壤与大气汞交换通量主要受光照强度及大气汞含量影响, 光照在土壤汞交换过程中起促进作用, 而较高的大气汞含量则抑制了土壤向大气的交换, 并导致大气汞含量的干沉降。不同地点类型对大气汞交换影响较大, 植被覆盖土壤汞交换通量显著低于未被覆盖地区, 而冶炼厂的矿渣堆则成为大气汞的源地。

关键词: 土壤; 大气; 汞交换通量; 影响因素; 万山汞矿区

中国分类号: X53; X51 文献标识码:A 文章编号: 0250-3301(2006)08-1487-08

Mercury Exchange Fluxes Between Air and Soil Interface over Different Type of Land in Wanshan Hg Mine Area

WANG Shaofeng1,2, FENG Xinbin1, QIU Guanglei1,2, FU Xuewu1,2
(1. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; 2. Graduated School of Chinese Academy of Sciences, Beijing 100039, China)

Abstract: Air/soil Hg exchange fluxes were measured using field chamber-automated air mercury analyzer method over different land in Wanshan Hg mine area in two seasons. The results showed that the air/soil Hg exchange fluxes were very strong. The highest Hg emission flux from soil was 27 827 ng/(m²·h), the highest Hg deposition flux from the atmosphere was 9 434 ng/(m²·h). Because of Hg emission from anthropogenic activities and natural lands, the Hg concentrations in air in Wanshan Hg mine area are 1~3 orders of magnitude greater than background area. The highest average Hg concentration in air reached 1 101.8 ng/m³, and the lowest average Hg concentration in air still reached 17.8 ng/m³. These indicated that the atmosphere was polluted seriously in Wanshan Hg mine area. The Hg exchange fluxes are influenced by solar irradiation and the Hg concentrations in air. The solar irradiation accelerates the Hg emission from soil. Conversely, the Hg concentration in air restrained the Hg emission from soil, and even leads the Hg concentration deposition to soil surface. The Hg emission fluxes from uncovered soil are higher than that from covered soil by vegetation significantly. And the slag becomes net atmospheric Hg source.

Key words: soil; air; Hg exchange flux; impact factors; Wanshan Hg mine area

大气在作为重要的汞汇和库的同时, 也是汞迁移的重要通道。在过去的 100a 中, 大气汞含量增加了 3 倍[1,2]。汞在大气中存在的形态有气态汞(HgO)、汞蒸汽和汞化合物和颗粒态汞, 主要为 HgO (~ 90%)[3], 由于气态 HgO 在大气中的滞留时间可达 1a 以上, 因此大气中的 HgO 能够通过大气循环从大气环迁移到偏远地区, 再经过干湿沉降到达地表生态环境, 或进入水体转化为有机态, 从而对生物和环境产生影响[3-6]。

长期以来, 自然汞高浓度地区一直被认为是非常重要的大气汞源[3-5]。对自然高浓度地区土壤所含汞通量的测定及年交换量的估算对于大气汞科研的重要方面。在过去的几年中, 一些学者应用界面汞交换通量测定技术(如动力学通量箱法, 微气象法)对部分矿区土壤/大气汞交换通量进行了测定和研究, 取得了一定的成果[1-14]。

气的年释汞量的系统数据则较为缺乏，仅有冯新斌等20对丹寨汞矿区和王少峰等21对灌木滩汞矿区土壤释汞通量进行了的测定，这对准确、完整地理解汞矿区汞的生物地球化学循环是非常不利的。

1 研究地区和方法

1.1 采样点概况

万山汞矿区位于湘黔汞矿区南段，呈北东向延伸，汞矿床限制在北27°东方向，宽约为4 km的一个窄而长的带状范围内，矿区主要有岩屋坪矿田、万山矿田及龙田冲矿田3个主要矿田组成，区内地层主要为寒武系，矿区已查明22个汞矿床，其中以杉木穆、张家湾、岩屋坪、客寨4个矿床规模最大，为了少数矿床共生硒，多数矿床为单一汞矿床，矿石成分单一，主要有辰砂，次为黑辰砂、自然汞、辉镍汞，伴生有辉锑矿、闪锌矿、黄铁矿等。矿石品位较高，矿床平均品位一般高于0.25%，最高品位可达30%左右22。

万山汞矿区地形较为复杂，植被覆盖率较高，主要为灌木覆盖的山地和农业用地。分别于2002-11-17 ～ 2002-11-23（冷季）和2004-07-31 ～ 2004-08-11（暖季）分为冷暖2季对万山汞矿区9个采样点的大气汞含量和土壤释汞通量进行了测定。采样点分布和描述见图1和表1。

表1 万山汞矿区各采样点地貌特点描述

<table>
<thead>
<tr>
<th>采样点</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>位于万山汞矿冶炼厂附近农田，土壤主要为黑色粘土。</td>
</tr>
<tr>
<td>2</td>
<td>位于大溪山水谷内，土壤主要为被农业后耕种的耕田，冬季有稻田，为黑色土壤源地。</td>
</tr>
<tr>
<td>3</td>
<td>位于万山4坑尾跃矿采坑以西，主要为冷凝残余的矿渣，上层为黑色粘土。</td>
</tr>
<tr>
<td>4</td>
<td>位于大溪山水谷内农田，土壤主要为较疏松的粘土。</td>
</tr>
<tr>
<td>5</td>
<td>位于靠近水田约3 m的农田内，土壤主要为风化土，田内种植有稻属类作物。</td>
</tr>
<tr>
<td>6</td>
<td>位于大溪山水谷内水稻田，适宜于土壤中，中层为植物，上层为稻谷，高约30 cm。</td>
</tr>
<tr>
<td>7</td>
<td>位于稻田内采样，对土壤扰动较小。</td>
</tr>
<tr>
<td>8</td>
<td>位于采样点附近2 km的草地，适宜于土壤中，土壤为灰色粘土。</td>
</tr>
<tr>
<td>9</td>
<td>位于4坑尾跃矿采坑，主要为冷凝残余的矿渣。</td>
</tr>
</tbody>
</table>

1.2 汞交换通量测定方法及仪器

采用目前国际上广泛应用的动力学通量箱法测定土壤/大气界面间汞交换通量21～25，与国外普遍采用的四氟乙稀通量箱相比，用石英玻璃制成的通量箱具有空白低(2.0 ± 1.6 ng/(m²·h))，易清洗，可重复使用等特点。通量箱呈半圆柱状，规格为2 × (0.1 m) × 0.6 m，底面积0.12 m²，2层玻璃分别有进气孔和出气孔。将通量箱置于土壤表面，土壤将通量箱的边缘密封，避免因气流而造成的测定误差，并用聚四氟乙烯管将通量箱与大气自动测汞仪Tekran\textcopyright 2537A(加拿大Tekran\textcopyright公司生产)连接，Tekran\textcopyright 2537A每5 min可采集一个大气样，A和B2根捕汞管轮流采样，用冷蒸汽原子荧光光谱法(CVAFS)进行分析。通过使用配套的Tekran\textcopyright 1100，可以控制Tekran\textcopyright 2537A交替采集并测定输出通量箱的气体和进入通量箱的气体的汞含量(Ca和Cb)，用计算机记录数据。同时，用抽气泵对通量箱抽气，使通量箱中空气流量保持在0.9 m³/h26,27，避免因空气流速的变化而对通量的测定产生影响(图2)。
光照等气象数据。

1.3 计算方法

根据质量守恒定律，汞交换量计算公式如(1)式[24]：

\[F = \left(\frac{C_a - C_i}{A} \right) \times Q \]

式中，\(F \)：汞交换量，ng/(m²·h)；\(C_a \)：流出通量箱气体的汞含量，ng/m³；\(C_i \)：进入通量箱气体的汞含量，ng/m³；\(Q \)：通量箱内的空气流量，m³/h；\(A \)：通量箱的底面积，m²。取 2 个进入通量箱气体汞含量的平均值与其前后各 2 个流出通量箱子气体汞含量的平均值的差用以计算汞交换量以降低偶然性造成的计算误差。

1.4 土壤总汞测定方法

采集了各通量采样点表层土壤样品，冷冻干燥后磨磨过 100 目筛，取 0.2g 样品用王水+BrCl 混合溶液在水浴中保持 90℃消化 30min，利用冷原子吸收法进行测定。测定结果见表 2。

表 2 万山汞矿区土壤-大气汞交换通量、大气汞含量及气象参数

| 样品点 | 季节 | 通量箱通量/n/m²·h | 大气汞含量/n/m³·h | 土壤汞含量 | 光照强度 | 土壤温
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>采样点</td>
<td>位置</td>
<td>最大值</td>
<td>最小值</td>
<td>平均值</td>
<td>标准偏差</td>
<td>位置</td>
</tr>
<tr>
<td>1</td>
<td>冬季</td>
<td>酒泉</td>
<td>11392</td>
<td>18</td>
<td>968</td>
<td>2137</td>
</tr>
<tr>
<td>2</td>
<td>冬季</td>
<td>酒泉</td>
<td>27827</td>
<td>108</td>
<td>8385</td>
<td>6770</td>
</tr>
<tr>
<td>3</td>
<td>冬季</td>
<td>酒泉</td>
<td>6973</td>
<td>5</td>
<td>519</td>
<td>967</td>
</tr>
<tr>
<td>4</td>
<td>冬季</td>
<td>酒泉</td>
<td>6663</td>
<td>162</td>
<td>1711</td>
<td>2073</td>
</tr>
<tr>
<td>5</td>
<td>冬季</td>
<td>酒泉</td>
<td>1292</td>
<td>14</td>
<td>393</td>
<td>344</td>
</tr>
<tr>
<td>6</td>
<td>冬季</td>
<td>酒泉</td>
<td>619</td>
<td>8</td>
<td>151</td>
<td>182</td>
</tr>
<tr>
<td>7</td>
<td>冬季</td>
<td>酒泉</td>
<td>312</td>
<td>8</td>
<td>162</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>冬季</td>
<td>酒泉</td>
<td>1191</td>
<td>46</td>
<td>338</td>
<td>287</td>
</tr>
<tr>
<td>9</td>
<td>冬季</td>
<td>酒泉</td>
<td>1075</td>
<td>18</td>
<td>314</td>
<td>291</td>
</tr>
<tr>
<td>10</td>
<td>冬季</td>
<td>酒泉</td>
<td>1869</td>
<td>369</td>
<td>1061</td>
<td>549</td>
</tr>
<tr>
<td>11</td>
<td>冬季</td>
<td>酒泉</td>
<td>1185</td>
<td>0</td>
<td>330</td>
<td>267</td>
</tr>
<tr>
<td>12</td>
<td>冬季</td>
<td>酒泉</td>
<td>947</td>
<td>3</td>
<td>290</td>
<td>277</td>
</tr>
<tr>
<td>13</td>
<td>冬季</td>
<td>酒泉</td>
<td>3296</td>
<td>90</td>
<td>880</td>
<td>585</td>
</tr>
<tr>
<td>14</td>
<td>冬季</td>
<td>酒泉</td>
<td>265</td>
<td>115</td>
<td>183</td>
<td>76</td>
</tr>
</tbody>
</table>

2 结果与讨论

2.1 大气汞含量与汞交换通量

万山地区大气与大气汞交换强烈，既与表向大气释放汞又与大气汞的沉降(表2, 图3)。在点1的秋季，表向大气的释汞通量在午后左右达到 27827 ng/(m²·h)，与 Nevada 和 California 汞矿区大气的最高释汞通量相当[13,14]。表向大气的释汞通量平均值范围为 162~ 8385 ng/(m²·h)，高于贵州盘江厂汞矿区大气的释汞通量[21]。表向大气的释汞通量平均值范围为 162~ 8385 ng/(m²·h)，高出贵州盘江厂汞矿区大气的释汞通量平均值为 173~ 8385 ng/(m²·h)。地表释汞通量在点1 3.4 6.8 9 均表现出显著的日变化规律，中午左右达到最大值。在午夜至黎明前达到最小值，而在点2 5.7 土壤释汞通量明显波动较大，无明显日变化趋势，点1 3.4 6.8 9 的变化与大气汞含量的变化一致，这说明大气汞主要来源于地表向大气的释汞。点1 冬季的土壤释汞通量显著低于点3 大气汞含量变化范围较大，从 17.3~ 2459.5ng/m³，平均值从 17.3~ 1101.8 ng/m³，高出红光河地区1~ 3 个数量级，可见该地区已遭受严重的大气汞污染(表2)。
较大的波动和无规则的变化。在冷季采样过程中，风向对大气汞含量有显著影响。特别是点2(图4)，当风向为120°(东风)左右时，大气汞含量较低，且较平稳。当风向转为270°(西风)左右时，大气汞含量急剧升高。这说明，在冶炼厂附近有较强的人为扰动，导致大气汞含量发生急剧变化。

图3 万山汞矿区冷暖2季地表-大气汞交换通量变化

2.2 影响地表与大气汞交换的因素

自然界中气态汞化合物主要是气态单质汞(Hg)、HgCl2和甲基汞，由于二甲基汞和HgCl2在大气中的含量很低，因此目前人们对大气中的汞主要是HgHg。

自然汞富集地区土壤汞向大气的释放受多种因素控制，这些因素包括土壤自身性质及环境因素。其中土壤中总汞含量及形态上决定了作用，气体参数(如光照、温度等)及大气汞含量与土壤汞的排放也有密切的关系。室内实验证明土壤湿度的增加可以促进土壤汞向大气的释放，而大气相对湿度则对土壤释放无显著影响。由于仪器限制，未能测定土壤湿度，因此本文仅讨论土壤总汞含量及大气汞含量的波动。大气汞含量除了地表类型外，土壤大气汞交换通量的影响。

2.2.1 土壤总汞含量

土壤总汞含量是决定土壤大气汞交换通量的决定性因素。研究证明，在无人为污染干扰的条件下，土壤大气汞交换通量与土壤总汞含量之间存在显著的对数相关关系，而与土壤中汞的形态无关。由于受到人为活动干扰的干扰，万山地区土壤大气汞交换通量与土壤总汞含量之间没有表现出显著的对数
相关关系。但从表2可以看出，土壤汞含量较高的采样点土壤向大气汞释放量也较高，点1由于受到长期汞冶炼活动的影响，土壤受到非常严重的污染，其土壤汞含量达743.5 mg/g，比离冶炼厂和采矿点较远的点5高3个数量级，点1的土壤汞释放量比点5高2~3个数量级。由此可以说明土壤汞含量是决定土壤向大气汞释放量的本质因素。

2.2.2 光照强度

大量研究证明光照对土壤汞释放量有重要的影响。土壤（溶液）中Hg^{2+}的光致还原(Photoreduction)是土壤汞向大气释放的重要来源。万山汞矿区内点1、3、6、8、9的土壤汞释放量与光照强度强表现出显著的线性相关关系。表3,图5)。Gustin等通过试验证明在同种土壤释放过程中起主要作用的是光照 ($R^2 > 0.75$, $p < 0.12$)。最近，Bahlmann等进行进一步证明土壤汞释放仅与光照强度有关，与土壤温度无关。土壤释放汞的机制主要是气态汞汞(Hg0)，主要来源于土壤中活性汞(主要为Hg^{2+}及其化合物)的还原作用，包括光致还原、热还原和微生物还原等。热还原和生物还原作用速率较慢，而光致还原速率很快，且受光照强度的影响很大。故在土壤汞的自然释放过程中光照是主要影响因子之一。点2、5、7的土壤汞释放量与光照强度未表现出较强的线性关系。表3，这主要与其所处位置和大气汞含量的变化有关（见表1-2）。

2.2.3 大气汞含量

表3 万山汞矿区各采样点土壤汞释放量与光照强度相关性

<table>
<thead>
<tr>
<th>采样点</th>
<th>季节</th>
<th>相关系数(R)</th>
<th>显著性水平(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>冬季</td>
<td>0.74</td>
<td>< 0.01</td>
</tr>
<tr>
<td>1</td>
<td>春季</td>
<td>0.83</td>
<td>< 0.01</td>
</tr>
<tr>
<td>2</td>
<td>冬季</td>
<td>0.16</td>
<td>< 0.05</td>
</tr>
<tr>
<td>3</td>
<td>冬季</td>
<td>0.83</td>
<td>< 0.01</td>
</tr>
<tr>
<td>5</td>
<td>冬季</td>
<td>0.38</td>
<td>< 0.05</td>
</tr>
<tr>
<td>6.1</td>
<td>夏季</td>
<td>0.41</td>
<td>< 0.01</td>
</tr>
<tr>
<td>6.1</td>
<td>夏季</td>
<td>0.92</td>
<td>< 0.01</td>
</tr>
<tr>
<td>7</td>
<td>夏季</td>
<td>0.02</td>
<td>> 0.05</td>
</tr>
<tr>
<td>8.1</td>
<td>夏季</td>
<td>0.83</td>
<td>< 0.01</td>
</tr>
<tr>
<td>9</td>
<td>夏季</td>
<td>0.95</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

图5 湿地点1地表大气汞交换通量与光照强度的相关关系

图6 湿地点1地表大气汞交换通量与光照强度的相关关系

Engle等发现富汞气体能抑制土壤汞的释放，大约有5%~10%的气态汞在通过通量箱后被土壤表面吸附。王少锋等对高汞矿土境大气汞交换通量的研究发现大气(特别是土壤表面附
近大气) 总汞含量受土壤释汞通量影响很大。同时白天和夜间土壤释汞通量和大气汞含量存在相反的相关关系。在夜间, 大气汞含量能够影响土壤汞的释放。与土壤化合物不同, 万山汞矿区有较长的汞污染史, 人为活动对大气汞的干扰远远大于人为活动较少的土壤化合物区域, 从而大气汞含量对土壤汞释放的影响也不同。由表 4 可见, 除点 1.8. 1 表现出白天和夜间土壤释汞通量和大气汞含量存在不同的相关关系之外, 其他采样点均表现在土壤释汞通量和大气汞含量之间存在负相关关系, 而全部数据的相关关系除点 8.1 之外均表现出显著的负相关关系或不相关, 点 8.1 显示的总体显著正相关主要是由于较低的大气汞含量(平均 17.8 ng/m^2s) 和较高的土壤释汞通量(平均 880 ng/(m^2s)) 造成的。因此在万山汞矿区, 受人为活动的干扰, 较高的大气汞含量抑制了土壤汞向大气的自然释放, 导致大气汞向土壤界面大量沉降, 沉降通量最高可达 9434 ng/(m^2s)。(见表 2)。Kim 和 Lindberg[37] 在用微气象法 (Micrometeorological Gradient Approach) 测定土壤大气界面汞交换通量时发现界面上大气 Hg^0 迁移的方向与速率主要由土壤孔隙与大气中气态总汞的浓度梯度来决定, 即气态总汞会从汞浓度高的介质向汞浓度低的介质扩散, 浓度梯度越大扩散速率越高。由于人为活动的强烈干扰, 大气汞含量在点 2.5.7 出现强烈波动, 导致土壤与大气汞交换通量的强度和方向随大气汞含量的波动发生剧烈波动, 土壤释汞通量表现出不规则变化, 有 3 点土壤释汞通量与光照强度之间未发现较强的相关关系(例如点 2, 图 6)。

2.2.4 地表类型

表 4 土壤化合物各采样点白天和夜间土壤释汞通量与大气汞含量相关关系

<table>
<thead>
<tr>
<th>采样点</th>
<th>季节</th>
<th>白天 (R)</th>
<th>夜间 (R)</th>
<th>全部 (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>冬季</td>
<td>0.20, p < 0.05</td>
<td>-0.49, p < 0.01</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>冬季</td>
<td>0.50, p < 0.01</td>
<td>-0.71, p < 0.01</td>
<td>-0.08, p > 0.05</td>
</tr>
<tr>
<td>2</td>
<td>冬季</td>
<td>-0.60, p < 0.01</td>
<td>-0.92, p < 0.01</td>
<td>-0.73, p < 0.01</td>
</tr>
<tr>
<td>3</td>
<td>冬季</td>
<td>-0.24, p < 0.05</td>
<td>-</td>
<td>-0.24, p < 0.05</td>
</tr>
<tr>
<td>4</td>
<td>冬季</td>
<td>0.08, p > 0.05</td>
<td>-0.52, p < 0.01</td>
<td>-0.56, p < 0.01</td>
</tr>
<tr>
<td>5</td>
<td>冬季</td>
<td>0.27, p < 0.01</td>
<td>-0.21, p < 0.01</td>
<td>-0.69, p < 0.01</td>
</tr>
<tr>
<td>6.1</td>
<td>冬季</td>
<td>-0.31, p < 0.01</td>
<td>-0.19, p < 0.05</td>
<td>-0.38, p < 0.01</td>
</tr>
<tr>
<td>6.1</td>
<td>冬季</td>
<td>0.57, p < 0.01</td>
<td>-</td>
<td>-0.57, p < 0.01</td>
</tr>
<tr>
<td>7</td>
<td>冬季</td>
<td>-0.20, p < 0.01</td>
<td>-0.31, p < 0.01</td>
<td>-0.30, p < 0.01</td>
</tr>
<tr>
<td>8</td>
<td>冬季</td>
<td>0.93, p < 0.01</td>
<td>-0.62, p < 0.01</td>
<td>0.95, p < 0.01</td>
</tr>
<tr>
<td>9</td>
<td>冬季</td>
<td>0.60, p < 0.01</td>
<td>-0.64, p < 0.01</td>
<td>-0.62, p < 0.01</td>
</tr>
</tbody>
</table>

图 6 万山地区冬季采样点 2 大气汞含量、汞交换通量和光照强度变化

Fig. 6 Variations of Hg concentration in air, Hg exchange flux and solar irradiation at site 2 in Wanshan Hg mine in winter season
地表类型对土壤(或基质)向大气释汞有显著影响，裸露地表与植被覆盖地表释汞总量存在显著差异。对点 6(水稻田)有无水稻覆盖的土壤释汞总量的研究发现，受阳光直射土壤释汞总量约为有水稻覆盖的土壤平均值的3倍(表2，图3)。由于测定时土壤箱直接覆盖在土壤表面，未覆盖水稻，因此造成这种释汞总量差异的原因主要是水稻阻挡了部分光照。对点8有无草皮覆盖的土壤释汞研究发现，无草皮覆盖的土壤(点8-1)显示出向大气的释汞，释汞总量平均高达880 ng/(m²•h)；而有草皮覆盖的土壤(点8-2)则显示出向大气释汞的净沉积，沉积释汞总量为183 ng/(m²•h)(表2，图3)。最近的研究证明植物能够吸收大气中的汞，且存在补偿点，补偿点随光照强度和土壤含水量的升高而升高。当大气汞含量高于补偿点时，植物就会吸收大气中的汞，导致大气汞的沉积。因此，植物的存在不仅阻止了光照对土壤释汞的促进，而且能够吸收来自土壤表面释放到大气中的汞，这对净化由人为扰动造成的汞污染是有积极意义的。

由于形成机制不同，矿渣与土壤中组分差异较大。矿渣主要是岩石冶炼金属汞的产物，其中可能含有大量未被回收的单质汞。对点3、9矿渣向大气的释汞总量测定发现，矿渣表现出向大气的强烈释汞，释汞释放频率为95%以上，几乎未出现大气汞的沉积(表2，图3)。而污染程度较高的点1在湿季虽然有较高的释汞总量，但该点间歇性大气汞的沉积也非常强烈，沉积频率占45%以上(表2，图3)。显示出矿渣与土壤中汞吸附的形态不完全相同，土壤中汞的形态可能是活性汞。在光照的条件下，土壤释放的汞可能来自活性汞的氧化还原，在暗条件下，土壤中不再产生Hg°，释放的汞含量就可能导致大气汞的沉积。矿渣堆在白天和夜间均有较强的汞释放。白天较明显的日变化显示矿渣中Hg°的光致还原作用使Hg°的含量显著增加，促进了矿渣中汞向大气的释放。在夜间，矿渣堆仍表现出较高的释汞总量且较平稳，这显示出矿渣仍可能存在大量的单质汞(Hg°)存在，能够使矿渣向大气释汞，而矿渣堆表面大气中的汞含量保持一定的浓度差，从而不断地向大气释汞。因此，矿渣堆中除了有大量活性汞(Hg°)外，还有较高含量的单质汞。目前，万山汞矿区约有60000 m²矿渣暴露于空气中，是大气非常大的潜在汞源。

3 结论

(1) 受人为活动和强烈自然地表释汞的影响，万山汞矿区已受严重的大气汞污染，该区土壤释汞量和大气汞含量均高于保护区1-3个数量级。

(2) 土壤释汞量是影响土壤向大气释汞量的本质因素，总汞含量较高的土壤向大气释汞量较高。

(3) 光照作为重要的影响因素，促进了土壤汞向大气的释放，裸露土壤释汞总量与光照强度之间存在显著的正相关关系。

(4) 较高的大气汞含量抑制了土壤汞的自然释放，二者之间存在负相关关系。

(5) 不同的土表类型土壤释汞的强度和方式不同，植被覆盖的地区土壤释汞总量明显降低，甚至显示出大气汞的净沉积。

(6) 治理后的矿渣是大气汞的源性，其释汞频率占95%以上，显示出矿渣中汞的赋存状态与土壤不同，除了含有大量的活性汞(Hg°)，还有大量的单质汞(Hg°)。

参考文献:

