Terramycin Wastewater Treatment with Combination Hydrolysis Denitrification Nitrification

LIANG Cuizhen¹, YANG Min¹, Ma Weirun², WANG Dongsheng¹, LI Hongmei³
(1. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 2. Beijing Institute of Civil Engineering and Architecture, Beijing 100044, China; 3. China Huazhong Contracting and Engineering Corporation, Beijing 100029, China)

Abstract: Successive hydrolysis-denitrification nitrification process is adopted to treat terramycin wastewater in lab scale for 70 days. Two sludge bed reactors are used respectively for hydrolysis and denitrification, and two biofilm reactors are used for nitrification. When the COD and NH₄⁺-N concentrations in influent were 2 200 - 3 000 mg/L and 400 - 460 mg/L, more than 80% COD and TN removals were achieved under a total HRT of 56h. The COD of the effluent was reduced to 293 mg/L through coagulation under a polyferic sulfate dose of 48 mg/L as Fe³⁺.

Key words: terramycin wastewater; hydrolysis; denitrification; nitrification; nitrogen removal

Table 1 Characteristics of Terramycin wastewater / mg·L⁻¹

<table>
<thead>
<tr>
<th>COD</th>
<th>BOD₅</th>
<th>TN</th>
<th>NH₄⁺-N</th>
<th>NO₃⁻-N</th>
<th>SO₄²⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 000 - 12 000</td>
<td>2 400 - 2 800</td>
<td>1 800 - 2 100</td>
<td>1 600 - 1 800</td>
<td>1 100 - 1 300</td>
<td>4 000 - 5 000</td>
</tr>
</tbody>
</table>

1. Method

1.1 Reactor characteristics

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
</table>

1.2 Experimental conditions

20 °C ± 1 °C

References: 2003-12-18; 2004-02-16; 2009-02-12; 2009-12-18 (863) @ (2002 AA601310)
(d = 80 mm, h = 800 mm)
(d = 80 mm, h = 600 mm)
(d = 120 mm, h = 1700 mm)
(d = 120 mm, h = 1200 mm)
(USB)
2 RPM
30 RPM

100 mm, 25 mm.

4
5

(NUR)

2

500 mL

125 mL

NO$_3^-$ - N

Fig. 1 Schematic diagram of test process

1.3

COD$_C$, BOD$_5$, NH$_4^+$ - N, NO$_3^-$, NO$_2^-$, SO$_4^{2-}$, pH, CTL-12, OXI TOP 12, BOD, NH$_4^+$ - N, NO$_3^-$, NO$_2^-$, SO$_4^{2-}$, pH, CTL-12, OXI TOP 12, BOD,

IC100, YE W YOKOGAWA HOKUSHIN ELECTRIC. pH H M-14P pH H M-14P

722S

2

2.1

COD, NH$_4^+$ - N

2

3

COD, NH$_4^+$ - N

2 200 ~ 3000 mg/ L 400 ~ 460 mg/ L

COD

450 ~ 550 mg/ L

NH$_4^+$ - N

4 mg/ L, COD

TN

80 %

Fig. 2 Variation of COD concentrations

Fig. 3 Variation of NH$_4^+$ - N concentrations

4

pH

NH$_4^+$ - N

pH

2 mg/ L

pH

NH$_4^+$ - N

pH

NO$_3^-$ - N

5

33 %

60 %

COD

67 %

BOD$_5$

SO$_4^{2-}$

H$_2$S

70 %

SO$_4^{2-}$

COD

COD

COD

COD
Table 2 COD, BOD$_5$, NH$_4^+$, NO$_2^-$, NO$_3^-$, SO$_4^{2-}$, alkalinities and terramycin concentrations in different reactors/ mg·L$^{-1}$

<table>
<thead>
<tr>
<th></th>
<th>COD</th>
<th>BOD$_5$</th>
<th>NO$_2^-$</th>
<th>NO$_3^-$</th>
<th>SO$_4^{2-}$</th>
<th>Alk</th>
<th>Terramycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor 1</td>
<td>3013</td>
<td>1025</td>
<td>457</td>
<td>0</td>
<td>345</td>
<td>17</td>
<td>2887</td>
</tr>
<tr>
<td>Reactor 2</td>
<td>2830</td>
<td>1300</td>
<td>508</td>
<td>0</td>
<td>25</td>
<td>109</td>
<td>3125</td>
</tr>
<tr>
<td>Reactor 3</td>
<td>646</td>
<td>90</td>
<td>98</td>
<td>0</td>
<td>198</td>
<td>6</td>
<td>1270</td>
</tr>
<tr>
<td>Reactor 4</td>
<td>503</td>
<td>25</td>
<td>2</td>
<td>97</td>
<td>205</td>
<td>4</td>
<td>512</td>
</tr>
<tr>
<td>Reactor 5</td>
<td>483</td>
<td>20</td>
<td>1</td>
<td>98</td>
<td>213</td>
<td>2</td>
<td>494</td>
</tr>
</tbody>
</table>

80% \(\text{COD} \leq 48 \text{mg/L} \), PFS \(\text{COD} \leq 300 \text{mg/L}\).

Fig. 4 Effects of pH on effluent NH$_4^+$ concentration.

Fig. 5 Effects of hydrolysis on wastewater denitrification potential.

2.2 Effects of PFS and PACI dosage in nitrification effluent:

- (2) \(\text{SO}_4^{2-}\):
- (3) \(\text{pH} = 7.9\)

3.1

(1) 4\(\text{COD} \leq \text{NH}_4^+\) \(\leq 2\) mg/L, COD \(\leq 2\) mg/L, COD \(\leq \text{TN} \leq 2\) mg/L.