十六烷基三甲基氯化铵抑制小球藻生长的效应及作用 机制

许银¹, 葛飞^{1*}, 陶能国², 朱润良¹, 王娜¹

(1. 湘潭大学环境科学与工程系 湘潭 411105;2. 湘潭大学生物工程系 湘潭 411105)

摘要:以普通小球藻为受试生物,采用批量培养方法研究了阳离子表面活性剂十六烷基三甲基氯化铵(CTAC)的抑藻效应,通 过营养元素吸收、Zeta 电位、酸性磷酸酶和亚显微结构的测定探讨了其作用机制.结果表明,CTAC浓度在 0.1~1 mg/L范围内 随浓度升高对小球藻的抑制作用增强,96 h 抑制小球藻生长的半效应浓度(96 h-EC₅₀)为 0.18 mg/L. 0.3 mg/L CTAC 作用 8 d 后,对小球藻生物量的抑制率为 70.7%,对氮和铁单位吸收量的抑制率分别为 83.9%和 86.2%,藻细胞 Zeta 电位从 – 12.5 mV 提高至 – 6.7 mV,酸性磷酸酶相对活力降至 23.1%,藻细胞出现明显的质壁分离、蛋白核扭曲和溶酶体膨胀等现象.根据 实验结果分析,CTAC 提高了藻细胞 Zeta 电位,抑制了小球藻对氮和铁的吸收,影响磷的代谢并引起亚显微结构的改变. 关键词:十六烷基三甲基氯化铵;小球藻;Zeta 电位;酸性磷酸酶;亚显微结构

中图分类号:X171 文献标识码:A 文章编号 10250-3301(2009)06- -

Growth Inhibition and Mechanism of Cetyltrimethyl Ammonium Chloride on *Chlorella vulgaris*

XU Yin¹, GE Fei¹, TAO Neng-guo², ZHU Run-liang¹, WANG Na¹

(1. Department of Environmental Science and Engineering, Xiangtan University, Xiangtan 411105, China; 2. Department of Biological Engineering, Xiangtan University, Xiangtan 411105, China)

Abstract Growth inhibition of cetyltrimethyl ammonium chloride (CTAC), a cationic surfactants, on *Chlorella vulgaris* was investigated at batch culture in laboratory. Furthermore, the corresponding mechanisms were studied by the determination of absorption capacity, Zeta potential, activity of acid phosphatase and ultrastructure of algae. Results show that the growth inhibition by CATC is enhanced with its concentration increasing from 0.1 mg/L to 1 mg/L, and 96 h-EC₅₀ of CTAC is 0.18 mg/L. In the presence of 0.3 mg/L CTAC in 8 d, the inhibition efficiency of biomass reaches 70.7%. Meanwhile, the absorption of nitrogen and iron is inhibited 83.9% and 86.2% respectively with Zeta potential of algae cell increasing from -12.5 mV to -6.7 mV. Furthermore, the relative activity of acid phosphatase declines to 23.1% at the same time. Plasmolysis, distortion of pyrenoid and swelling of lysosome is observed in the cell. Above phenomena indicates that CTAC increases the Zeta potential of algae cell and thus inhibites the absorption of nitrogen and iron. In addition, CTAC may affect the metabolism of phosphorus and change the ultrastructure of algae cell.

Key words :CTAC ; Chlorella vulgaris ; Zeta potential ; acid phosphatase ; ultrastructure

表面活性剂广泛用于纺织、制药、洗涤及化妆品 等领域.2005年中国表面活性剂的消耗量达到 3.018×10°t,位居世界第二,其用量呈逐年上升趋 势^[1].大量表面活性剂随工业废水和生活污水排放 进入水环境中,影响水生生物生长,导致生物种群 数量的变化和群落结构的改变,破坏生态系统的平 衡^[2-4].因此,研究表面活性剂对生态环境的影响 十分重要.

藻类对环境污染物非常敏感,通过测定和评价 外源污染物对藻类生长的影响,可以反映整个水生 生态可能的综合效应^[56].表面活性剂对生态系统 的影响已引起国内外学者的广泛关注^[7-9].研究表 明阳离子表面活性剂(cationic surfactant, CS)对藻类 具有较强的抑制作用^[10-12],但主要集中在其对藻 类生物量和叶绿素的影响 , 而从细胞外吸附到细胞 内应答方面研究 CS 抑制藻类生长的作用机制尚未 见报道 .

通常情况下,研究化学污染物对生物生长的影响及机制常采用生物量、细胞表面特性、酶活性和细胞亚显微结构等指标^[13~16].本研究以十六烷基三甲基氯化铵(cetyltrimethyl ammonium chloride,CTAC) 作为 CS 的代表,在考察其对典型淡水藻-普通小球 藻(*Chlorella vulgaris*)生物量影响的基础上,重点研

收稿日期 2008-07-12 ;修订日期 2008-09-24

基金项目 :国家自然科学基金项目(20877065);湖南省教育厅优秀青 年基金项目(07B077);湘潭大学博士科研启动项目

作者简介:许银(1985~),女,硕士研究生,主要研究方向为有机污 染物的环境行为及生态风险评价,E-mail:xuyin123@ hotmail.com

^{*} 通讯联系人, E-mail ;gefei@xtu.edu.cn

究 CTAC 抑制小球藻生长的生理机制,包括 CTAC 对 小球藻吸收营养物质氮、磷和铁以及藻细胞 Zeta 电 位、酸性磷酸酶(ACPase)活性及亚显微结构的影响. 研究结果可初步揭示 CS 抑藻作用的作用机制,以期 为评价其生态风险提供理论依据.

1 材料与方法

1.1 实验材料

普通小球藻购自中科院武汉水生生物研究所国 家淡水藻种库(FACHB). CTAC(分析纯,纯度 ≥ 98% 购自南京旋光科技有限公司,性质见表 1. 对 硝基苯磷酸酯(p-NPP,分析纯,纯度 ≥ 98%)购自 上海生物科技有限公司.

表1 CTAC 的理化性质

-				
物质	CTAC			
分子式	$C_{19}H_{42}CIN$			
	CH ₃			
化学结构式	H_3C-N^+ Cl^-			
	H ₃ C			
	CH ₃			
亲水亲油指数	12.2			
相对分子质量	310 95			
「山」の「三人」	517.75			
临界胶束浓度/mol·L ⁻¹	1.3×10^{-3}			

Table 1 Physical-chemical properties of CTAC

1.2 实验方法

小球藻的培养:用照度计(TES 1330A,台湾)测 定光照强度,调节光照强度达到2500 lx,光暗比 L: D = 12 h:12 h,设定温度为(25 ± 1)°C,每天人工摇 瓶 3 次,培养基为 OECD 培养液^[17].实验前藻种扩 大培养 7 d 后,取一定体积的藻液离心弃去上清液, 用碳酸氢钠溶液洗涤,再离心,重复 3 次,用无菌 水稀释后计数.取 100 mL 实验起始浓度为 $3.5 \times 10^{\circ}$ 个/mL 的藻液,加入培养液,分别加入 CTAC 使其 浓度达到 0.1、0.2、0.3、0.5、0.8、1.0 mg/L,调节 pH 到 8.0,设置 3 组平行,每天定时测定生物量,8 d 后测定单位氨氮、总磷和总铁含量,Zeta 电位,酸 性磷酸酶活性和观察亚显微结构.

1.3 分析测定方法

(1)生物量测定

采用显微镜下血球计数板进行计数,并在波长 680 nm 下测定小球藻光密度,建立不同藻细胞浓度 和光密度之间的线性关系^[18].根据实验数据运用机 率单位法计算 96 h 半抑制浓度(96 h-EC₅₀)^{19 20]},为 了保证计算结果的可信度,对 CTAC 浓度对数与机率单位之间的剂量反应方程进行了 X² 检验。

(2) Zeta 电位测定

将培养 8 d 含有不同浓度 CTAC 的藻液,调节 pH 到 7.0,用 Zeta 电位仪(Delsa 440SX,美国)测定 小球藻的 Zeta 电位,重复 3 次,结果取平均值.

(3)亚显微结构测定

一组加入 CTAC,另一组不加 CTAC 作为对照 组,培养8d,离心,获得藻细胞依次进行如下处 理 3%戊二醛前固定2h,OsO₄在4℃下后固定2h, 0.1 mol/L磷酸缓冲液冲洗2次,1%乙酸铀酰染色1 h,梯度酒精脱水,用丙酮包埋剂浸透1h,纯包埋 剂浸透过夜,60℃固化48h,降温切片,透射电镜 (JEM-1230,日本)观察藻细胞亚显微结构.

(4)氮、磷和铁测定

将培养 8 d 含有不同浓度 CTAC 的藻液(100 mL)离心 20 min(5000 r/min),取上清液.采用纳氏试剂光度法,磷钼杂多酸光度法和改进的二氮杂菲 实验方法²¹¹分别测定上清液中氨氮、总磷和总铁 含量.

(5)酸性磷酸酶活性 参照 Josson 等的方法进行测定.

2 结果与讨论

2.1 CTAC 对小球藻生物量的影响

随着 CTAC 浓度的增加,小球藻受到了不同程度的抑制作用(图1).从中可以清楚的看出,小球藻的生长周期为:0~2 d为延滞期,2~9 d为生长期,9~12 d为平稳期.不同浓度的 CTAC 对延滞期藻细胞的生长影响不大,但在生长期 CTAC 对小球藻抑制作用明显,并随 CTAC 浓度的增大而增强. 当 CTAC 为 0.1 mg/L时 随着培养时间的增加,小球藻继续生长,但对小球藻的生长有一定的抑制作用. 当 CTAC 浓度达到 0.3 mg/L,小球藻生长受到显著抑制,细胞密度趋于稳定.当 CTAC 浓度超过 0.3 mg/L,培养数日出现负增长.

当 CTAC 浓度处于 0.1~0.3 mg/L 时,作用 4 d 后对小球藻生长的抑制率有明显的上升趋势,0.3 mg/L CTAC 对小球藻的抑制率达 70.7%.当 CTAC 浓度达到 1.0 mg/L,小球藻的生长受到完全抑制. 通过浓度对数(x)与机率单位(y)进行一元回归,得 到剂量方程 y = 11.348 - 1.217 2x,当机率单位为 5 时,通过换算得到 CTAC 的 96 h-EC₅₀为 0.18 mg/L.

图 1 CTAC 对小球藻的生物量的影响

Fig.1 Effect of CTAC on the biomass of Chlorella vulgaris

对上述剂量反应方程进行 X² 检验,计算的 X² 值为 1.22 < X²_{0.052} = 7.82. 故上述剂量反应复合精度要 求,计算出的 96 h-EC₅₀真实可靠.本研究中 CTAC 对小球藻的毒性作用与 Riess 等¹³研究 CTAC 对 *Chlorella fusca* 是一致的.

表 2 剂量反应方程及 X² 检验

Table 3 Dose response equation and its X^2 test result

CTAC 浓度对数(x)	4.61	5.3	5.7	6.21	6.68	
计算机单位(y)	5.77	4.79	4.46	3.88	3.15	
剂量反应方程	$y = 11.348 - 1.2172x (r^2 = 0.9929)$					
反应率(<i>p</i>)	0.78	0.42	0.29	0.13	0.03	
对照反应率(100	100	100	100	100	
实际反应率(r)%	76.9	45.9	27.8	11.3	3.7	
$(r - kp)^{2} [kp(1 - p)]$	0.05	0.69	0.11	0.28	0.09	
X^2			1.22			

2.2 CTAC 对藻细胞吸收氮、磷和铁的影响

氮、磷为藻类生长的重要营养物质^[23 24],而铁 是藻类生长的一种重要性元素^[25 26].图2为培养8 d后不同浓度 CTAC 对藻细胞吸收氮、磷和铁的影响.溶液中氮、磷和铁源分别以氨氮、磷酸盐和铁离 子形式存在.对照组溶液中氮、磷和铁的单位吸收量 分别为0.31 mg、0.06 mg和11.06 μ g.从图2中可 以看出,CTAC 在浓度 < 0.3 mg/L时,对小球藻吸收 氮和铁的抑制作用明显,而基本不影响磷的吸收. 如0.3 mg/L CTAC 作用下,小球藻对氮和铁的单位 吸收量分别为0.05 mg和1.53 μ g,与对照组比较计 算得到对氮和铁的抑制率分别为83.9%和86.2%. 当 CTAC 浓度增大到0.3 mg/L以上时,小球藻生长 完全受到抑制并呈现衰亡状态,导致小球藻不能吸 收营养物质因此对其吸收氮、铁和磷的抑制作用是 一致的。

一般认为,化学污染物对生物体产生影响主要 通过以下步骤:①污染物溶于水中,②污染物被细 胞壁或细胞膜吸附,③污染物通过被动吸收跨膜进 入细胞内^[27].CTAC 表面带正电荷并具有长疏水链, 比氨氮和铁离子更容易吸附于带负电荷的小球藻细 胞膜表面,从而抑制了以阳离子形式存在的氨氮和 铁离子的吸收.王修林等^[28]和周律等^[29]指出正离 子头基的双季胺盐和十六烷基三甲基溴化铵可吸附 于细胞膜表面,改变细胞膜的通透性,破坏营养物 质到达细胞的正常流动,导致细胞死亡.肖琳等^[30] 报道附生假单胞菌信号分子对微囊藻有抑制作用, 但对细胞内磷的积累无影响,本研究也同样得到类 似的结果,CTAC 对小球藻有抑制作用,但对细胞 内磷的积累无影响.

图 2 CTAC 对藻细胞吸收氮、磷和铁的影响

Fig.2 Effect of CTAC on the absorption of nitrogen iron and phosphorus by algae cell

2.3 CTAC 对藻细胞 Zeta 电位的影响

CTAC 抑制了小球藻吸收阳离子型营养物质, 进一步通过测定藻细胞表面 Zeta 电位来推断其影 响机制.图 3为 CTAC 对藻细胞 Zeta 电位的影响. 对照组的小球藻 Zeta 电位为 – 12.5 mV. 随着 CTAC 浓度的增大,小球藻 Zeta 电位逐渐上升.在 0.3 mg/L CTAC 作用下,小球藻 Zeta 电位提高到 – 6.7 mV,与对照组相比增大了 46.4%.0.5 mg/L CTAC 使小球藻 Zeta 电位提高到 – 4.9 mV,增大了 60.8%.

Zeta电位值的高低能衡量藻细胞表面所带电荷 量的多少.根据 CTAC 作用下藻细胞表面电荷量变 化,可初步探讨其抑藻机制,小球藻的表面同时存 在有亲水位点和疏水位点,亲水性位点主要是带电 荷的基团,例如羧基,磷酸基团;疏水性位点主要 是脂类,脂多糖与蛋白质.细胞壁上的这些化学成 分使小球藻表面带有负电荷,对阳离子有强烈的吸 附作用^[31]. Thomas 等^[32]研究表明,褐藻的羧基基团 是其吸附重金属的机制之一, 阳离子表面活性剂含 有烷基疏水基和带正电荷的亲水基团,在液固界面 易吸附于负电荷的表面,使表面变为憎水性.CTAC 分子结构中氦原子所带正电荷与带负电荷的小球藻 产生静电吸附作用,稳定地被吸附在小球藻表面, 引起小球藻表面电负性的降低, 随着 CTAC 浓度的 增大,藻细胞 Zeta 电位逐渐升高,已有研究表明消 毒剂戊二醛能与细胞壁肽聚糖结构中肽链上亚氨基 和自由氨基发生酰化作用,使细菌的 Zeta 电位升 高,从而达到杀菌的作用^[33,34].

结合 2.2 和 2.3 的数据可以推断, CTAC 在小球 藻上发生吸附作用, 提高了小球藻表面 Zeta 电位, 从而抑制小球藻对以阳离子形式存在的营养元素的 吸收.

2.4 CTAC 对藻细胞 ACPase 的影响

由图 2 可知当浓度 < 0.3 mg/L时, CTAC 基本不 影响磷的吸收.为进一步探讨抑制机制,从磷的代 谢方面研究 CTAC 对小球藻 ACPase 的影响.从图 4 可以看出, CTAC 对小球藻 ACPase 具有明显的抑制 作用,在浓度为 0.1~0.3 mg/L时,随 CTAC 浓度的 增加,小球藻 ACPase 活性迅速下降. 与对照组相 比,CTAC 浓度从 0.1 mg/L增加到 0.3 mg/L时, ACPase 相对活力从 80.0%降低到 23.1%. 当浓度 > 0.5 mg/L后,ACPase 的相对活力趋于稳定. 利用 SPSS 软件进行单因素方差分析得到当 CTAC 浓度 < 0.3 mg/L,ACPase 活力有明显的差异性(*p* < 0.05), 当 CTAC 浓度 > 0.5 mg/L,ACPase 活力的差异性不 明显(*p* > 0.05).

图 4 CTAC 对藻细胞酸性磷酸酶活性的影响

Fig.4 Effect of CTAC on acid phosphatase activity of algae cell

ACPase 能够催化磷酸单酯的水解及无机磷酸 的释放,是生物磷代谢的重要酶类,同时也是溶酶 体中的标志酶,酶活性的强弱可以表征生物体中的 磷水解速率和细胞活性^[35].Guilherminoaa 等^[12]研究 得到十二烷基硫酸钠能抑制藻细胞的乙酰胆碱酯酶 的活力,同时 Josson 等^[22]也表明十二烷基苯磺酸钠 类似于汞离子能抑制藻细胞 ACPase 的活力.重金 属汞引起酶分子结构中色氨酸、酪氨酸残基的微环 境产生变化,导致酶活性中心的构象发生改变,从 而抑制酶的催化活性^[36].CTAC 类似于重金属可能 破坏酶蛋白二维结构中盐键、氢键和疏水键,缩短 活性基团之间的距离.CTAC 干扰了溶酶体的功能, 进一步影响细胞相关生理代谢过程.

2.5 CTAC 对藻细胞亚显微结构的影响

CTAC 对小球藻亚显微结构的影响如图 5 所示. 对照组小球藻大小为 2~3 µm,蛋白核位于叶绿体的中央,被内囊体包围.蛋白核形状为椭圆形或球形.细胞内囊体结构清晰,片层连续.每个小球藻细胞仅有1个蛋白核,蛋白核被一层淀粉鞘所保 护,淀粉鞘为椭圆形,横切面为两片船形结构,合 夹着蛋白核,溶酶体是由6~8 nm厚的单层膜所围 着直径为0.4 µm的颗粒或小河(图5(A)].加入0.3 mg/L CTAC后,藻细胞受到不同程度的破坏.虽然 小球藻的细胞核没有受到损害,但大部分的小球藻 蛋白核扭曲变形,蛋白核髓部电子密度减小[图5 (b)],部分小球藻明显出现质壁分离现象[图5 (c)],少数小球藻变形严重,细胞膜完全脱落,部 分细胞质浓缩在一起,内含物模糊不清,溶酶体出 现膨胀[图5(d)].

放大倍数 40000. A: 对照组; B, C, D: 0.3 mg/L CTAC 作用下的小球藻.注: N, 细胞核; P, 蛋白核; CW, 细胞壁; CM, 细胞膜; L, 溶酶体; S, 淀粉粒 图 5 CTAC 对藻细胞亚显微结构的影响 Fig.5 Effect of CTAC on the ultrastructure of algae cell

CTAC 的疏水基团与膜脂结构结合,引起小球 藻质壁分离并破坏其亚显微结构.膜中的蛋白质分 子是季胺盐离子极好的附着点,引起细胞膜中膜蛋 白亲脂键的破裂,从而破坏半透膜完整性引起质壁 分离甚至膜结构的破坏^[37].质膜的收缩使破损的细 胞器残体集中于细胞中央位置,影响细胞间的物质 运输和信息传递,导致细胞死亡.这种抑制机制与 李锋民等^[15]研究2-甲基乙酰乙酸乙酯对藻细胞亚 显微结构的影响机制相一致.CTAC 抑制了小球藻 ACPase 活性,酶蛋白功能丧失并发生变异,导致底 物在溶酶体中大量贮积,引起小球藻的溶酶体出现 膨胀现象。

3 结论

(1) CTAC 抑制了小球藻的生长,其 96 h-EC₅₀
 为 0.18 mg/L. CTAC 浓度 > 0.3 mg/L,能完全抑制小
 球藻的生长.

(2)0.3 mg/L CTAC 作用 8 d下,小球藻对氮和 铁单位吸收量的抑制率分别为 83.9%和 86.2%,藻 细胞 Zeta 电位从 – 12.5 mV 提高至 – 6.7 mV,小球 藻酸性磷酸酶的相对活力降至 23.1%.

(3) CTAC 使藻细胞出现明显的质壁分离,蛋 白核扭曲和溶酶体膨胀.

参考文献:

- [1] China chemical reporter. China 's surfactant sector needs urgent readjustmen[J]. Focus on Surfactants 2007 *X*(2) 3-4.
- [2] Hrenovic J, Ivankovic T. Toxicity of anionic and cationic surfactant to Acinetobacter junii in pure culture J]. Central European Journal of Biology 2007 2(3):405-414.
- [3] Dave G, Blanck H, Gustafsson K. Biological and toxicological effects of solvent extraction chemicals J]. Hydrometallurgy, 1979, 3 (3): 201-216.
- [4] Blanck H. Inhibition of growth of freshwater microalgae by long-chained aliphatic amines employed in solvent extraction processes
 J]. Arch Environ Con Tox ,1985 ,14(5):609-620.
- [5] Wilson B A, Smith V H, Denoyelles F, et al. Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages/[J]. Environ Sci Technol 2003 37(9):1713-1719.
- [6] 聂湘平,王翔,陈菊芳,等. 三氯异氰尿酸与盐酸环丙沙星对 蛋白核小球藻的毒性效应[J]. 环境科学学报,2007,27(10): 1694-1701.
- [7] Cserháti T, Forgacs E, Oros G. Biological activity and environmental impact of anionic surfactants J]. Environmental International 2002, 28(5) 337-348.
- [8] Zhou W, Zhu L. Enhanced desorption of phenanthrene from contaminated soil using anionic/nonionic mixed surfactant [J]. Environ Pollut 2007 ,147(2) 350- 357.
- [9] 王宝辉 涨学佳 纪巍,等. 表面活性剂环境危害性分析[J]. 化工进展 2007 26(9):1263-1268.
- [10] Nyberg H. Growth of Selenastrum capricorniitum in the presence of synthetic surfactants J]. Wat Res 1988 22(2) 217-223.
- [11] Lewis M A. Chronic toxicities of surfactants and detergent builders to algae : a review and risk assessmen [J]. Ecotox Environl Safe ,1990 , 20(2):123-140.
- [12] Guilherminoaa L, Lacerda M N, Nogueira A J, et al. In vitro and in vivo inhibition of Daphnia magna acetylcholinesterase by surfactant agents : possible implications for contamination biomonitoring J]. Sci Total Environ 2000 247 (2-3):137-141.
- [13] Riess M H, Grimme L H. Studies on surfactant toxicity to the freshwater algae Chlorella fusca: a common mode of action ?[J].

Sci Total Environ ,1993 ,(1-2):551-558.

- [14] Paivoke A E A , Simola L K. Arsenate toxicity to Pisum sativum : mineral nutrients , chlorophy II content , and phytase activity [J]. Ecotox Environ Safe , 2000 A9(2):111-121.
- [15] 李锋民,胡洪营,种云霄,等. 2-甲基乙酰乙酸乙酯对藻细胞膜 和亚显微结构的影响[J].环境科学,2007 28(7):1534-1538.
- [16] Laure G, Rodolphe G, Olivier S, Effects of selenate on growth and photosynthesis of *Chlamydomonas reinhardtii* [J]. Aquat Toxicol, 2007, 83(2):149-158.
- [17] 国家环境保护总局.水和废水监测分析方法[M].(第四版) 北京:中国环境科学出版社 2002.715-721.
- [18] 张庭廷,吴安平,何梅,等. 酚酸类物质对水华藻类的化感作 用及其机理[J]. 中国环境科学 2007 27(4):472-476.
- [19] 胡必彬 李艳军 杨霓云,等.水环境中苯氯乙酮的环境安全 阈值 J].环境科学学报 2008 28(1):125-131.
- [20] OECD. Current approaches in the statistical analysis of ecotoxicity date : a guidance to application M]. Organization for Economic Cooperation and Development 2006.25-40.
- [21] 龚小娟,刘劭钢.二氮杂菲法测定铁的试验条件研究[J].中 国公共卫生,2003,10(9):1120-1121.
- [22] Josson C M, Aoyama H. In vitro effect of agriculture pollutants and their joint action on *Pseudokirchneriella subcapitata* acid phosphatase [J]. Chemosphere 2007 69 (6) 849-850.
- [23] 万蕾,朱伟,赵联芳. 氮磷对微囊藻和栅藻生长及竞争的影响
 [J]. 环境科学 2007 28(6):1230-1235.
- [24] 雷坤,郑炳辉,王桥,基于中巴地球资源1号卫星的太湖表层 水体水质遥感[J].环境科学学报2004,24(3)376-380.
- [25] 储昭升,金相灿,峰,等. EDTA和铁对铜绿微囊藻和四尾栅藻

生长和竞争的影响[J]. 环境科学 2007 28(11) 2457-2461.

- [26] 郑爱榕 陈敏,吕娥,等.海洋胶体中的氮、磷和铁对微藻生长 的效应J].自然科学进展 2004,14(3) 339-343.
- [27] Dietz C D, Schnoor J L. Advances in phytoremediatior [J]. Environ Health Persp 2001 109 (1):163-168.
- [28] 王修林 李雁宾 龚良玉 ,等. Gemini1231 双季铵盐选择性抑制 赤潮生物生长的实验[J]. 环境科学 ,2006 27(5) 862-868.
- [29] 周律 邢丽贞 段艳萍. 药剂抑制铜绿微囊藻生长的试验研究[J]. 环境科学与技术 2007 30(5):14-16.
- [30] 肖琳 杨柳燕 蒋丽娟,等. 附生假单胞菌信号分子对铜绿微 囊藻磷代谢的影响[J]. 环境科学学报 2005 25(4) 557-561.
- [31] 傅佳骏,严莲荷,王瑛,季鏻盐类杀菌剂的研究进展J]. 江苏 化工 2003 **31**(6):12-16.
- [32] Thomas A D, Bohumil V, Alfonso M. A review of the biochemistry of heavy metal biosorption by brown algae J]. Wat Res 2003 37 (18): 4311-4330.
- [33] 叶淑娟,何占航,洪广峰,等.化学消毒剂对污水处理系统中游离细菌表面Zeta电位的影响[J].中国消毒学杂志,2006, 23(5)215-418.
- [34] 陈灏 潘纲 ,张明明. 藻细胞不同生长阶段的海泡石凝聚除藻性能 J]. 环境科学 2004 25(6) 85-88.
- [35] Gianfreda L, Sannino F, Filazzola M T, et al. Influence of pesticides on the activity and kinetics of invertase, urease, and acid phosphatase enzymes J]. Pestic sci ,1993, 39(3) 237-244.
- [36] 徐冬梅,刘广深,王黎明,等. 重金属汞对土壤酸性磷酸酶的 影响及其机理 J]. 环境科学学报 2004 24(5) 865-870.
- [37] 曹西华,俞志明.季铵盐类化合物灭杀赤潮异弯藻的实验研 究[J].海洋与湖沼 2003 34(2) 201-207.