2. 中国环境科学研究院西南分院,重庆 401147;
3. 南京大学环境学院污染控制与资源化研究国家重点实验室,南京 210023;
4. 中机中联工程有限公司,重庆 400039
2. Southwest Branch of China Research Academy of Environmental Sciences, Chongqing 401147, China;
3. State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China;
4. CMCU Engineering Co., Ltd., Chongqing 400039, China
近年来新污染物受到了广泛关注,我国陆续发布了《新污染物治理行动方案》《重点管控新污染物清单(2023年版)》等,明确了对持久性有机污染物、内分泌干扰物、抗生素以及微塑料等新污染物的治理管控工作方案. 新污染物在空气[1,2]、土壤[2,3]、沉积物[4~6]、地表水[7,8]和地下水[5,7]等环境介质中普遍存在,蔬菜[9]、鱼类[10]、蛋类[11]等生物介质和血液[12]、尿液[13]、母乳[14]等人体样本中也有检出,超过一定的含量阈值时会对人体健康产生影响[15]. 环境中的新污染物可以通过多种途径进入水体[16~18]. 例如,Liu等[16]对某污水处理厂的调查中共检出6种典型新污染物,包括布洛芬、盐酸雷尼替丁、三(氮)唑核苷、氨苄西林钠、氯氮平和磺胺甲唑;王茜等[19]对某市水源水及净水厂的调查结果显示有新污染物检出,居民的饮用水安全受到威胁;工业生产产生废水中咖啡因和卡马西平等常被检出[20]. 在伊利湖、密歇根湖和北美五大湖均有新污染物检出[21],海洋中同样也发现新污染物的存在[22,23].
风险商值(risk quotients,RQ)常用作对有机物的风险评价[24],例如,张国栋等[25]发现抗生素在渤海湾、小清河和海河中RQs值较高,对生态平衡造成威胁,而大辽河、珠江、黄浦江和九龙江中抗生素风险相对较小;武宇圣等[26]对淮河下游表层水和沉积物中新污染物进行了风险评估,结果显示藻类的生态风险显著高于蚤类和鱼类. 另外,季节、生物和物种差异等也是评价生态风险的影响因素[27,28]. 国内外已开展了相关优先污染物筛选研究[29],常用综合评分法、危害指数法和Hasee图解法等进行特征污染物识别. 马研等[30]应用综合评价法对长江流域筛查出Ⅰ级特征污染物3种;余云江等[31]运用潜在危害指数法和综合评分法对松花江进行特征污染物筛查;丁琪琪等[29]使用多指标综合评分法在涨渡湖水体筛查出41种优先污染物. 对新污染物进行环境风险评估和特征污染物识别分析,初步筛选出具有潜在风险的污染物,可以为后续的监测和管理提供重要依据.
长江流域涵盖了我国重要的经济带,是我国重大国家战略发展区域,国家高度重视长江流域的污染治理问题,已有多项研究发现流域内地表水和沉积物中新污染物是普遍存在的[32~34]. 目前长江流域新污染物的研究主要集中于干流,较少有对支流中新污染物的含量分布进行研究. 本研究调查的支流属于典型产城融合示范区,流域上游涉及农业种植区,两岸为工业集聚区、居民及商业区和教育科研机构等,具有很强的代表性. 因此本研究通过调查该二级支流不同环境介质中的新污染物,初步了解该支流地表水、地下水和沉积物中新污染物的赋存特征,评估其生态风险,对水环境中特征污染物进行筛选,以期为长江流域新污染物防控体系和管理机制的建立提供基础数据支撑.
1 材料与方法 1.1 主要仪器和试剂Aglient 1290超高效液相色谱仪(美国,Aglient公司);6546 QTOF飞行时间质谱(美国,Aglient公司);WAT 200609固相萃取装置(美国,Waters公司);N-EVAP112氮吹仪(美国,Organomation Associates公司).
甲醇、乙腈和正己烷(HPLC级)均购于德国Merck公司;二氯甲烷(HPLC级)购于美国ROE Science公司;乙酸铵(HPLC级)购于德国CNW Technologies GmbH公司;水(LC-MS级)为美国Fisher公司产品.
1.2 样品的采集与处理本研究流域位于长江上游某二级支流,分别在流域上中下游设置了4个地表水(SW)和沉积物(BS)采样点,以及2个地下水(UW)采样点. SW1和BS1为对照断面,该点位方圆3 km内有1个自然村,1 km内有一条高速公路,其上游村庄密集、两岸较多个体种植户,远离城区工业. SW2和BS2位于调查流域涉及功能区中心位置,作为控制断面,片区内有居民区、企业(塑料制品或包装制造行业、生物制药行业、电子器件制造行业和机械设备及配件行业等)、医院、科研院所和商业区等. SW3和BS3处与干流交汇处,作为入江断面. SW4和BS4在干流-支流交汇处下游1.5 km处,作为消减断面. UW1为整个片区上游,直接受到城镇和工业的影响较小,作为背景点;UW2位于片区下游和片区污水处理厂附近,详见图 1.
![]() |
图 1 采样点位示意 Fig. 1 Sampling sites |
水样采集于水平面0.5 m以下,使用采水器采集3个点水样混合;使用抓斗式采泥器在水样采集点采集沉积物样品;样品尽快运回实验室,水样在4 ℃冰箱保存,沉积物样品在-80 ℃下保存. 所有样品一周之内完成处理测试.
地表水和地下水样品前处理:过滤水样去除悬浮颗粒物后进行固相萃取. 使用6 mL Oasis HLB固相萃取小柱将1 L水样富集,然后离心干燥萃取,用12 mL甲醇溶液洗脱,洗脱液氮吹浓缩至1 mL,用0.45 μm聚四氟乙烯滤膜(美国Thermo公司产品)过滤提取液,转移至色谱进样小瓶中,在-20 ℃下保存待测.
沉积物样品前处理:沉积物冻干碾磨过筛后采用超声萃取. 使用12 mL甲醇在40 ℃对5 g沉积物样品进行连续3次超声萃取,每次超声30 min,最终浓缩至1 mL,用0.45 μm聚四氟乙烯滤膜过滤提取液,转移至色谱进样小瓶中,在-20 ℃下保存待测.
1.3 分析与测试有机污染物采用超高效液相色谱串联飞行时间质谱仪进行分析处理样品. 色谱条件:液相色谱使用ACQUITY UPLC BEH C18色谱柱(2.1 mm × 150 mm,1.7 mm,美国Waters公司);柱温40 ℃;流动相:A相为2 mmol·L-1乙酸铵水溶液,B相为甲醇;流速0.25 mL·min-1;梯度洗脱程序:0~1 min(90% A),1~30 min(90%~0% A),30~48 min(0%A),48~48.1 min(0%~90%A),48.10~55 min(90%A),进样量为10 μL.
质谱条件:电喷雾离子源(ESI)正或负离子模式,离子源温度300 ℃,数据依赖采集模式,Auto MS/MS;全扫描范围:100~1 000,子离子扫描范围:30~1 000;碰撞能量(CE)为10、20和40 eV.
1.4 化合物筛查使用MS Dial ver.4.90处理质谱数据,提取最低峰响应强度为1 000、信噪比(S/N)大于3的特征峰,峰对齐参照混合质控样品,其余参数为软件默认设置,保留未在程序空白中检出的或者峰面积大于5倍于程序空白中检出的特征峰;通过与开源的高分辨质谱谱图信息库进行物质信息比对识别,匹配参数包括精确质量误差 < 0.002,同位素分布误差 < 20%,与数据库谱图匹配到2个及以上二级质谱碎片,匹配打分 > 80. 同时,利用实验室已有的一些新污染物标准样品,对流域内污染物进行靶向筛查分析(保留时间偏差要求 < 0.2 min). 最终可疑物质筛查和靶向筛查结果见表 1.
![]() |
表 1 长江重庆段某支流流域内新污染物筛查结果 Table 1 Results of emerging pollutants screening in Chongqing section of the upper reaches of Yangtze River |
1.5 质量控制
每批次样品都设置对应的程序空白用于扣除环境背景值,使用标准物质的混合标准品评估筛选的仪器灵敏度和方法灵敏度. 通过1、2、5、10、20、50和100 µg·L-1的标准样品在高分辨质谱上的峰面积绘制标准曲线,标准曲线的R2 > 0.98. 可筛选的物质占比分别为80.47%、87.88%、93.27%、97.31%、99.33%、100.00%和100.00%,这表明构建的筛查方法对大部分化工类和药物农药类新污染物具有良好的灵敏度.
本研究在50 ng·L-1的浓度下选择其中检出的44种标准品进行回收率实验,90%以上的物质回收率范围在70%~120%之间(表 1),L-PA(50.1%)的回收率较低可能与其水溶性强[lg(Kow)为-0.72]有关. 在样品中添加了9种同位素内标物质(分别为:壬基酚-13C6、氯霉素-D5、奥硝唑-D5、利多卡因-D10、敌草隆-D6、吡虫啉-D4、嘧霉胺-D5、霜霉威-D7和异丙甲草胺-D6),以评估仪器运行稳定情况,其平均保留时间误差在0.02~0.17 min. 最后在仪器分析运行过程中,全程加入Aglient参比离子(正离子模式:m/z 121.050 873和m/z 922.009 798,负离子模式:m/z 112.985 5和m/z 1 033.988 1)以实时评估保证质谱质量轴的可靠性.
1.6 数据分析$ \mathrm{RQ}=\mathrm{MEC} / \mathrm{PNEC} $ | (1) |
$ \mathrm{PNEC}_{\text {water }}=\mathrm{ecoTox}_{\text {water }} / \mathrm{AF} \times 10^6 $ | (2) |
$ \mathrm{PNEC}_{\text {sed }}=K_{\mathrm{d}} \times \mathrm{PNEC}_{\text {water }} / 1\;000 $ | (3) |
$ K_{\mathrm{d}}=K_{\mathrm{oc}} \times F_{\mathrm{oc}} $ | (4) |
式中,RQ为污染物的生态风险商;MEC为污染物的实测环境含量,在水样中单位为ng·L-1,在沉积物中单位为ng·g-1;PNEC为污染物在对应环境介质中的预测无效应浓度,PNECwater为水环境生物预测无效应浓度,ng·L-1;ecoToxwater为水环境生物的生态毒理学关键效应值,常采用最敏感物种的半数致死浓度(LC50)、半效应浓度(EC50)或无观察效应浓度(NOEC)等,mg·L-1;AF为评估系数,根据ecoToxwater的情况选择确定(见表 2),无量纲. 由于沉积物预测无效应含量的相关研究不足,因此将沉积物中的含量转换为间隙水含量,通过水生生物毒性效应数据对沉积物进行风险评价;PNECsed为污染物在沉积物中预测无效应含量,ng·g-1;Kd为沉积物-水分配系数,Koc为有机化合物吸附系数,单位为L·kg-1;Foc为有机碳在沉积物中的吸着系数,取0.03 g·g-1[30].
![]() |
表 2 评估因子(AF)取值1) Table 2 Value of evaluation factor(AF) |
参考已有报道[30],选取污染物的环境暴露水平、生物累积性、生物降解性、毒性效应、环境风险、“三致”效应和新污染物的相关防控清单等13项指标作为优先特征污染物的筛选标准,对本次检出污染物的性质和危害进行综合评价. 对各指标进行赋值,分值分别为0、0.3、0.6和1.0,其中Ab和Bb按数值大小采用几何分级法划分为4个等比区间. 对各单项指标的分值,在引入权重系数的基础上进行加权计算,如表 3所示. 若同一化合物的检出含量在4个采样点的得分存在差异,取其平均值;不同营养级的环境风险商的得分存在差异时,考虑到可能存在潜在的风险取其最高值. 污染物的优先性根据综合得分高低排序来确定,综合得分越高,优先性越大[29].
![]() |
表 3 评价指标权重和分值1) Table 3 Index weight and score standard of the comprehensive evaluation factors |
污染物环境暴露水平是基于污染物的环境实测浓度,包括环境检出频率和检出浓度,分值分别以Aa和Ab表示;化合物的正辛醇-水分配系数[lg(Kow)]与生物富集存在正相关性,因此用lg(Kow)来表征生物累积性,以Ba表示;BioWIN(BW)为污染物的生物降解系数,可表示污染物在环境中被微生物降解的难易程度,以Bb表示;以半致死剂量或半效应浓度作为急性毒性指标(AT),以Ca表示;用最大观测无效应浓度表征慢性毒性,以Cb表示;引入国际致癌研究中心(international agency for research on cancer,IARC)标准、致突变性参考污染物改变生物(人)细胞染色体碱基序列的能力和欧盟化学品注册、评估、许可和限制(registration,evaluation,authorization and restriction of chemicals,REACH)法规高度关注的物质(substances of very high concern,SVHC)清单作为“三致”效应筛选标准,以D表示;污染物是否为内分泌干扰物以E表示;是否为持久性有机污染物以F表示;是否为中国《优先控制污染物》以G表示;是否为《重点管控新污染物清单(2023版)》以H表示;是否属于《优先控制化学品名录》(Ⅰ和Ⅱ)以I表示.
2 结果与讨论 2.1 新污染物赋存特征流域内地表水、地下水和沉积物中共44种化合物通过标样保留时间确认,主要涉及农药、抗生素、精神麻醉类药物和内分泌干扰物等,检出率为10%~100%,其中13种物质(MD、4-HB、L-PA、4-MPC、CAF、PNP、PPC、HPEC、VPA、SMZ、ROM、DEHP和MEHP)在所有采样点均有检出,地表水、地下水和沉积物中分别检出42、36和22种新污染物,地表水中新污染物整体检出率较地下水和沉积物高,后续可进一步研究人为活动对地表水中新污染物的来源及污染途径等.
44种新污染物在地表水中的浓度平均值(ng·L-1)分别为:37.85(SW1)、43.75(SW2)、62.27(SW3)和117.57(SW4),在地下水中的浓度平均值(ng·L-1)分别为:17.28(UW1)和101.09(UW2),沉积物中含量平均值(ng·g-1)分别为:1.57(BS1)、7.36(BS2)、5.56(BS3)和14.68(BS4);地表水、地下水和沉积物新污染物的总含量范围分别为:1 438.04~4 937.82 ng·L-1、483.14~3 636.04 ng·L-1和23.48~ 264.34 ng·g-1;表明新污染物在该流域内是普遍存在的. SCL在地表水中浓度最高(276.84~3 415.57 ng·L-1),但在沉积物中未检出;L-PA、MEHP、CAF和4-HB在地表水、地下水和沉积物中均有较高的含量. HAT在SW1(509.91 ng·L-1)和SW2(411.46 ng·L-1)有较高的浓度,但在其余点位浓度未超过20 ng·L-1,同样在沉积物中未检出. 而4-HB则是在沉积物中含量高达0.63~58.73 ng·g-1,在地表水和地下水中浓度在100 ng·L-1以内.
从空间分布来看,下游的地表水、地下水和沉积物(BS3除外)中新污染物总含量高于上游[图 2(c)],人类活动频繁的区域对流域地表水中浓度变化有一定影响. 在SW3处的化合物浓度高于SW2,地下水采样点UW2浓度整体也高于UW1,在点位UW2和SW3附近有一座污水处理厂,因此推测地表水和地下水可能受到污水处理厂的影响使浓度波动. BS1含量相对偏低,BS2和BS3化合物含量较高,特别是4-HB、BBF、DEHP和BHP,而BS2和BS3较BS1分别增加了4.42~69.20 ng·g-1和0.31~28.40 ng·g-1;但BS3较BS2的含量有所降低,BS3与干流交汇,水流对底泥的冲刷作用导致沉积物中吸附量减少[37],界面的新污染物也会再次进入水体[38],这也可能使得下游点位的新污染物总含量增加. HAT、BTA和SCL等在水环境中浓度偏高,而在沉积物中含量偏低或未检出,这可能与化合物自身的理化性质相关[24,39].
![]() |
图 2 流域内新污染物含量分布情况 Fig. 2 Distribution of emerging pollutant concentrations in the river |
据报道,已有大量新污染物在环境中检出,环境中新污染物的分布受到多方面的限制,根据地域、季节和环境因素等影响而不同[33]. 人为活动是环境中新污染物污染的重要原因,常被用于疾病防治、养殖和化妆等领域的新污染物随着医疗废水、工业废水和代谢产物等方式排放进入水环境[33,40~42],部分新污染物在长江流域的质量浓度或含量分布如表 4所示,统计结果显示流域内新污染物可能主要来自于工业和养殖业. 本研究支流的沿岸分布有居民区、医疗机构和工业集中区等,人类活动频繁,与已有报道相比,该支流地表水浓度处于中等水平,沉积物含量为中等偏低水平,可能是由于各调查研究的目标物、区域、周边环境等不同导致差异较大.
![]() |
表 4 长江流域新污染物的污染现状1) Table 4 Investigation on pollution status of new pollutants in Yangtze River Basin |
本次调研结果包括代谢物3种、内分泌干扰物5种、化工产品4种、药物12种、抗生素4种和农药16种,主要来源涉及生活源、工业源和农业源等. 对于农药类物质,除HAT外浓度均未超过10 ng·L-1,其中HAT在UW1处的浓度大约为UW2处的3倍,在SW1(509.91 ng·L-1)的浓度远高于SW3(8.07 ng·L-1),这可能是由于在SW1上游有较多自然村,个体农户较多,农药使用普遍. 而农药利用率仅在40.6%左右[43],存在缺乏科学的使用和农药包装废弃物乱丢乱弃等问题,残留农药会随降雨和渗漏等途径进入水循环[44],是农村农药面源污染的重要因素,因此在上游地表水和地下水中检出农药种类多且浓度高. 石运刚等[45]调查显示医疗用药是长江流域重庆段抗生素的主要来源之一,本次调查流域周边有生物制药公司和医院,检出多种药物和抗生素,整体含量偏低,但控制断面(SW2和BS2)和入江断面(SW3和BS3)处含量稍高于对照断面(SW1和BS1),制药废水和医疗废水对抗生素和药物在环境中的赋存情况有一定影响. BTA常作为金属缓蚀剂,可以在金属表面发生吸附形成有效缓蚀膜层[46],本次调查流域范围内有电子器件及机械零部件制造企业27家,受其影响在SW2、SW3和UW2处BTA含量远高于上游SW1和UW1. SCL作为甜味剂,主要来自于食品加工和污水处理厂[47,48],SW3、SW4和UW2的浓度均超过1 000 ng·L-1,附近的污水处理厂可能是其浓度偏高的主要原因. TrCP是生产杀菌剂、防腐剂和清洗剂等的中间体[49],UW2附近的污水处理厂进水包括工业废水与生活废水,而废水由企业预处理后再进行接入,因此受到污水处理厂影响UW2点位含量稍高于其余几个点位. DEHP常用于食品包装、化妆品和医疗器械等行业[50],该调查区域存在相关制造企业(塑料、包装和医药材料等),使得下游点位(SW2、SW3、UW2、BS2和BS3)含量稍高于上游背景值(SW1、UW1和BS1),沉积物中DEHP含量受工业活动影响较大,BS2、BS3高出BS1处6~8倍左右,这是由于DEHP的lgKow较高(为7.9),具有强亲脂性则更易吸附在沉积物中[39]. MEHP在地表水中浓度在200 ng·L-1左右,沉积物中含量最高达到157.14 ng·g-1,本次结果显示地表水、地下水和沉积物中MEHP含量均高于DEHP,已有报道显示MEHP为DEHP的主要代谢产物且毒性更强[51,52],但针对环境介质中MEHP的研究较少,MEHP可能引起更大的毒性效应,应重视在生产过程中DEHP的使用及其转化.
2.3 生态风险评估风险评估参数Koc基于EPI Suite V4.11所得,优先使用文献参考值. 对于PNEC值,本研究从US EPA的毒性数据库(https://cfpub.epa.gov/ecotox/search.cfm)、ECOTOX Knowledgebase(http://epa.gov/ecotox/explore)和文献[69]中收集和整理了化合物对鱼类(fish)、溞类(invert)和藻类(algae)等3个不同营养级物种的急性毒性数据中半数致死浓度(LC50)、半效应浓度(EC50)和慢性毒性数据中最大观测无效应浓度(NOEC),取值根据年份、实验时间和作用效果等综合考虑,每种化合物的每个营养级取1个有效毒性数据值,毒理数据值优先使用NOEC,详见表 5. MD、L-PA、DPS、DF-2-H、HPEC、4-MBZP、CTM、CBZL、BBF、SCL和CLIN共11种物质未检索到任何毒理参数,本次则不对以上化合物作风险评估.
![]() |
表 5 水中33种新污染物对3个不同营养级物种的预测无效应浓度值1) Table 5 Predicted concentrations of 33 emerging pollutants in water having no effect on three species of different trophic levels |
本研究流域内地表水和沉积物中新污染物对水生生物(藻类、蚤类和鱼类)的生态风险(RQ)结果如图 3所示. 对藻类来说,沉积物中仅有4-HB处于中高风险(0.23~21.84);地表水中NCSM风险偏高,4-HB、FNR、ATZ和ROM部分点位呈现低风险. 对蚤类来说,在沉积物中4-HB仍呈现出中低风险(0.01~0.97);而BTA在沉积物和地表水中均有较高风险(RQsed为0~12.31和RQwater为0.87~17.08),BS3处可能由于受到流域交汇时水流的冲刷作用导致含量较低而风险偏低. 对鱼类来说,在沉积物和地表水中BTA风险较蚤类有所降低;地表水中HAT处于中高风险(0.62~77.26),而在沉积物中无风险;沉积物和地表水中MEHP有一定生态风险,沉积物(0.14~5.23)中风险高于地表水(0.09~0.12). 除此之外,其余RQ值皆为极低水平. 整体来看,4-HB、BTA、HAT和MEHP对藻、蚤和鱼类具有风险,但流域内新污染物更多处于无风险水平. Ramaswamy等[28]研究结果表明卡马西平对Cyprinus carpio(鱼类)的风险明显高于藻类和蚤类,但对Danio rerio(鱼类)的风险低于藻类和蚤类,说明化合物对不同营养级的风险与物种有关. 另外,有报道表明藻类对新污染物最敏感,藻类的生态风险高于蚤类和鱼类[26,39],这与本研究的结果相似,但仍有个别化合物对鱼类的风险高于藻类和蚤类,这可能取决于所选毒性数据值的大小. 整体来看,本研究流域内藻类对新污染物的敏感程度稍高于蚤类和鱼类,可知新污染物对不同营养级的生态风险有差异,但评价结果会受到物种和毒性数据值选取的影响.
![]() |
(a)藻类,(b)蚤类,(c)鱼类 图 3 基于44种新污染物对藻类、蚤类和鱼类的生态风险评价结果 Fig. 3 Ecological risk assessment of algae, invert, and fish based on 44 emerging pollutants |
基于多指标的综合评价法,利用软件SPSS 26,采用K-means聚类分析法对污染物综合得分进行K均值聚类分析[29],选择聚类数为4,迭代10次,根据每个聚类中的个案数目按照分数高低进行分级[30],赋分结果见表 6. 检出率≥70%的化合物共19种;有10种化合物属于难生物降解;共15种化合物的lgKow > 3,生物累积性较强;TrCP和DEHP具有“三致”效应;绝大部分化合物都具有急性毒性(Ca)和慢性毒性(Cb). 另根据国内外相关新污染物管控清单,具有内分泌干扰性的6种,属于《中国优先控制污染物》的2种,属于《重点管控新污染物(2023版)》的4种. 本次筛选出的地表水Ⅰ级和Ⅱ级污染物分别有5种和8种,包括内分泌干扰物5种、抗生素3种、化工产品3种和农药2种,其中内分泌干扰物为地表水中主要特征污染物. 由于具有潜在的生态环境风险和人体健康风险,在后续的工作中应引起重视,加强对相关特征化合物的监测和管理.
![]() |
表 6 地表水中特征污染物筛选结果 Table 6 Screening results of species characteristic pollutants in surface water |
4-MPC常被添加到各类防晒品中[70];BPA作为各种食品包装制品、轻工制品等的生产原料;DEHP常被用于食品包装、化妆品和医疗器械等产品中[50],MEHP则为DEHP的重要代谢产物;内分泌干扰物能损害动物的生殖、免疫和神经系统等[15,71~73],广泛运用于在塑料制造和化妆品等行业中,调查流域周边有10家相关企业. 与抗生素相关的医药企业6家及医疗机构6家,整体来看各点位之间含量变化并不大,制药废水及医疗废水对该流域内抗生素赋存影响较小,抗生素已被列入《重点管控新污染物(2023版)》,需进行优先管控. TrCP难降解、半衰期较长,具有“三致”的潜在危害[74],工业废水是其重要来源[75]. 电子器件制造是该区域重要工业组成,BTA作为本次调查中电子制造等行业的主要污染物,而其他相关特征污染物(如多环芳烃、苯系物和卤代烃等[76])并未检出,可能是由于企业针对废水进行了预处理,相关污染物排放量较小. 本次调查流域地表水中优先特征污染物与电子器件制造、塑料制品生产及制药医疗等企业相关,建议针对行业制定对应的监测和管理方案.
MEHP和HAT在地表水中100%检出率和检出浓度较高,且存在生态风险,两者皆为转化产物. DEHP通过脂酶作用下能快速转化为MEHP[51],MEHP可以进一步水解和氧化[77,78]. ATZ光解过程中产生羟基自由基生成HAT[79],HAT为主要副产物可诱导生物体代谢紊乱[80],而HAT在一定条件下也可进行降解转化(例如转化为阿特拉津去异丙基等)[79]. 因此,在对特征污染物的管理中,还需要考虑到化合物的降解转化机制.
3 结论(1)本研究流域内环境中新污染物普遍存在,主要涉及农药、抗生素、精神麻醉类药物和内分泌干扰物等. 地表水、地下水和沉积物各点位的新污染物含量平均值范围分别为37.85~117.57 ng·L-1、17.28~101.09 ng·L-1和1.57~14.68 ng·g-1. 下游新污染物的总含量高于上游,沉积物中新污染物含量会受到水流冲刷作用的影响;流域内新污染物的赋存情况与农业活动(如农药喷洒和农药包装管理不规范)和工业生产活动(如食品包装和电子器件制造等)有关.
(2)生态风险评价结果显示,4-HB、BTA、HAT和MEHP对藻、蚤和鱼类具有较高或者潜在的风险,流域内藻类对新污染物的敏感程度高于蚤类和鱼类.
(3)根据多指标综合评价方法,由K均值聚类分析将赋分结果分为4级,筛选出流域地表水中主要特征污染物共5种(Ⅰ类:MEHP、HAT、ROM、BTA和DDET);建议后续工作中应对相关污染物进一步排查,明晰其来源、环境归趋及降解转化机制,制定科学的管制措施.
[1] | Lohmann R, Markham E, Klanova J, et al. Trends of diverse POPs in air and water across the Western Atlantic Ocean: Strong gradients in the ocean but not in the air[J]. Environmental Science & Technology, 2021, 55(14): 9498-9507. |
[2] | Qin Y F, Liu Y Q, Wang J B, et al. Emission of PAHs, PCBs, PBDEs and heavy metals in air, water and soil around a waste plastic recycling factory in an industrial park, Eastern China[J]. Chemosphere, 2022, 294. DOI:10.1016/j.chemosphere.2022.133734 |
[3] | Sørmo E, Lade C B M, Zhang J J, et al. Stabilization of PFAS-contaminated soil with sewage sludge- and wood-based biochar sorbents[J]. Science of the Total Environment, 2024, 922. DOI:10.1016/j.scitotenv.2024.170971 |
[4] | Liu R P, Dong Y, Quan G C, et al. Microplastic pollution in surface water and sediments of Qinghai-Tibet Plateau: Current status and causes[J]. China Geology, 2021, 4(1): 178-184. |
[5] | Munoz G, Labadie P, Botta F, et al. Occurrence survey and spatial distribution of perfluoroalkyl and polyfluoroalkyl surfactants in groundwater, surface water, and sediments from tropical environments[J]. Science of the Total Environment, 2017, 607-608: 243-252. DOI:10.1016/j.scitotenv.2017.06.146 |
[6] | Qin M, Gong J L, Zeng G M, et al. The role of microplastics in altering arsenic fractionation and microbial community structures in arsenic-contaminated riverine sediments[J]. Journal of Hazardous Materials, 2022, 433. DOI:10.1016/j.jhazmat.2022.128801 |
[7] | Chen S, Jiao X C, Gai N, et al. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China[J]. Environmental Pollution, 2016, 211: 124-131. DOI:10.1016/j.envpol.2015.12.024 |
[8] | Peng Y, Fang W D, Krauss M, et al. Screening hundreds of emerging organic pollutants (EOPs) in surface water from the Yangtze River Delta (YRD): Occurrence, distribution, ecological risk[J]. Environmental Pollution, 2018, 241: 484-493. DOI:10.1016/j.envpol.2018.05.061 |
[9] | Li Y W, Wu X L, Mo C H, et al. Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area, southern China[J]. Journal of Agricultural and Food Chemistry, 2011, 59(13): 7268-7276. DOI:10.1021/jf1047578 |
[10] | Lv Y Z, Yao L, Wang L, et al. Bioaccumulation, metabolism, and risk assessment of phenolic endocrine disrupting chemicals in specific tissues of wild fish[J]. Chemosphere, 2019, 226: 607-615. DOI:10.1016/j.chemosphere.2019.03.187 |
[11] | Tang Z W, Cheng J L, Yin H M, et al. Methylsiloxane occurrence and distribution in free-range poultry eggs near a rural industrial park: Indicators of potential risks to birds[J]. Journal of Hazardous Materials, 2021, 415. DOI:10.1016/j.jhazmat.2021.125683 |
[12] | Wang J H, Pan Y T, Cui Q Q, et al. Penetration of PFASs across the blood cerebrospinal fluid barrier and its determinants in humans[J]. Environmental Science & Technology, 2018, 52(22): 13553-13561. |
[13] | Wei X P, Hu Y, Zhu Q Q, et al. Co-exposure and health risks of several typical endocrine disrupting chemicals in general population in Eastern China[J]. Environmental Research, 2022, 204. DOI:10.1016/j.envres.2021.112366 |
[14] | Ragusa A, Notarstefano V, Svelato A, et al. Raman microspectroscopy detection and characterisation of microplastics in human breastmilk[J]. Polymers, 2022, 14(13). DOI:10.3390/polym14132700 |
[15] | Jobling S, Nolan M, Tyler C R, et al. Widespread sexual disruption in wild fish[J]. Environmental Science & Technology, 1998, 32(17): 2498-2506. |
[16] | Liu Q X, Feng X, Chen N, et al. Occurrence and risk assessment of typical PPCPs and biodegradation pathway of ribavirin in wastewater treatment plants[J]. Environmental Science and Ecotechnology, 2022, 11. DOI:10.1016/j.ese.2022.100184 |
[17] | Du B W, Price A E, Scott W C, et al. Comparison of contaminants of emerging concern removal, discharge, and water quality hazards among centralized and on-site wastewater treatment system effluents receiving common wastewater influent[J]. Science of the Total Environment, 2014, 466-467: 976-984. DOI:10.1016/j.scitotenv.2013.07.126 |
[18] | Vystavna Y, Le Coustumer P, Huneau F. Monitoring of trace metals and pharmaceuticals as anthropogenic and socio-economic indicators of urban and industrial impact on surface waters[J]. Environmental Monitoring and Assessment, 2013, 185(4): 3581-3601. DOI:10.1007/s10661-012-2811-x |
[19] |
王茜, 王金龙, 唐小斌, 等. 某市水源水及净水厂中药品和个人护理品(PPCPs)的分布、含量和去除规律[J]. 生态环境学报, 2022, 31(6): 1193-1199. Wang Q, Wang J L, Tang X B, et al. Concentration, distribution and fate of pharmaceuticals and personal care products (PPCPs) for drinking water systems in a city[J]. Ecology and Environmental Sciences, 2022, 31(6): 1193-1199. |
[20] |
梅雪冰, 隋倩, 张紫薇, 等. 不同特征污染源中指示性药物和个人护理品识别与筛选[J]. 中国环境科学, 2019, 39(3): 1173-1180. Mei X B, Sui Q, Zhang Z W, et al. Identification of indicator pharmaceutical and personal care products (PPCPs) in different emission sources[J]. China Environmental Science, 2019, 39(3): 1173-1180. DOI:10.3969/j.issn.1000-6923.2019.03.034 |
[21] | Kim H, Homan M. Evaluation of pharmaceuticals and personal care products (PPCPs) in drinking water originating from Lake Erie[J]. Journal of Great Lakes Research, 2020, 46(5): 1321-1330. DOI:10.1016/j.jglr.2020.06.019 |
[22] | Shen Q C, Wang D D, Qu Y Y, et al. Occurrence, transport and environmental risk assessment of pharmaceuticals and personal care products (PPCPs) at the mouth of Jiaozhou Bay, China based on stir bar sorptive extraction[J]. Marine Pollution Bulletin, 2022, 184. DOI:10.1016/j.marpolbul.2022.114130 |
[23] | Fisch K, Zhang R F, Zhou M, et al. PPCPs - A human and veterinary fingerprint in the pearl river delta and northern south China sea[J]. Emerging Contaminants, 2021, 7: 10-21. DOI:10.1016/j.emcon.2020.11.006 |
[24] |
解旭东, 侯智昊, 李楠, 等. 中国胡焕庸线下方四区域沉积物和土壤中抗生素污染特征及生态风险评价[J]. 生态环境学报, 2021, 30(5): 1023-1033. Xie X D, Hou Z H, Li N, et al. Occurrence, distribution and ecological risk of antibiotics in sediments and soils over the four areas below the Heihe-Tengchong Line of China[J]. Ecology and Environment Sciences, 2021, 30(5): 1023-1033. |
[25] |
张国栋, 董文平, 刘晓晖, 等. 我国水环境中抗生素赋存、归趋及风险评估研究进展[J]. 环境化学, 2018, 37(7): 1491-1500. Zhang D G, Dong W P, Liu X H, et al. Occurrence, fate and risk assessment of antibiotics in water environment of China[J]. Environmental Chemistry, 2018, 37(7): 1491-1500. |
[26] |
武宇圣, 黄天寅, 张家根, 等. 淮河下游湖泊表层水和沉积物中PPCPs分布特征及风险评估[J]. 环境科学, 2023, 44(6): 3217-3227. Wu Y S, Huang T Y, Zhang J G, et al. Distribution characteristics and risk assessment of PPCPs in surface water and sediments of lakes in the lower reaches of the Huaihe River[J]. Environmental Science, 2023, 44(6): 3217-3227. |
[27] |
韦巧珍, 林子雨. PPCPs的环境暴露、毒性效应及风险评估研究进展[J]. 环境科学与技术, 2020, 43(4): 16-24. Wei Q Z, Lin Z Y. Research progress in environmental exposure, toxic effect and risk assessment of pharmaceuticals and personal care products[J]. Environmental Science & Technology, 2020, 43(4): 16-24. |
[28] | Ramaswamy B R, Shanmugam G, Velu G, et al. GC-MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers[J]. Journal of Hazardous Materials, 2011, 186(2-3): 1586-1593. DOI:10.1016/j.jhazmat.2010.12.037 |
[29] |
丁琪琪, 龚雄虎, 王兆德, 等. 基于多指标综合评分法筛选地表水环境优先污染物——以湖北涨渡湖为例[J]. 湖泊科学, 2022, 34(1): 90-107. Ding Q Q, Gong X H, Wang Z D, et al. Aproposed multi-criteria scoring method for identifying priority pollutants in surface water: a case study of lake Zhangdu, Hubei province[J]. Journal of Lake Sciences, 2022, 34(1): 90-107. |
[30] |
马妍, 陈祥强, 张波涛, 等. 基于综合评分法和风险商值法筛选长江流域特征污染物及不同介质中的风险污染物[J]. 环境科学, 2024, 45(9): 5214-5226. Ma Y, Zhang X Q, Zhang B T, et al. Screening of characteristic pollutants and risk pollutants in different media in the Yangtze river basin using comprehensive evaluation and risk quotient methods[J]. Environmental Science, 2024, 45(9): 5214-5226. |
[31] |
于云江, 付益伟, 孙朋, 等. 松花江吉林市江段水体特征污染物筛选研究[J]. 环境卫生学杂志, 2013, 3(3): 175-181, 185. Yu Y J, Fu Y W, Sun P, et al. Screening analysis of the characteristic pollutants in Songhua River in Jilin city[J]. Journal of Environmental Hygiene, 2013, 3(3): 175-181, 185. |
[32] |
胡烨, 徐辉, 王殿常, 等. 长江重点江段枯水期药物及个人护理品(PPCPs)的空间分布特征及来源[J]. 环境科学学报, 2022, 42(2): 164-173. Hu Y, Xu H, Wang D C, et al. Spatial distribution and source of pharmaceuticals and personal care products in the dry season of the Yangtze River[J]. Acta Scientiae Circumstantiae, 2022, 42(2): 164-173. |
[33] |
赵雅芳, 李志鸿, 顾俊鹏, 等. 长江流域下游水体中药品和个人护理品赋存、分布、溯源及风险评估研究进展[J]. 环境监控与预警, 2022, 14(5): 31-38. Zhao Y F, Li Z H, Gu J P, et al. Recent advances in occurrence, distribution, source tracing and risk assessment of PPCPs in lower Yangtze River Basin: a review[J]. Environmental Monitoring and Forewarning, 2022, 14(5): 31-38. |
[34] |
樊月婷, 昌盛, 张坤锋, 等. 疫情背景下长江中游地区典型饮用水源中PPCPs分布特征与风险评估[J]. 环境科学, 2022, 43(12): 5522-5533. Fan Y T, Chang S, Zhang K F, et al. Pollution characteristics and risk assessment of PPCPs in typical drinking water sources in the middle reaches of the Yangtze River during the COVID-19 pandemic[J]. Environmental Science, 2022, 43(12): 5522-5533. |
[35] | ECB. Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) No. 1488/94 on risk assessment for existing substance, Part Ⅱ[R]. Ispra, Italy: European Chemicals Bureau, 2003. 100-103. |
[36] |
卓丽, 石运刚, 蔡凤珊, 等. 长江干流、嘉陵江和乌江重庆段邻苯二甲酸酯污染特征及生态风险评估[J]. 生态毒理学报, 2020, 15(3): 158-170. Zhuo L, Shi Y G, Cai F S, et al. Pollution characteristics and ecological risk assessment of phthalate esters in the Yangtze River, Jialing River and Wujiang River in Chongqing, China[J]. Asian Journal of Ecotoxicology, 2020, 15(3): 158-170. |
[37] | Selvaraj K K, Sundaramoorthy G, Ravichandran P K, et al. Phthalate esters in water and sediments of the Kaveri River, India: environmental levels and ecotoxicological evaluations[J]. Environmental Geochemistry and Health, 2015, 37(1): 83-96. DOI:10.1007/s10653-014-9632-5 |
[38] |
余绵梓, 袁啸, 李适宇, 等. 典型PPCPs在河流沉积物中的吸附特性[J]. 中国环境科学, 2019, 39(4): 1724-1733. Yu M Z, Yuan X, Li S Y, et al. Experimental and modeling study of sorption characteristics of selected PPCPs onto river sediments[J]. China Environmental Science, 2019, 39(4): 1724-1733. |
[39] |
高月, 李杰, 许楠, 等. 汉江水相和沉积物中药品和个人护理品(PPCPs)的污染水平与生态风险[J]. 环境化学, 2018, 37(8): 1706-1719. Gao Y, Li J, Xu N, et al. Pollution levels and ecological risks of PPCPs in water and sediment samples of Hanjiang River[J]. Environmental Chemistry, 2018, 37(8): 1706-1719. |
[40] | Wang Z, Chen M L, Zhang L W, et al. Sorption behaviors of phenanthrene on the microplastics identified in a mariculture farm in Xiangshan Bay, southeastern China[J]. Science of the Total Environment, 2018, 628-629: 1617-1626. DOI:10.1016/j.scitotenv.2018.02.146 |
[41] | Gao D W, Li Z, Wen Z D, et al. Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China[J]. Chemosphere, 2014, 95: 24-32. DOI:10.1016/j.chemosphere.2013.08.009 |
[42] | Pan X, Qiang Z M, Ben W W, et al. Simultaneous determination of three classes of antibiotics in the suspended solids of swine wastewater by ultrasonic extraction, solid-phase extraction and liquid chromatography-mass spectrometry[J]. Journal of Environmental Sciences, 2011, 23(10): 1729-1737. DOI:10.1016/S1001-0742(10)60590-6 |
[43] |
陈彤彤. 重庆市蔬菜生态系统土壤农残风险评估及影响因素筛选[D]. 重庆: 西南大学, 2023. Chen T T. Ecological risk assessment and risk driver screening of pesticide residues in vegetable ecosystem soils in Chongqing[D]. Chongqing: Southwest University, 2023. |
[44] | 谷嘉男. 农村水环境污染现状与治理措施研究[J]. 清洗世界, 2021, 37(11): 89-90. |
[45] |
石运刚, 卓丽, 陈静华, 等. 基于高通量分析方法的长江干流重庆段抗生素种类特征及来源初探[J]. 生态毒理学报, 2019, 14(3): 240-248. Shi Y G, Zhuo L, Chen J H, et al. High throughput screening approach for studing the occurrence and potential sources of antibiotics in the Chongqing Section of the Yangtze River[J]. Asian Journal of Ecotoxicology, 2019, 14(3): 240-248. |
[46] |
谢乂坤, 李向红, 崔双玲, 等. 苯骈三氮唑与碘化钾对冷轧钢在三氯乙酸中的缓蚀协同效应[J]. 化学研究与应用, 2022, 34(11): 2701-2712. Xie Y K, Li X H, Cui S L, et al. Synergistic inhibition effect of benzotriazole and potassium iodide on cold rolled steel in trichloroacetic acid[J]. Chemical Research and Application, 2022, 34(11): 2701-2712. |
[47] |
干志伟, 孙红文, 冯碧婷. 人工甜味剂在污水处理厂和自来水厂的归趋[J]. 环境科学研究, 2012, 25(11): 1250-1256. Gan Z W, Sun H W, Feng B T. Fate of artificial sweeteners in waste water and drinking water treatment processes[J]. Research of Environmental Sciences, 2012, 25(11): 1250-1256. |
[48] |
殷超, 刘亚利. 水中人工甜味剂的处理和检测技术进展[J]. 应用化工, 2021, 50(7): 1927-1931, 1937. Yin C, Liu Y L. Advances in treatment and detection technologies of artificial sweeteners in water[J]. Applied Chemical Industry, 2021, 50(7): 1927-1931, 1937. |
[49] | Liang Y N, Zhao T Y, Xiao B, et al. 2, 4, 6‐Trichlorophenol degradation mechanism and microbial community analysis in an intimately coupled visible‐light photocatalysis and biodegradation system[J]. Journal of Chemical Technology & Biotechnology, 2022, 97(9): 2547-2556. |
[50] |
蒋佩芸, 贺真, 李耀福, 等. 邻苯二甲酸单乙基己基酯暴露对肝脏脂质代谢的影响及调控机制[J]. 环境化学, 2023, 42(10): 3317-3326. Jiang P Y, He Z, Li Y F, et al. Effects of mono-(2-ethylhexyl) phthalate exposure on liver lipid metabolism and its regulatory mechanism[J]. Environmental Chemistry, 2023, 42(10): 3317-3326. |
[51] | Magdouli S, Daghrir R, Brar S K, et al. Di 2-ethylhexylphtalate in the aquatic and terrestrial environment: a critical review[J]. Journal of Environmental Management, 2013, 127: 36-49. |
[52] | Yang G T, Zhang W J, Qin Q Z, et al. Mono (2‐ethylhexyl) phthalate induces apoptosis in p53‐silenced L02 cells via activation of both mitochondrial and death receptor pathways[J]. Environmental Toxicology, 2015, 30(10): 1178-1191. DOI:10.1002/tox.21990 |
[53] |
张智博, 段艳平, 沈嘉豪, 等. 长三角一体化示范区青浦区水环境中22种PPCPs的多介质分布特征及风险评估[J]. 环境科学, 2022, 43(1): 349-362. Zhang Z B, Duan Y P, Shen J H, et al. Multimedia distribution characteristics and risk assessment of 22 PPCPs in the water environment of Qingpu district, Yangtze River Delta demonstration area[J]. Environmental Science, 2022, 43(1): 349-362. |
[54] | Mei X B, Sui Q, Lyu S G, et al. Pharmaceuticals and personal care products in the urban river across the megacity Shanghai: occurrence, source apportionment and a snapshot of influence of rainfall[J]. Journal of Hazardous Materials, 2018, 359: 429-436. DOI:10.1016/j.jhazmat.2018.07.081 |
[55] | Lv W W, Zhou W Z, Lu S B, et al. Microplastic pollution in rice-fish co-culture system: A report of three farmland stations in Shanghai, China[J]. Science of the Total Environment, 2019, 652: 1209-1218. DOI:10.1016/j.scitotenv.2018.10.321 |
[56] | Qu Y X, Jiang X S, Cagnetta G, et al. Poly- and perfluoroalkyl substances in a drinking water treatment plant in the Yangtze River Delta of China: Temporal trend, removal and human health risk[J]. Science of the Total Environment, 2019, 696. DOI:10.1016/j.scitotenv.2019.133949 |
[57] |
古文, 汪贞, 梁梦园, 等. 江苏省典型化工园区7种邻苯二甲酸酯污染特征及风险评估[J]. 生态与农村环境学报, 2023, 39(11): 1504-1514. Gu W, Wang Z, Liang M Y, et al. Pollution characteristics and risk assessment of seven phthalate esters in typical chemical industry parks in Jiangsu Province[J]. Journal of Ecology and Rural Environment, 2023, 39(11): 1504-1514. |
[58] |
朱冰清, 胡冠九, 纪轩禹, 等. 江苏省自来水中邻苯二甲酸酯的污染特征及风险评估[J]. 环境化学, 2023, 42(8): 2586-2593. Zhu B Q, Hu G J, Ji X Y, et al. Pollution characteristics and health risk assessment of phthalate esters in tap water from Jiangsu Province[J]. Environmental Chemistry, 2023, 42(8): 2586-2593. |
[59] |
刘娜, 金小伟, 薛荔栋, 等. 太湖流域药物和个人护理品污染调查与生态风险评估[J]. 中国环境科学, 2017, 37(9): 3515-3522. Liu N, Jin X W, Xue L D, et al. Concentrations distribution and ecological risk assessment of pharmaceuticals and personal care products in Taihu lake[J]. China Environmental Science, 2017, 37(9): 3515-3522. DOI:10.3969/j.issn.1000-6923.2017.09.039 |
[60] | Xu X M, Xu Y R, Xu N, et al. Bioaccumulation of pharmaceuticals and personal care products (PPCPs) in freshwater pearl mussels Hyriopsis cumingii in Poyang Lake[J]. Marine Pollution Bulletin, 2023, 193. DOI:10.1016/j.marpolbul.2023.115221 |
[61] | Yi J P, Huang X, Hou J, et al. Occurrence and distribution of PPCPs in water from two largest urban lakes of China: First perspective from DGT in-situ measurement[J]. Science of the Total Environment, 2023, 904. DOI:10.1016/j.scitotenv.2023.166656 |
[62] | Xu X M, Xu Y R, Xu N, et al. Pharmaceuticals and personal care products (PPCPs) in water, sediment and freshwater mollusks of the Dongting Lake downstream the Three Gorges Dam[J]. Chemosphere, 2022, 301. DOI:10.1016/j.chemosphere.2022.134721 |
[63] |
石运刚, 刘嘉烈, 唐娜, 等. 重庆市垃圾处理厂和污水处理厂中典型环境内分泌干扰物的排放特征[J]. 生态毒理学报, 2022, 17(3): 189-200. Shi Y G, Liu J L, Tang N, et al. Emission characteristics of typical environmental estrogens from waste treatment plants and sewage treatment plants in Chongqing[J]. Asian Journal of Ecotoxicology, 2022, 17(3): 189-200. |
[64] | Feng L, Cheng Y R, Zhang Y Y, et al. Distribution and human health risk assessment of antibiotic residues in large-scale drinking water sources in Chongqing area of the Yangtze River[J]. Environmental Research, 2020, 185. DOI:10.1016/j.envres.2020.109386 |
[65] | Chen S B, Gan Z W, Li Z, et al. Occurrence and risk assessment of anthelmintics in Tuojiang River in Sichuan, China[J]. Ecotoxicology and Environmental Safety, 2021, 220. DOI:10.1016/j.ecoenv.2021.112360 |
[66] | Liu S, Wang C, Wang P F, et al. Anthropogenic disturbances on distribution and sources of pharmaceuticals and personal care products throughout the Jinsha River Basin, China[J]. Environmental Research, 2021, 198. DOI:10.1016/j.envres.2020.110449 |
[67] | Wu J, Gao W, Liang Y, et al. Spatiotemporal distribution and alpine behavior of short chain chlorinated paraffins in air at Shergyla mountain and Lhasa on the Tibetan Plateau of China[J]. Environmental Science & Technology, 2017, 51(19): 11136-11144. |
[68] | Sun Y, Lu G H, Li J, et al. Multimedia distribution and trophic transfer of PPCPs in the middle and lower reaches of the Yarlung Zangbo River[J]. Environmental Pollution, 2021, 271. DOI:10.1016/j.envpol.2020.116408 |
[69] | Paredes E, Perez S, Rodil R, et al. Ecotoxicological evaluation of four UV filters using marine organisms from different trophic levels Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Siriella armata [J]. Chemosphere, 2014, 104: 44-50. DOI:10.1016/j.chemosphere.2013.10.053 |
[70] |
王佳鑫. 不同盐度下4-甲基苄亚基樟脑(4-MBC)对日本虎斑猛水蚤的毒性效应[D]. 厦门: 厦门大学, 2020. Wang J X. Toxicity of 4-methylbenzylidene camphor(4-MBC) on Tigriopus japonicus at different salinities[D]. Xiamen: Xiamen University, 2020. |
[71] |
熊小萍, 龚剑, 林粲源, 等. 珠江三角洲河流饮用水源中的环境内分泌干扰物及其风险[J]. 生态环境学报, 2020, 29(5): 996-1004. Xiong X P, Gong J, Lin C Y, et al. Occurrence of typical environmental endocrine disruptors in drinking water sources of the Pearl River Delta and their risks[J]. Ecology and Environmental Sciences, 2020, 29(5): 996-1004. |
[72] | Michałowicz J. Bisphenol A-Sources, toxicity and biotransformation[J]. Environmental Toxicology and Pharmacology, 2014, 37(2): 738-758. |
[73] | Jun B M, Hwang H S, Heo J, et al. Removal of selected endocrine-disrupting compounds using Al-based metal organic framework: Performance and mechanism of competitive adsorption[J]. Journal of Industrial and Engineering Chemistry, 2019, 79: 345-352. |
[74] |
肖川宝. 光生化反应与离子交换吸附耦合快速降解及转化2, 4, 6-三氯苯酚研究[D]. 重庆: 重庆理工大学, 2023. Xiao C B. Research on efficient removal and conversion of 2, 4, 6-trichlorophenol wastewater by coupling photobiocatalysis with Ion exchange adsorption[D]. Chongqing: Chongqing University of Technology, 2023. |
[75] |
何然, 梁宏, 黄洪, 等. 乙炔黑/Fe3O4阴极制备及电Fenton氧化降解2, 4, 6-三氯苯酚[J]. 化工进展, 2024, 44(1): 572-582. He R, Liang H, Huang H, et al. Preparation of acetylene black/Fe3O4 catalysed cathodic electrode and removal of 2, 4, 6-trichlorophenol by electro-Fenton oxidation[J]. Chemical Industry and Engineering Progress, 2024, 44(1): 572-582. |
[76] |
徐董育, 蔡立奇, 王晨雅, 等. 电子制造工业清洗剂中污染物检测方法研究进展[J]. 广东化工, 2023, 50(21): 55-57. Xu D Y, Cai L Q, Wang C Y, et al. Research progress on detection methods of pollutants in industrial cleaning agents for the electronic manufacturing industry[J]. Guangdong Chemical Industry, 2023, 50(21): 55-57. |
[77] | Koch H M, Rossbach B, Drexler H, et al. Internal exposure of the general population to DEHP and other phthalates—determination of secondary and primary phthalate monoester metabolites in urine[J]. Environmental Research, 2003, 93(2): 177-185. |
[78] | Koch H M, Preuss R, Angerer J. Di (2‐ethylhexyl) phthalate (DEHP): human metabolism and internal exposure-an update and latest results[J]. International Journal of Andrology, 2006, 29(1): 155-165. |
[79] | Moreira A J, Borges A C, Gouvea L F C, et al. The process of atrazine degradation, its mechanism, and the formation of metabolites using UV and UV/MW photolysis[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 347: 160-167. |
[80] | Serra A A, Nuttens A, Larvor V, et al. Low environmentally relevant levels of bioactive xenobiotics and associated degradation products cause cryptic perturbations of metabolism and molecular stress responses in Arabidopsis thaliana [J]. Journal of Experimental Botany, 2013, 64(10): 2753-2766. |