2. 大连海事大学环境科学与工程学院,大连 116026
2. College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
自2013年《大气污染防治行动计划》实施以来,我国细颗粒物浓度和重污染天数均有显著下降,但O3污染问题却日趋突出,尤其在京津冀及周边地区[1, 2]. O3污染主要集中在夏季且污染时段逐年扩大[3, 4],薛鑫等[7]研究表明O3的生成受前体物光化学反应活性、气象条件、区域传输速率以及本地工业排放等多重方面的影响. 而长期暴露于大气中高浓度O3对人体健康、农作物生产和环境质量等均会造成一定的风险[6, 7],为进一步防治臭氧和细颗粒物污染,前体物VOCs被列为重点控制污染物,芳香烃、含氧挥发性有机物(OVOCs)和烯烃通常是VOCs臭氧生成潜势关键活性组分[8, 9]. PMF模型被广泛应用于对VOCs污染源解析[10, 11],Wang等[12]对利用PMF模型对南京市VOCs污染解析得出二甲苯和丙烯分别对应溶剂使用源和石化工业的主要示踪物;Li等[13]发现焦作市VOCs来源中自然和二次源的贡献比例已经超过当地部分一次污染源. 本地大气污染物源排放清单则有助于精准识别污染源,Sun等[14]基于NOx工业源排放清单得出电厂和水泥行业集中度下降,而烧结行业排放相对较高,将成为钢铁行业超低排放重点;Zhou等[15]研究发现,车辆HC和NO排放加剧了大气中O3和NO2的形成. Li[16]等发现郑州市夏季O3浓度累积与周围城市污染物输送直接相关,凸显区域传输对O3污染的显著影响. 已有研究表明,鹤壁市O3污染主要为VOCs控制区,芳香烃和OVOCs对臭氧生成潜势的贡献最大[17],如何精准减排成为关键. 因此,本文选取鹤壁市2023年6月20~27日典型臭氧污染过程进行深入分析,表征O3与其前体物挥发性有机化合物(VOCs)、NOx以及气象条件的变化关系,同时识别O3生成关键物种,利用PMF模型、本地源排放清单、PSCF和CWT潜在源分析方法对前体物进行来源解析,以期为从多角度识别鹤壁市O3污染的主控因素,为大气污染管控提供科学依据.
1 材料与方法 1.1 数据来源鹤壁市2021~2023年O3和NO2污染物每小时数据以及风速、温度、湿度和降水量等气象数据来源于市交警支队、迎宾馆、市监测站、大新区和南山宾馆这5个环境空气质量监测国控站点,为审核后数据.
VOCs数据来源于其组分站点,采样点位于鹤壁市国控大气自动监测点生态环境局楼顶(35.72°N,114.29°E). 采用大气VOCs吸附浓缩在线监测系统(AC-GC-MS/FID)进行VOCs组分采样和分析,其中吸附浓缩在线采样系统(AC)用于连续采集样品,以实现超低温脱水及VOCs全组分富集;气相色谱-质谱-火焰离子化检测器联用系统(GC-MS/FID)用于完成VOCs组分的双通道分离和检测,最终经数据处理得到定性和定量分析结果[17]. 共分析VOCs组分115种,包括29种烷烃、11种烯烃、17种芳香烃、35种卤代烃、21种OVOCs、乙炔和二硫化碳. 严格按照《国家环境空气监测网络环境空气挥发性有机物连续自动监测质量控制技术规定》对仪器进行定期校准与维护,并建立了严格质量保证与质量控制系统(QA/QC).
2023年鹤壁市大气污染物源排放清单数据依据《城市大气污染物排放清单编制技术手册》建立,污染源包括:化石燃料燃烧源、工艺过程源、移动源、溶剂使用源、农业源、扬尘源、油气储运源、生物质燃烧源、废弃物处理源和餐饮油烟等十大类,污染物包括:二氧化硫(SO2)、氮氧化物(NOx)、一氧化碳(CO)、挥发性有机物(VOCs)、氨(NH3)、可吸入颗粒物(PM10)、细颗粒物(PM2.5)、黑碳(BC)和有机碳(OC)这9种污染物. 清单数据采用蒙特卡洛方法对各类源排放总量不确定性范围进行评估,符合置信区间范围,满足分析要求.
1.2 研究方法 1.2.1 PMF模型PMF模型是一种环境数据的多元因子统计方法,被用于大气污染物排放源识别[18, 19]. 基本原理为根据样品浓度和不确定度数据进行权重计算得出VOCs各个组分的误差,通过最小二乘法迭代来确定各组分的相对贡献以及主要污染源[20, 21],其中污染物的误差值一般选取10%[18]. 本文采用PMF5.0版本对2023年鹤壁市典型臭氧污染过程VOCs实测数据进行解析,以当地实际排放源情况为前提,充分考虑代表性示踪物、光化学反应活性以及浓度水平,经反复模拟并对S/N过低的组分筛除,最终确定具有代表性的组分25种进行模拟.
1.2.2 后向轨迹模型HYSPLIT后向轨迹聚类模型依据气团轨迹的传输方向以及传输速度对轨迹进行分类[22, 23],采用Meteoinfo模型对上空500 m处气团后退24 h进行PSCF轨迹计算和CWT浓度权重分析,气象数据来自从美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration,NOAA)官方网站下载的全球数据同化预报系统(global data assimilation system,GDAS). PSCF用于计算潜在源区分布轨迹占比的大小,CWT则用于计算污染轨迹对受体区域浓度的贡献[24, 25],计算公式见式(1)和式(2),研究区创建分为1°×1°的i×j网格,并进行污染物浓度阈值的设定,NOx浓度阈值设为40 μg·m-3.
$\operatorname{PSCF}_{i j}=\frac{M_{i j}}{N_{i j}} $ | (1) |
$\operatorname{CWT}_{i j}=\frac{\sum\limits_{k=1}^N\left(C_k \tau_{i j k}\right)}{\sum\limits_{i=1}^M \tau_{i j k}}$ | (2) |
式中,Mij为NOx浓度超过设定阈值网格轨迹数;Nij为通过网格的所有轨迹数量;CWTij为网格中平均权重浓度,μg·m-3;Ck为气团轨迹k经过网格(i,j)所对应的污染物的浓度,μg·m-3;τijk为气团轨迹k停留在网格(i,j)的时间. 由于气团通过网格的滞留时间较短可能带来的不确定性,引入Wij权重因子,计算公式见式(3)~(5):
$\mathrm{WPSCF}_{i j}=\mathrm{PSCF}_{i j} \times W_{i j}$ | (3) |
$\mathrm{WCWT}_{i j}=\mathrm{CWT}_{i j} \times W_{i j}$ | (4) |
$W_{i j}=\left\{\begin{array}{cc} 1.00, & N_{i j}>3 \mathrm{Avg}, \\ 0.70, & \mathrm{Avg}<N_{i j} \leqslant 3 \mathrm{Avg}, \\ 0.42, & 0.5 \mathrm{Avg}<N_{i j} \leqslant \mathrm{Avg}, \\ 0.17, & 0<N_{i j} \leqslant 0.5 \mathrm{Avg} . \end{array}\right.$ | (5) |
式中,WPSCFij为加权潜在源贡献因子值;WCWTij为加权浓度权重轨迹值;Avg为全部网格平均轨迹端点数.
2 结果与讨论 2.1 典型污染过程识别2021~2023年鹤壁市O3月平均值呈现明显的季节性特征,如图 1可见O3污染时段主要集中5~9月,且均在6月达到1 a中的最高值. 相比2021年,2023年6月O3浓度平均值略有好转,但仍然处于超标状态,平均值达到178 μg·m-3;而2023年O3超标天数明显增加,相比2021年增加14 d,主要表现为轻度污染天从2021年的78.85%增长到2023年的89.40%,其中6月超标天数居全年首位,高达21 d,因此以6月作为O3污染典型时段.
![]() |
线性图例对应左侧坐标轴,柱状图例对应右侧,1、2、11和12月O3超标天数均为0d 图 1 2021~2023年鹤壁市O3月平均值变化及超标天数统计 Fig. 1 Inter-monthly variation in average O3 concentration and the number of exceeding days in Hebi from 2021 to 2023 |
2023年6月鹤壁市出现两次持续8 d的典型O3污染过程,分别为6月10~17日和6月20~27日,如图 2可见,第二次O3污染过程相比于第一次污染程度高,主要表现为空气质量指数(AQI)以及O3浓度平均值(表征O3日最大8 h平均浓度值)相对较高,AQI最高值为228,污染等级最高达到中度污染. 该污染过程在近3 a持续时间最长,日浓度平均最大值为228 μg·m-3,O3小时浓度平均峰值高达256 μg·m-3,超出国家二级标准限值的1.6倍. 因此,选取6月20~27日污染过程进行系统分析.
![]() |
阴影为典型O3污染过程 图 2 6月O3及其主要前体物的时间序列变化 Fig. 2 Time-series variation of O3 and its main precursors in June |
该污染过程与6月非污染天[(将ρ(O3)平均值< 160 μg·m-3的日期定义为非污染天)]对比发现,O3浓度与温度、相对湿度和风速呈正相关性,与气压之间的相关性不显著,在污染天中气象因素与O3相关关系更加明显,主要表现为高温、低湿和较弱风速,盛行风向以南风为主,与前人研究结果比较吻合[17],具体见表 1和图 3.
![]() |
表 1 O3与气象因素Pearson相关系数1) Table 1 Correlation coefficients between O3 and the meteorological factor Pearson |
![]() |
圈中的数值表示该方向上风速的累计频率,单位为% 图 3 风向和风速分布 Fig. 3 Wind direction and speed distribution |
臭氧作为典型的二次污染物,与其前体物的浓度水平超标密切相关[22, 26]. 图 4展示了O3及其前体物NOx和VOCs协同变化情况,可以看出,NOx和VOCs变化规律基本一致,与O3日间高、夜间低的分布特征相反. 夜间由于气象条件稳定,导致污染物扩散受限,容易在近地面积聚. 白天NOx和VOCs受太阳强烈照射后发生光解导致O3浓度平均值急剧升高[27, 28]. 但在6月20日12:00~14:00,6月25日的14:00~15:00,丙酮和正丁醛等OVOCs浓度和异戊二烯出现异常升高导致VOCs浓度出现高值,与当地排放丙酮和正丁醛等为指示性组分的农药制造等行业不规律排放有关,而白天植物被强光照射下也会排放大量异戊二烯[20, 29, 30]. O3出现最高极值的污染日,对应的VOCs浓度也达到该过程的最高值,从相关性角度分析来看,O3与VOCs组分中芳香烃、烷烃和卤代烃呈高度负相关,P值分别为-0.87、-0.86和-0.80,其次是NOx、OVOCs和烯烃,P值分别为-0.76、-0.73和-0.68,这与全澍等[31, 32]对河南省O3及其前体物变化关系的研究结果一致.
![]() |
图 4 O3及其前体物NOx和VOCs协同变化 Fig. 4 Synergistic changes in O3 and its precursors NOx and VOCs |
VOCs反应活性是衡量不同物种对O3生成的贡献指标[33],采用OFP和L·OH两种计算方法进行评估,结果如图 5所示. OFP主要贡献物种依次为烯烃(31.4%)、芳香烃(31.9%)、OVOCs(25.1%)和烷烃(7.8%);烯烃对于·OH消耗速率最快,化学反应活性最高,对体积分数的贡献可达到60%以上,其次是芳香烃(20%). 从具体组分活性看,异戊二烯(23.08 μg·m-3)、间/对-二甲苯(9.03 μg·m-3)、正丁醛(8.41 μg·m-3)、丙烯醛(8.22 μg·m-3)、甲苯(7.53 μg·m-3)和1,2,4-三甲苯(6.76 μg·m-3)是OFP的主要贡献者,排名前20的VOCs物种对OFP累计贡献浓度达到81.35%. 而异戍二烯、间/对-二甲苯、己醛、乙烯、1,2,4-三甲苯和顺-2-丁烯也是大气组分中反应活性较高的物种. 综上,结合O3与VOCs组分相关性分析得出,在制定臭氧防控措施时应特别关注芳香烃和烯烃,尤其是上述OFP和·OH反应活性高的物种.
![]() |
图 5 VOCs组分OFP和L·OH消耗速率排名前20物种及占比 Fig. 5 Top 20 species and percentage of consumption rate of VOCs components OFP and L·OH |
PMF模型计算结果各物种贡献率结果见图 6,因子1中间/对-二甲苯(61.20%)、甲苯(61.00%)和邻-二甲苯(47.92%)等芳香烃为主要优势物种,溶剂使用源的主要特点是芳香烃化合物中物质排放浓度高[34, 35],溶剂使用和工业喷涂挥发性显著,故将因子1定义为溶剂使用源. 因子2中丙烷(81.24%)、异丁烷(61.42%)和正丁烷(58.02%)为主要优势物种,其次是C2~C7烷烃. 汽车尾气排放特征标志物主要为丙烷、异丁烷和正丁烷等低碳链烷烃[36],丙烷和异丁烷也是液化石油气的主要成分,同时汽车尾气中苯、乙烷、戊烷和2-甲基戊烷也占有较高贡献[37],因子2符合机动车尾气排放特征,并伴随汽油挥发,故定义为移动源. 因子3中苯(67.85%)、乙烯(32.64%)和甲苯(19.91%)为主要贡献物种,而苯和甲苯主要来源于燃烧过程[38],并常常伴随着乙烯、丙烷、乙烷和苯乙烯等物质的产生[39],根据甲苯/苯(T/B) > 2的概率在30%以上,工业排放的影响显而易见,故因子3定义为化石燃料固定燃烧源. 因子4中丙酮(68.37%)、2-丁酮(67.11%)和异丙醇(66.72%)占比高,其次是1,2,4-三甲苯(53.40%)、苯乙烯(50.97%)和反-2-丁烯(48.16%),OVOCs中丙酮和2-丁酮是工艺过程源尤其是电子制造业生产过程中产生的高含量VOCs物质[40, 41],而鹤壁市电子设备制造业发达,故因子4定义为工艺过程源. 因子5中乙炔、乙烯、乙烷、甲苯和丙烯醛占比较高,生物质燃烧中会产生大量乙炔和含氧OVOCs物质[42],同时鹤壁市的生物质锅炉企业VOCs排放量较大,故因子5定义为生物质燃烧源. 因子6中作为植物源示踪物的异戊二烯[43]占比高达88.72%,与其他物种相比成为主导,故将因子6为定义为天然源.
![]() |
1.苯,2.甲苯,3.乙苯,4.间/对-二甲苯,5.苯乙烯,6.邻-二甲苯,7. 1,2,4-三甲苯,8.乙炔,9.正己烷,10.甲基环己烷,11.乙烷,12.丙烷,13.异丁烷,14.正丁烷,15.异戊烷,16.正戊烷,17. 2-甲基戊烷,18.三氯甲烷,19.丙烯醛,20.丙酮,21.异丙醇,22. 2-丁酮,23.乙烯,24.反-2-丁烯,25.异戊二烯 图 6 VOCs源解析物种成分谱及贡献占比 Fig. 6 Species composition spectrum and contribution ratio of VOCs source analysis |
根据本地源排放清单和PMF解析结果综合比较,主要以溶剂使用源、工艺过程源、移动源、化石燃料固定燃烧源和生物质燃烧源为主,其中PMF模型增加了天然源对污染物的贡献,对VOCs的贡献率占比分别为25.7%、23.1%、20.4%、9.9%、8.9%和12.15%. 从空间分布上看(图 7),工业涂装和有机化工等企业在市监测站点所属的山城区分布密集,间接验证了PMF解析结果的准确性,这也与范西彩[44]等对2017年鹤壁市VOCs行业分布研究结果相似. 此外,由于鹤壁市煤炭资源丰富,107国道纵贯南北以及多条省道,移动源排放量占比大. 因此,严控机动车尾气排放源,对工业涂装、包装印刷和精细化工等VOCs排放量高的行业重点管控,以及特别关注工业燃烧和燃煤电厂等化石燃料固定燃烧源的排放.
![]() |
图 7 重点行业VOCs排放量的企业空间分布 Fig. 7 Spatial distribution of enterprises with VOCs emissions from key industries |
除本地排放源影响之外,区域传输贡献不容忽视. 气团老化程度和传输通常以间/对-二甲苯与乙苯的浓度比值(X/E)进行推断,城市中X/E值以3作为基准线[43, 45],当X/E值明显低于3时,VOCs污染与远距离传输相关,X/E值较高且大于3时,空气气团新鲜,污染直接来自本地源排放[46]. 鹤壁市X/E值范围在1.67~2.29之间,有从城市内部迁移而来的VOCs[29]. 为探究VOCs可能来源通道,对PMF解析结果的6类源进行WCWT浓度权重轨迹分析(图 8),研究得出,溶剂使用源、移动源、化石燃料固定燃烧源和工艺过程源均主要受到周围新乡市、安阳市和郑州市等的影响,这与鹤壁市身处的地理环境有关,本土面积小,背靠太行山东麓污染物不易扩散,造成污染物易累积. 其中工艺过程源特别受邯郸市及北部气团的影响,与河北省作为钢铁产量大省密切相关[47, 48]. 而溶剂使用源、化石燃料燃烧源和生物质燃烧源还受到位于长三角区域内的安徽省东北部气团的影响,长三角地区工业发达导致污染源的排放强度较高[49, 50]. 天然源中主要受到东南部气团影响,如周口市、商丘市和滁州市等. 综上,对鹤壁市周围城市人为源管控十分重要,并且应提高对东南部蚌埠市、滁州市等地燃烧源的重视,面对O3和VOCs的跨区域问题加强区域之间的联防联控是降低鹤壁市O3及其前体物的重要手段.
![]() |
(a)溶剂使用源,(b)移动源,(c)化石燃料固定燃烧源,(d)工艺过程源,(e)生物质燃烧源,(f)天然源 图 8 基于6类污染源的轨迹浓度权重分布 Fig. 8 Distribution of trajectory concentration weights based on six source categories |
2023年鹤壁市NOx人为源排放总量约为28 608 t,其中化石燃料固定燃烧源、移动源、工艺过程源和生物质燃烧源这4种污染源占据NOx的排放总量,排放贡献占比分别为60.9%、29.3%、5.9%和3.8%. 图 9为NOx不同源类排放量贡献情况. NOx贡献最大的二级源分别为电力供热、非道路移动源、工业锅炉和机动车排放源,四者之和达到NOx的排放总量的90%,仅电力供热占比为48%,非道路移动源次之,占比为23%. 其中,电力供热中90%的NOx排放量来源于鹤淇发电有限责任公司和丰鹤发电有限责任公司,施工工地机械和农用机械存在使用未达到国家第三阶段排放标准的非道路移动机械,应及时排查.
![]() |
1.电力供热,2.非道路移动源,3.工业锅炉,4.机动车,5.生物质锅炉,6.其他工业,7.化工,8.水泥,9.玻璃 图 9 鹤壁市NOx不同源类排放量及其排放构成 Fig. 9 Emissions of NOx from different source categories and their composition in Hebi |
图 10显示典型污染过程期间远程输送和潜在源区对NOx浓度贡献的WPSCF和WCWT. WPSCF结果发现,典型污染过程中NOx由保定市起始经石家庄市、邯郸市等中长距离输送,而通过Mij阈值得出污染浓度较高的地区主要分布在中短途附近区域,如郑州市、新乡市和安阳市等. 从WCWT潜在源污染贡献程度也验证了这一结果,保定市至豫中北部垂直区域为潜在污染源,保定市、安阳市、新乡市、濮阳市、郑州市以及南阳市对污染物的贡献最大,这与齐艳杰[51]对河南省O3污染空间分布特征中近距离输送的结果较相似.
![]() |
图 10 NOx潜在污染源WPSCF和WCWT分布特征 Fig. 10 Characteristics of WPSCF and WCWT distribution of potential sources of NOx pollution |
(1)典型O3污染过程时间序列中O3与VOCs关联度较大,与芳香烃、烷烃和卤代烃成明显的相关性,NOx、OVOCs和烯烃次之.
(2)异戍二烯、间/对-二甲苯、乙烯、1,2,4-三甲苯、己醛和甲苯等活性物种对O3生成贡献最大,基于对VOCs本地溯源,溶剂使用源、工艺过程源、移动源、化石燃料固定燃烧源和生物质燃烧源是鹤壁市VOCs排放的5类主要污染源,鹤壁市的O3污染应从工业涂装、包装印刷和精细化工等行业重点管控,加大对工业燃烧和燃煤电厂等企业的排放监管力度.
(3)化石燃料固定燃烧源和移动源是NOx排放的主要来源,优先控制以鹤淇和丰鹤发电有限责任公司为主的电力供热行业,及时排查施工工地机械和农用机械使用标准,做到源头精细化管控.
(4)针对此次污染过程,O3污染的人为源受到不同方向气团影响,特别是周围城市新乡市、安阳市和郑州市等;天然源主要受到以周口市和滁州市为主的东南气团影响;面对污染物跨区域问题进一步加强区域联防联控至关重要.
[1] |
米艺华, 杜惠云, 李杰, 等. 我国重点地区臭氧变化特征及与气象要素的关系[J]. 中国环境科学, 2024, 44(4): 1894-1904. Mi Y H, Du H Y, Li J, et al. Ozone pollution characteristics and its relationship with meteorological factors of key regions in China[J]. China Environmental Science, 2024, 44(4): 1894-1904. |
[2] | Zhang X, Ma Q, Chu W H, et al. Identify the key emission sources for mitigating ozone pollution: a case study of urban area in the Yangtze River Delta region, China[J]. Science of the Total Environment, 2023, 892. DOI:10.1016/j.scitotenv.2023.164703 |
[3] | Wang M Y, Sheng H L, Liu Y, et al. Research on the diurnal variation characteristics of ozone formation sensitivity and the impact of ozone pollution control measures in "2 + 26" cities of Henan Province in summer[J]. Science of the Total Environment, 2023, 888. DOI:10.1016/j.scitotenv.2023.164121 |
[4] | Fan M Y, Zhang Y L, Lin Y C, et al. Source apportionments of atmospheric volatile organic compounds in Nanjing, China during high ozone pollution season[J]. Chemosphere, 2021, 263. DOI:10.1016/j.chemosphere.2020.128025 |
[5] | Wu L X, An J L. Quantitative impacts of meteorology and emissions on the long-term trend of O3 in the Yangtze River Delta (YRD), China from 2015 to 2022[J]. Journal of Environmental Sciences, 2025, 149: 314-329. DOI:10.1016/j.jes.2024.01.038 |
[6] |
张桂芹, 张俊骁, 张淼, 等. 济南市夏季典型臭氧污染过程VOCs组分特征及来源分析[J]. 环境科学, 2024, 45(7): 3828-3838. Zhang G Q, Zhang J X, Zhang M, et al. Characteristics and source analysis of volatile organic compounds in typical ozone pollution processes during summer in Jinan, China[J]. Environmental Science, 2024, 45(7): 3828-3838. |
[7] |
薛鑫, 陈镇, 邬双双, 等. 气象条件对珠三角秋季地表臭氧年变化及趋势的影响[J]. 环境科学, 2024, 45(7): 3808-3814. Xue X, Chen Z, Wu S S, et al. Meteorological influences on annual variation and trend of autumn surface ozone in the Pearl River Delta[J]. Environmental Science, 2024, 45(7): 3808-3814. |
[8] | Qu F Q, Huang Y J, Shen Y M, et al. Enhanced VOC emission with increased temperature contributes to the shift of O3-precursors relationship and optimal control strategy[J]. Journal of Environmental Sciences, 2025, 150: 218-229. DOI:10.1016/j.jes.2024.02.024 |
[9] |
张博韬, 景宽, 王琴, 等. 北京城区夏季VOCs初始体积分数特征及来源解析[J]. 环境科学, 2024, 45(1): 81-92. Zhang B T, Jing K, Wang Q, et al. Characteristics and source apportionment of VOCs initial mixing ratio in Beijing during summer[J]. Environmental Science, 2024, 45(1): 81-92. |
[10] | Zhang X, Wang J F, Zhao J W, et al. Chemical characteristics and sources apportionment of volatile organic compounds in the primary urban area of Shijiazhuang, North China Plain[J]. Journal of Environmental Sciences, 2025, 149: 465-475. DOI:10.1016/j.jes.2024.01.009 |
[11] |
贾龙, 于姗杉, 徐永福. 解析北京郊区一次典型臭氧污染的物理化学过程[J]. 大气科学, 2024, 48(1): 391-404. Jia L, Yu S S, Xu Y F. Physicochemical processes of a typical ozone pollution in suburb of Beijing[J]. Chinese Journal of Atmospheric Sciences, 2024, 48(1): 391-404. |
[12] | Wang M, Chen W T, Zhang L, et al. Ozone pollution characteristics and sensitivity analysis using an observation-based model in Nanjing, Yangtze River Delta Region of China[J]. Journal of Environmental Sciences, 2020, 93: 13-22. DOI:10.1016/j.jes.2020.02.027 |
[13] | Li P Z, Chen C, Liu D, et al. Characteristics and source apportionment of ambient volatile organic compounds and ozone generation sensitivity in urban Jiaozuo, China[J]. Journal of Environmental Sciences, 2024, 138: 607-625. DOI:10.1016/j.jes.2023.04.016 |
[14] | Sun C, Li B J, Chen L, et al. An improved hourly-resolved atmospheric NOx emission inventory of industrial sources based on Continuous Emission Monitoring System data: case of Jiangsu Province, China[J]. Journal of Cleaner Production, 2023, 419. DOI:10.1016/j.jclepro.2023.138192 |
[15] | Zhou Q S, Yun J, Li X P, et al. Vehicle emissions in a megacity of Xi'an in China: a comprehensive inventory, air quality impact, and policy recommendation[J]. Urban Climate, 2023, 52. DOI:10.1016/j.uclim.2023.101740 |
[16] | Li Y S, Yin S S, Yu S J, et al. Characteristics of ozone pollution and the sensitivity to precursors during early summer in central plain, China[J]. Journal of Environmental Sciences, 2021, 99: 354-368. DOI:10.1016/j.jes.2020.06.021 |
[17] |
刘雨婷, 杜展霞, 张新民, 等. 鹤壁市臭氧及VOCs污染特征、来源与减排控制策略分析[J]. 环境科学, 2024, 45(7): 3839-3848. Liu Y T, Du Z X, Zhang X M, et al. Analysis of ozone and VOCs pollution characteristics, sources, and abatement control strategies in Hebi[J]. Environmental Science, 2024, 45(7): 3839-3848. |
[18] | Liu B S, Yang J M, Yuan J, et al. Source apportionment of atmospheric pollutants based on the online data by using PMF and ME2 models at a megacity, China[J]. Atmospheric Research, 2017, 185: 22-31. DOI:10.1016/j.atmosres.2016.10.023 |
[19] |
李凯, 潘宁, 梅如波, 等. 泰安市大气挥发性有机物污染特征及来源解析[J]. 环境化学, 2022, 41(2): 482-490. Li K, Pan N, Mei R B, et al. Characteristics and source apportionment of ambient volatile organic compounds in Taian[J]. Environmental Chemistry, 2022, 41(2): 482-490. |
[20] | Ye C X, Guo S Z, Lin W L, et al. Measurement report: source apportionment and environmental impacts of volatile organic compounds (VOCs) in Lhasa, a highland city in China[J]. Atmospheric Chemistry and Physics, 2023, 23(18): 10383-10397. DOI:10.5194/acp-23-10383-2023 |
[21] | Zhao D, Wang Q, Hui Y, et al. Characteristics, sources, and health risks of volatile organic compounds in different functional regions of Shenyang[J]. Science of the Total Environment, 2024, 933. DOI:10.1016/j.scitotenv.2024.173148 |
[22] | Wang X Q, Zhang H, Hong X Y, et al. Vertical profiles and regional transport of ozone in typical area of Yangtze-Huaihe River Basin during the autumn base on multiple lidars[J]. Atmospheric Pollution Research, 2024, 15(2). DOI:10.1016/j.apr.2023.101983 |
[23] | Zhao S P, Yu Y, Qin D H, et al. Analyses of regional pollution and transportation of PM2.5 and ozone in the city clusters of Sichuan Basin, China[J]. Atmospheric Pollution Research, 2019, 10(2): 374-385. DOI:10.1016/j.apr.2018.08.014 |
[24] | Berriban I, Azahra M, Chham E, et al. PSCF and CWT methods as a tool to identify potential sources of 7Be and 210Pb aerosols in Granada, Spain[J]. Journal of Environmental Radioactivity, 2022, 251-252. DOI:10.1016/j.jenvrad.2022.106977 |
[25] | Ren B, Xie P H, Xu J, et al. Use of the PSCF method to analyze the variations of potential sources and transports of NO2, SO2, and HCHO observed by MAX-DOAS in Nanjing, China during 2019[J]. Science of the Total Environment, 2021, 782. DOI:10.1016/j.scitotenv.2021.146865 |
[26] | Han J X, Liu Z R, Hu B, et al. Observations and explicit modeling of summer and autumn ozone formation in urban Beijing: identification of key precursor species and sources[J]. Atmospheric Environment, 2023, 309. DOI:10.1016/j.atmosenv.2023.119932 |
[27] | Meng X, Jiang J K, Chen T S, et al. Chemical drivers of ozone change in extreme temperatures in eastern China[J]. Science of the Total Environment, 2023, 874. DOI:10.1016/j.scitotenv.2023.162424 |
[28] | Atkinson R. Atmospheric chemistry of VOCs and NOx[J]. Atmospheric Environment, 2000, 34(12-14): 2063-2101. DOI:10.1016/S1352-2310(99)00460-4 |
[29] |
庞晓蝶, 高博, 陈来国, 等. 湛江市夏季大气挥发性有机物污染特征及来源解析[J]. 环境科学, 2023, 44(5): 2461-2471. Pang X D, Gao B, Chen L G, et al. Characteristics and source apportionment of volatile organic compounds in Zhanjiang in summer[J]. Environmental Science, 2023, 44(5): 2461-2471. |
[30] | Shaw J T, Rickard A R, Newland M J, et al. Rate coefficients for reactions of OH with aromatic and aliphatic volatile organic compounds determined by the multivariate relative rate technique[J]. Atmospheric Chemistry and Physics, 2020, 20(16): 9725-9736. DOI:10.5194/acp-20-9725-2020 |
[31] |
全澍, 刘淼晗, 陈博轩, 等. 河南省近地表O3污染特征及其与气象因素之间的关系[J]. 环境科学研究, 2022, 35(12): 2666-2676. Quan S, Liu M H, Chen B X, et al. Characteristics of near-surface O3 pollution and its relationship with meteorological factors in Henan Province[J]. Research of Environmental Sciences, 2022, 35(12): 2666-2676. |
[32] |
姑力巴努·艾尼, 郑怡, 高可心, 等. 河南省优先控制人为源VOCs关键物种及来源识别[J]. 环境科学研究, 2023, 36(3): 469-482. Gulibanu A N, Zheng Y, Gao K X, et al. Identification of key anthropogenic VOCs and their sources in Henan Province[J]. Research of Environmental Sciences, 2023, 36(3): 469-482. |
[33] | Guan Y N, Liu X J, Zheng Z Y, et al. Summer O3 pollution cycle characteristics and VOCs sources in a central city of Beijing-Tianjin-Hebei area, China[J]. Environmental Pollution, 2023, 323. DOI:10.1016/j.envpol.2023.121293 |
[34] |
李万勇, 黄浩瑜, 王艳振, 等. 聊城市城区夏季VOCs污染特征及来源解析[J]. 环境科学, 2023, 44(12): 6564-6575. Li W Y, Huang H Y, Wang Y Z, et al. Pollution characteristics and source apportionment of VOCs in urban areas of Liaocheng in summer[J]. Environmental Science, 2023, 44(12): 6564-6575. |
[35] |
雷丽娟, 张懿, 罗伊娜, 等. 高温极端天气影响下的成都平原一次典型臭氧污染过程分析[J]. 环境科学, 2024, 45(4): 2028-2038. Lei L J, Zhang Y, Luo Y N, et al. Analysis of a typical ozone pollution process in the Chengdu Plain under the influence of high temperature extremes[J]. Environmental Science, 2024, 45(4): 2028-2038. |
[36] | Song C B, Liu Y, Sun L N, et al. Emissions of volatile organic compounds (VOCs) from gasoline- and liquified natural gas (LNG)-fueled vehicles in tunnel studies[J]. Atmospheric Environment, 2020, 234. DOI:10.1016/j.atmosenv.2020.117626 |
[37] | Barletta B, Meinardi S, Rowland F S, et al. Volatile organic compounds in 43 Chinese cities[J]. Atmospheric Environment, 2005, 39(32): 5979-5990. DOI:10.1016/j.atmosenv.2005.06.029 |
[38] | Chen W, Xu X Z, Liu W Q. Combined PMF modelling and machine learning to identify sources and meteorological influencers of volatile organic compound pollution in an industrial city in eastern China[J]. Atmospheric Environment, 2024, 334. DOI:10.1016/j.atmosenv.2024.120714 |
[39] | Zeng X X, Han M J, Ren G, et al. A comprehensive investigation on source apportionment and multi-directional regional transport of volatile organic compounds and ozone in urban Zhengzhou[J]. Chemosphere, 2023, 334. DOI:10.1016/j.chemosphere.2023.139001 |
[40] |
王瑞文. 工业源排放VOCs成分谱及其在PMF解析中的应用[D]. 广州: 暨南大学, 2019. Wang R W. Volatile organic compounds (VOCs) source profiles for industrial sources and it's application in PMF source apportionment[D]. Guangzhou: Jinan University, 2019. |
[41] | Lv Z, Liu X Y, Wang G, et al. Sector-based volatile organic compounds emission characteristics from the electronics manufacturing industry in China[J]. Atmospheric Pollution Research, 2021, 12(7). DOI:10.1016/j.apr.2021.101097 |
[42] |
肖龙, 王帅, 周颖, 等. 中国典型背景站夏季VOCs污染特征及来源解析[J]. 中国环境科学, 2021, 41(5): 2014-2027. Xiao L, Wang S, Zhou Y, et al. The characteristics and source apportionments of VOCs at typical background sites during summer in China[J]. China Environmental Science, 2021, 41(5): 2014-2027. |
[43] | Ren H R, Xia Z Y, Yao L B, et al. Investigation on ozone formation mechanism and control strategy of VOCs in petrochemical region: insights from chemical reactivity and photochemical loss[J]. Science of the Total Environment, 2024, 914. DOI:10.1016/j.scitotenv.2024.169891 |
[44] |
范西彩, 张新民, 张晓红, 等. 鹤壁市大气挥发性有机物源排放清单研究[J]. 中国环境科学, 2021, 41(2): 558-565. Fan X C, Zhang X M, Zhang X H, et al. Research on the emission inventory of volatile organic compounds in Hebi City, Henan Province[J]. China Environmental Science, 2021, 41(2): 558-565. |
[45] | Yurdakul S, Civan M, Kuntasal Ö, et al. Temporal variations of VOC concentrations in Bursa atmosphere[J]. Atmospheric Pollution Research, 2018, 9(2): 189-206. DOI:10.1016/j.apr.2017.09.004 |
[46] |
李陵, 李振亮, 张丹, 等. 重庆市主城区O3污染时期大气VOCs污染特征及来源解析[J]. 环境科学, 2021, 42(8): 3595-3603. Li L, Li Z L, Zhang D, et al. Pollution characteristics and source apportionment of atmospheric VOCs during ozone pollution period in the main urban area of Chongqing[J]. Environmental Science, 2021, 42(8): 3595-3603. |
[47] |
齐超楠, 齐鹏, 张艺铃. 典型重工业城市PM2.5化学组成特征及来源解析[J]. 中国环境科学, 2024, 44(6): 2994-3003. Qi C N, Qi P, Zhang Y L. Chemical composition and source apportionment of PM2.5 in typical heavy industrial cities[J]. China Environmental Science, 2024, 44(6): 2994-3003. |
[48] |
牛红亚, 高娜娜, 鲍晓磊, 等. 2016~2020年邯郸市冬季PM2.5污染特征与来源解析[J]. 环境科学, 2023, 44(12): 6463-6473. Niu H Y, Gao N N, Bao X L, et al. Characteristics and sources of PM2.5 pollution during winter in Handan City from 2016 to 2020[J]. Environmental Science, 2023, 44(12): 6463-6473. |
[49] |
王雷, 周颖, 龚年祖. 滁州市一次持续性臭氧污染过程气象与传输特征分析[J]. 中国环境监测, 2024, 40(1): 107-117. Wang L, Zhou Y, Gong N Z. Meteorological and transport characteristics of a persistent ozone pollution process in Chuzhou City[J]. Environmental Monitoring in China, 2024, 40(1): 107-117. |
[50] | Sulaymon I D, Zhang Y X, Hopke P K, et al. Influence of transboundary air pollution and meteorology on air quality in three major cities of Anhui Province, China[J]. Journal of Cleaner Production, 2021, 329. DOI:10.1016/j.jclepro.2021.129641 |
[51] |
齐艳杰, 于世杰, 杨健, 等. 河南省臭氧污染特征与气象因子影响分析[J]. 环境科学, 2020, 41(2): 587-599. Qi Y J, Yu S J, Yang J, et al. Analysis of characteristics and meteorological influence factors of ozone pollution in Henan Province[J]. Environmental Science, 2020, 41(2): 587-599. |