环境科学  2025, Vol. 46 Issue (6): 3923-3933   PDF    
面向土地利用的市政污泥堆肥重金属安全性研究进展
许玉玉1,2, 张子晨1, 文龙杰1, 杨白驹3, 侯雷1,3, 张冰2, 陈坦1,2, 杨婷1     
1. 中央民族大学生命与环境科学学院,北京 100081;
2. 中央民族大学北京市食品环境与健康工程技术研究中心,北京 100081;
3. 北京市污染源管理事务中心,北京 100089
摘要: 市政污泥中重金属的溶出释放是制约市政污泥堆肥-土地利用的关键性限制因素. 为系统了解市政污泥好氧堆肥-土地利用的重金属安全性,总结了我国典型市政污泥的重金属含量水平,分析了不同种类重金属在堆肥前后总量、价态和赋存形态变化,回顾了市政污泥堆肥产品施用后重金属的短期和长期环境行为规律. 我国市政污泥中ω(As)、ω(Cd)、ω(Cr)、ω(Cu)、ω(Hg)、ω(Ni)、ω(Pb)和ω(Zn)的平均值分别为21.78、2.41、108.57、231.09、2.35、67.57、55.03和630.24 mg·kg-1,均未超过国家标准GB 4284-2018的A级污泥产物含量限值且近30 a呈逐渐下降趋势. 堆肥过程中掺杂辅料,不筛分的市政污泥堆肥产品中重金属含量下降. 有机物腐殖化可增强重金属络合,促进重金属转化为更稳定的形式,从而抑制其迁移性、浸出性和生物利用度. 市政污泥堆肥产品土地利用过程中,会逐渐提高土壤中的重金属含量,为保障土壤质量和农产品安全需考虑控制施用量和连续施用年限. 施用后堆肥产品中的重金属可能在土壤中淋溶迁移,但文献报道这一过程对环境质量、人类健康、作物品质和产量以及土壤肥力的风险很小. 由于泥质差异,市政污泥堆肥产品长期土地利用的重金属安全性仍值得关注,应根据泥质和土地利用状况调整连续施用年限.
关键词: 市政污泥      重金属      好氧堆肥      土地利用      安全性     
Review on the Safety of Heavy Metals During Land Utilization of Municipal Sludge after Composting
XU Yu-yu1,2 , ZHANG Zi-chen1 , WEN Long-jie1 , YANG Bai-ju3 , HOU Lei1,3 , ZHANG Bing2 , CHEN Tan1,2 , YANG Ting1     
1. College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China;
2. Beijing Engineering Research Centre for Food Environment and Health, Beijing 100081, China;
3. Beijing Pollution Source Management Affairs Center, Beijing 100089, China
Abstract: The leaching and release of heavy metals in municipal sludge pose critical constraints on the land utilization of municipal sludge after composting. To comprehensively understand the safety of heavy metals during land utilization of municipal sludge after composting, in this work, the heavy metal content levels of typical municipal sludge in China were summarized; the changes in the total amount, valence, and speciation forms of different types of heavy metals before and after composting were analyzed; and the short-term and long-term environmental behavior patterns of heavy metals after the application of municipal sludge composting products were reviewed. The mean concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in municipal sludge in China were 21.78, 2.41, 108.57, 231.09, 2.35, 67.57, 55.03, and 630.24 mg·kg-1, respectively, which remained within the permissible limits outlined in the China national standard GB 4284-2018 for Class A sludge products and exhibited a declining trend over the past three decades. During the composting process, the heavy metal content in the non-screened municipal sludge compost products decreased due to mixing auxiliary materials. Moreover, the humification of organic matter served to enhance heavy metal chelation, facilitating their conversion into more stable forms and thereby curtailing their mobility, leachability, and biological availability. The land utilization of municipal sludge compost products can gradually elevate the heavy metal content in soil, necessitating a judicious consideration of both application volumes and the duration of continuous usage to uphold soil quality and agricultural product safety. The heavy metals in municipal sludge compost products may undergo leaching and migration during land utilization, while literatures suggest minimal risks of this process to environmental quality, human health, crop yields, and soil fertility. Owing to variations in municipal sludge characteristics, the long-term safety implications of heavy metals in the land utilization of municipal sludge compost products warrant ongoing scrutiny; therefore, adjustments to the duration of continuous application should be mandated in accordance with specific sludge properties and land utilization conditions.
Key words: municipal sludge      heavy metals      aerobic composting      land utilization      safety     

市政污泥是污水处理过程中产生的固体或半固体多相副产物,不仅产量大、含水率高、易释放恶臭,还含有重金属和大量的致病菌、寄生虫[1~3],处理不善将造成二次污染,已成为污水处理和环境管理的瓶颈问题. 市政污泥的处理技术主要有填埋、焚烧、热解、好氧堆肥-土地利用、建材化和厌氧消化等[4~7]. 焚烧法在污泥减量化方面比好氧堆肥-土地利用更具优势,但各种污染物的排放、团聚烧结和高运行成本是污泥焚烧的主要技术挑战[8]. 市政污泥中的K、N和P等多种营养元素具有良好的肥效[9],堆肥处理是加速有机物降解和稳定的必要条件,堆肥化后有机质大量转化为腐殖质[10]. 相比之下,好氧堆肥对污泥含水量的要求不高,市政污泥堆肥产品作为园林绿化肥料的经济效益明显[11]. 污水处理会产生碳足迹,在中国污泥处理排放量占污水处理厂总排放量的45%[12],污泥处理温室气体减排具有巨大潜力和必要性. 市政污泥好氧堆肥-土地利用处理处置过程中主要排放的温室气体为CO2、CH4和N2O[13],曝气频率(AR)是影响污泥堆肥过程中成熟度和温室气体排放的主要因素,适当的AR应确保氧含量持续在10%以上[14]. 由于污泥好氧处理过程外加能源少,污泥堆肥产品土地利用还可以替代化肥,减少碳排放量,市政污泥好氧堆肥-土地利用与其他处理处置方式相比更具有减污降碳和全量资源化利用的潜力[15]. 市政污泥好氧堆肥-土地利用是目前较有前景的技术途径[16].

重金属的环境风险是限制市政污泥堆肥产品土地利用的关键因素. 工业废水混入生活污水处理,可将重金属引入市政污泥[17]. 市政污泥堆肥产品土地利用后,重金属可由土壤-堆肥产品混合固相进入土壤水环境,随土壤水迁移并由植物吸收,造成环境污染[1819]. 为系统认识市政污泥堆肥土地利用的重金属安全性,本文总结我国市政污泥、堆肥产品、产品施用后土壤中重金属的含量水平,分析堆肥过程中重金属形态的变化规律、机制以及堆肥过程理化性质的影响,回顾市政污泥堆肥土地利用重金属的释放与迁移的安全性,以期为我国市政污泥堆肥土地利用的重金属安全性保障提供科学依据.

1 中国市政污泥重金属含量水平 1.1 市政污泥中重金属含量

城市工业集群与市政污泥中重金属含量之间存在紧密联系,市政污水中的重金属主要由工业废水的混入导致[20]. 我国不同区域地理气候特点、管网建设情况、经济发展水平各不相同,污水组成和污水处理系统设置差异明显,都影响市政污泥中的重金属含量[21]. 本文整理2013~2023年报道国内不同城市市政污泥重金属文献,共统计出160个污水处理厂污泥的重金属含量见图 1表 1,分析了近年来中国市政污泥重金属含量的变化特征. 我国市政污泥重金属ω(As)、ω(Cd)、ω(Cr)、ω(Cu)、ω(Hg)、ω(Ni)、ω(Pb)和ω(Zn)的平均值分别为21.78、2.41、108.57、231.09、2.35、67.57、55.03和630.24 mg·kg-1. 重金属ω(As)、ω(Cd)、ω(Cr)、ω(Cu)、ω(Hg)、ω(Ni)、ω(Pb)和ω(Zn)的变化范围分别为8.72~78.4、0.21~12.13、21.32~594.47、57.23~1 206.54、0.072~5.2、13.14~353.75、14.73~167.7和121.4~1 563.38 mg·kg-1. 不同地区的市政污泥重金属含量变化范围较大,随着西部大开发以及东部环境成本增加,我国呈现污染西移的趋势. 很多国家为保障污泥农用的重金属安全都提出了限制要求.

数据来源文献[25~47] 图 1 我国市政污泥重金属含量箱线图 Fig. 1 Box line diagram of heavy metal content of municipal sludge in China

表 1 2013~2023年我国160个城镇污水处理厂污泥的重金属含量1) Table 1 Heavy metal content of sludge from 160 urban sewage treatment plants in China from 2013 to 2023

欧盟、美国和我国的市政污泥土地利用重金属含量限值见表 2. 欧盟于1986年正式颁布法令86/278/EEC[22],考虑植物的养分需求,并避免影响土壤、地表水和地下水的质量及损害人类健康,要求禁止在pH < 6的土壤中施用市政污泥,禁止在种植水果和蔬菜作物的土壤中收获前10个月施用市政污泥. 美国标准CFR-Part 503[23]将市政污泥分级管理,分为清洁污泥和散装污泥,清洁污泥无施用限制,不需现场监控记录. 散装污泥禁止用于草坪或住宅花园,严格监控记录且不可超过年积累施用量限值. 中国《农用污泥污染物控制标准》(GB 4284-2018)[24]将根据市政污泥中污染物的含量将其分为A级和B级污泥产物,分别对应不同的允许使用农用地类型,A级污泥产物可在耕地、园林和牧草地使用,B级污泥产物可在园林、牧草地和不种植食用农作物的耕地使用;还规定了年用量累计不得超过7.5 t·hm-2,且连续施用不超过5 a,同欧盟、美国相比我国的市政污泥农用采取了更严格的限制.

表 2 污泥土地利用标准限定的污泥中污染物限值1) Table 2 Limits of pollutants in sludge limited by sludge land use standards

我国市政污泥重金属As、Cd、Cr、Cu、Hg、Ni、Pb和Zn的含量平均值(见图 1)与GB 4284-2018规定的污泥农用污染物控制标准限值相比,市政污泥各重金属含量平均值均未超过A级污泥产物的重金属含量限值,表明我国市政污泥在重金属含量方面大部分都符合土地利用的条件. 但仍有部分城镇污水处理厂的污泥重金属含量不符合标准,与GB 4284-2018中A级污泥产物的重金属污染物含量限值对比,我国市政污泥重金属含量除Pb没有超标外,其他重金属As、Cd、Cr、Cu、Hg、Ni和Zn均有超标现象,超标率分别为13.04%、20.00%、3.23%、9.68%、28.57%、11.54%和12.90%,以Hg的超标率最高(28.57%);与GB 4284-2018中B级污泥产物重金属污染物含量限值对比,只有As和Ni超标,超标率分别为4.35%和11.54%.

进一步分析我国市政污泥的重金属含量,以内梅罗单因子污染指数Pi评价我国160个城镇污水处理厂污泥中的重金属含量,内梅罗指数评价等级可分为5类[43]Pi≤0.7,Ⅰ级(达标);Pi > 0.7~1.0,Ⅱ级(警戒级);Pi > 1.0~2.0,Ⅲ级(轻度超标);Pi > 2.0~3.0,Ⅳ级(中度超标);Pi > 3.0,Ⅴ级(重度超标). 计算公式为:

(1)

式中,Pi为污泥中重金属的污染指数,无量纲;i为不同重金属;Ci为实测污泥中重金属的含量,mg·kg-1Si为污泥中重金属的含量限值,mg·kg-1. 计算结果如图 2所示,以GB 4284-2018中A级污泥产物的重金属污染物含量限值为基准,各重金属单因子污染指数均处于警戒级水平以内;以GB 4284-2018中B级污泥产物的重金属污染物含量为基准,各重金属单因子污染指数均大体达到达标水平. 总体上,我国市政污泥重金属污染风险水平较低,绝大部分可安全地进行土地利用.

图 2 市政污泥重金属农用重金属单因子污染指数箱线图 Fig. 2 Municipal sludge heavy metals agricultural heavy metals single factor contamination index box line plot

1.2 市政污泥重金属含量的年际变化趋势

为了解中国市政污泥中重金属含量的年际变化趋势,查阅了2007~2020年北京市市政污泥重金属含量[2744~46],总体上2007年以来北京市市政污泥中Cd、Pb、Zn、Cr、As和Ni等大部分重金属含量在2010年升高较多,其后趋于稳定并下降(表 3). 主要原因可能是城市工业废水的控制排放、市政管网和排水的严格管理及配套基础设施的完善. Cu、Cr和Ni呈现逐年上升的趋势,可能受工业过程这3种元素使用量和排放量增加等因素的影响. 市政污泥中个别种类重金属及各地区市政污泥中重金属含量的差异值得进一步关注.

表 3 北京市市政污泥中重金属含量年际变化趋势1) Table 3 Inter-annual trend of heavy metal content in municipal sludge in Beijing

2 市政污泥堆肥过程中重金属的含量和形态变化 2.1 堆肥处理对市政污泥中重金属含量的影响

堆肥过程中有机质的分解矿化会造成质量损失,该浓缩作用会提高污泥中重金属的含量[4647]. Cai等[48]报道堆肥可富集市政污泥中ω(Cd)、ω(Cu)、ω(Pb)和ω(Zn),变化范围分别为0.75~2.0、416~458、66~168和1 356~1 750 mg·kg-1,与市政污泥中的重金属含量相比,堆肥后Cd、Cu、Pb和Zn含量分别增加了12%~60%、8%~17%、15%~43%和14%~44%,堆肥后单一种类重金属或总重金属的含量可能会超过堆肥肥料的最大允许限值. Zheng等[49]将市政污泥堆肥,Ni和Cr含量分别增加了30.4%和36.0%;在相关研究中[50~52]同样发现了类似的重金属含量增加现象. 市政污泥堆肥过程中,重金属除了在含量和形态方面变化外,部分重金属还可能转变价态. 如Cr和As,在堆肥环境中可能经历从较稳定态[如Cr(Ⅲ)的氧化物或氢氧化物和As(Ⅴ)的含氧酸盐]向更不稳定态[如可溶性的Cr(Ⅵ)和As(Ⅲ)离子]的转变. Cr(Ⅵ)因其高溶解度和强氧化性,对生物体具有极高的毒性,而As(Ⅲ)则因其较高的生物可利用性,更容易被植物吸收并累积于食物链中,最终对人体健康造成威胁[53]. 通过优化堆肥工艺参数(如温度、湿度、通气量、pH值调控及辅料配比等),可实现重金属的稳定化,降低其环境风险. 例如,Nafez等[54]的研究中,通过增加绿化废物比例降低了堆肥产品中重金属的总量(见图 3).

图 3 污泥堆肥重金属含量变化[54] Fig. 3 Variation in heavy metal content of sludge compost

市政污泥掺混辅料堆肥,不筛分的堆肥产品中重金属的含量通常达标. 如,黄俊熙等[55]以市政污泥66.9%、微生物发酵菌0.1%、木屑20%、蘑菇渣8%和生物质炭5%的质量配比堆肥,得到的堆肥产品中ω(Cr)、ω(Pb)、ω(Ni)和ω(Cu)分别是55、36、43和130 mg·kg-1,满足GB 4284-2018的A级污泥产物重金属含量标准. 市政污泥与辅料(花生壳、秸秆)质量比5∶1堆肥,产品中ω(Cr)、ω(Ni)、ω(Cu)、ω(Zn)、ω(Cd)和ω(Pb)分别为100.49、52.25、163.35、335.24、1.31和21.25 mg·kg-1,满足GB 4284-2018的B级污泥产物重金属含量标准[56].

2.2 堆肥过程的市政污泥重金属形态变化及钝化机制

重金属的形态与其迁移性、生物利用度及毒性紧密相关,因此,堆肥过程中市政污泥中重金属的形态转化在评估其土地利用安全性方面十分重要. Tessier等[57]提出的五步连续提取法将重金属划分为可交换态、碳酸盐结合态、Fe-Mn氧化物结合态、有机结合态和残渣态等5种形态,其中可交换态因高迁移性和生物易吸收性,危害最大[58]. 堆肥过程中有机物腐殖化,与重金属络合作用增强,重金属从可交换态向Fe-Mn氧化物结合态和残渣态等更稳定的形态转化,从而降低流动性、浸出性和生物利用性[59]. 堆肥过程腐殖化抑制重金属迁移的机制见图 4,主要通过形成配位键[60]或静电引力作用实现. 促进腐殖化是堆肥过程中强化重金属钝化的重要方式[61],可有效降低污泥农用重金属浸出风险,提高市政污泥土地利用的重金属安全性.

图 4 堆肥过程产生的腐殖质钝化重金属的主要机制 Fig. 4 Main mechanisms of passivation of heavy metals by humus produced by the composting process

在污泥好氧堆肥过程中合理添加调理剂,重金属的形态会发生明显的钝化作用降低其生物有效性,进而降低市政污泥中的重金属污染风险. 常用的堆肥调理剂,如羟基磷灰石、沸石、蚯蚓粪和生物炭等,具有很大的内表面积和较优的粒径条件[62],施用后可加速污泥中有机物腐殖质化,降低重金属生物利用度和流动性[62~64]. 调理剂表面的含氧官能团对游离态重金属阳离子具有很高的交换能力,使其与重金属高效络合[65]. 如表 4列举的报道情况.

表 4 堆肥过程对市政污泥中重金属赋存形态的影响1) Table 4 Effect of sludge composting on heavy metal forms

为确保污泥农用的长期安全性,仍需定期监测市政污泥施用后的重金属溶出以及重金属在土壤、水体和作物等介质中的迁移和分布情况[6667]. Wang等[68]报道了市政污泥堆肥中重金属在土壤中生物利用性提高,这可能与土壤中的微生物活动等条件有关[6970].

3 市政污泥堆肥产品的重金属溶出行为

在市政污泥堆肥产品连续施用的情况下,土壤中的重金属含量将逐渐提升,当重金属累积超过阈值时就可毒害作物[81]. 同时,市政污泥堆肥产品中的有机物含量高,仍有进一步钝化重金属、降低其生物利用性的潜力[82].

3.1 堆肥产品施用后土壤中重金属含量的变化

表 5总结了市政污泥堆肥产品施用后土壤中重金属含量变化的报道情况. 以国家标准《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618-2018)规定的农用地土壤污染风险筛选值(6.5 < pH≤7.5)为基准比较,在江苏省常熟市的水田每半年施用1次、连续3 a施用市政污泥堆肥产品,重金属主要分布在10~20 cm的浅层土壤中,积累量较少未见超标现象;在北京市大兴区的林地中连续10 a施用市政污泥堆肥产品,土壤中的Zn含量将超标;在福建省闽侯县的园林中连续10 a施用市政污泥堆肥产品,施用市政污泥堆肥产品的土壤重金属含量高于施用化肥的土壤重金属含量,施用市政污泥堆肥产品的土壤中Cr和Cu重金属含量已超标,表明市政污泥堆肥产品的长期连续土地利用时土壤的重金属污染风险不能完全忽略. 在宁波和唐山连续12 a施用风干污泥后,Wu等[83]报道土壤中Cu、Zn、Cd和Pb的总量明显增加,主要积累在表层土壤中. McGrath等[8485]报道,连续20 a的污泥堆肥产品土地利用田间试验后,土壤中的重金属含量明显增加. Parat等[86]报道连续20 a施用市政污泥堆肥产品的土壤中,Cu、Pb和Zn总量明显增加,但主要以较为稳定的形态存在,如Cu主要以Fe-Mn氧化物结合态和有机物结合态存在,Pb主要以残留态存在,Zn主要以Fe-Mn氧化物结合态存在.

表 5 堆肥产品施用后土壤中重金属总量1) Table 5 Total heavy metals in soil after application of compost products

以上研究结果表明,施用市政污泥堆肥产品可能造成重金属在土壤中的积累,短期施用引起重金属含量超标的风险较小,长期连续施用导致土壤中重金属含量超出土壤污染风险筛选值的可能性增大. 为保障土壤质量和农产品安全,需要进一步研究市政污泥堆肥产品土地利用时连续施用年限和用量与土壤重金属行为的关系.

3.2 土壤中重金属的淋溶迁移

长期施用市政污泥堆肥产品后,重金属可能在土壤中淋溶迁移. 污泥堆肥产品土地利用后,重金属会受到降水、酸雨、盐碱以及植物根系等多种生物和非生物因素的影响. 各种基于明确场景设计的浸出方法可模拟不同环境条件下的重金属淋溶行为,如《固体废物浸出毒性浸出方法硫酸硝酸法》(HJ/T 299-2007)模拟酸雨的淋滤效果. 市政污泥堆肥产品土地利用后,不同土壤特征下重金属浸出毒性评价结果(见表 6)表明,重金属的浸出受土壤pH值、堆肥成分、土壤类型、环境条件以及植物生长等因素影响,如土壤pH值下降时,Zn、Ni和Cd的迁移性增加[90],浸出浓度和浸出率通常较低. 有报道指出施用市政污泥堆肥产品的土壤上的作物中重金属含量增加[91],如冀拯宇等[56]于2013~2015年在玉米地中连续施用污泥堆肥产品45 t·hm-2,玉米籽粒中的Cu、Zn、Cr和Ni含量相较于对照组分别提高了67.5%、50.8%、69.2%和133.3%,且施用时间延长,该升高趋势积累. 但在高pH值和石灰质土壤中,重金属向植物组织的转移会受到限制. 如Gigliotti等[92]的研究显示,将市政污泥堆肥产品连续6 a施用到石灰质黏壤土(pH 8.3)中,总施用量已达540 t·hm-2,玉米的土壤-植物转移系数仍未恶化,环境风险可控.

表 6 不同重金属毒性浸出评价方法浸出结果 Table 6 Leaching results of different heavy metal toxicity leaching evaluation methods

3.3 地球化学模型

在市政污泥堆肥土地利用过程中重金属的溶出释放方面,现有的实验方法大多只能反映短期趋势,市政污泥堆肥产品长时间周期性施用对土壤重金属的长期动态释放和分配影响研究尚待深入.

地球化学模型可用于预测市政污泥堆肥产品长期施用后土壤中重金属的行为. 地球化学模型不断发展,结合已知固液界面的热力学和动力学规律,可以更好地表征土壤环境中的吸附、解吸和离子交换等化学反应,已在MINETEQ、ECOSAT、ORCHESTRA和LeachXS等[99~101]软件中较好实现. Van Der等[102]认为化学分析和LeachXS形态建模的结合可评估重金属生物可利用性,与作物生态毒理反应相关性较好. Zhang等[103]采用试验分析和地球化学模型Visual MINTEQ预测的pH依赖性浸出行为与pH依赖性测试的结果非常吻合. Fang等[96]利用ORCHESTRA建模框架确定污泥堆肥改良土壤固相和液相中重金属的化学形态,液相中重金属的形态主要包括有机物结合态和可交换态,固相中的重金属主要分布在不同的吸附表面上,包括颗粒有机物和黏土. 未来,随着地球化学模拟技术的不断完善和应用领域的拓展,其在市政污泥堆肥产品土地利用的重金属安全性评估中的推广使用将更加广泛.

4 结论

(1)中国市政污泥中的重金属ω(As)、ω(Cd)、ω(Cr)、ω(Cu)、ω(Hg)、ω(Ni)、ω(Pb)和ω(Zn)的含量平均值分别为21.78、2.41、108.57、231.09、2.35、67.57、55.03和630.24 mg·kg-1,未超过《农用污泥污染物控制标准》(GB 4284-2018)中A级污泥产物的重金属污染物含量限值. 利用内梅罗单因子污染指数评价,我国市政污泥的重金属污染风险水平较低,绝大部分市政污泥的土地利用安全性可控.

(2)市政污泥的堆肥处理能够使重金属转化为更为稳定的形态,显著降低其生物有效性. 堆肥过程中不断腐殖化,重金属与腐殖质等有机物络合,可有效降低污泥农用重金属浸出风险,进一步提高了市政污泥土地利用的重金属安全性.

(3)市政污泥堆肥产品土地利用过程中,会逐渐提高土壤中的重金属含量,施用后堆肥产品中的重金属可能在土壤中淋溶迁移,但浸出浓度和浸出率通常较低,环境风险可控. 在合理的年用量和连续施用年限条件下,市政污泥堆肥产品可进行安全的土地利用.

参考文献
[1] Zaker A, Chen Z, Wang X L, et al. Microwave-assisted pyrolysis of sewage sludge: a review[J]. Fuel Processing Technology, 2019, 187: 84-104.
[2] Belhaj D, Jerbi B, Medhioub M, et al. Impact of treated urban wastewater for reuse in agriculture on crop response and soil ecotoxicity[J]. Environmental Science and Pollution Research, 2016, 23(16): 15877-15887.
[3] Raheem A, Sikarwar V S, He J, et al. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: a review[J]. Chemical Engineering Journal, 2018, 337: 616-641.
[4] Tyagi V K, Lo S L. Sludge: a waste or renewable source for energy and resources recovery?[J]. Renewable and Sustainable Energy Reviews, 2013, 25: 708-728.
[5] Zhou Y F, Li J S, Lu J X, et al. Recycling incinerated sewage sludge ash(ISSA)as a cementitious binder by lime activation[J]. Journal of Cleaner Production, 2020, 244. DOI:10.1016/j.jclepro.2019.118856
[6] Smol M, Kulczycka J, Henclik A, et al. The possible use of sewage sludge ash(SSA)in the construction industry as a way towards a circular economy[J]. Journal of Cleaner Production, 2015, 95: 45-54.
[7] Wickham R, Xie S H, Galway B, et al. Anaerobic digestion of soft drink beverage waste and sewage sludge[J]. Bioresource Technology, 2018, 262: 141-147.
[8] AlQattan N, Acheampong M, Jaward F M, et al. Reviewing the potential of waste-to-energy(WTE)technologies for Sustainable Development Goal(SDG)numbers seven and eleven[J]. Renewable Energy Focus, 2018, 27: 97-110.
[9] 徐富锦, 常会庆. 污泥堆肥替代氮肥对石灰性褐土肥力、小麦产量和品质的影响[J]. 生态与农村环境学报, 2022, 38(11): 1482-1490.
Xu F J, Chang H Q. Effects of sludge composting to replace nitrogen fertilizer on cinnamon soil fertility, yield and quality of wheat[J]. Journal of Ecology and Rural Environment, 2022, 38(11): 1482-1490.
[10] Donatello S, Cheeseman C R. Recycling and recovery routes for incinerated sewage sludge ash(ISSA): a review[J]. Waste Management, 2013, 33(11): 2328-2340.
[11] Seleiman M F, Santanen A, Mäkelä P S, et al. Recycling sludge on cropland as fertilizer–Advantages and risks[J]. Resources, Conservation and Recycling, 2020, 155. DOI:10.1016/j.resconrec.2019.104647
[12] Hu W Q, Tian J P, Chen L J. Greenhouse gas emission by centralized wastewater treatment plants in Chinese industrial parks: Inventory and mitigation measures[J]. Journal of Cleaner Production, 2019, 225: 883-897.
[13] Wang M J, Awasthi M K, Wang Q, et al. Comparison of additives amendment for mitigation of greenhouse gases and ammonia emission during sewage sludge co-composting based on correlation analysis[J]. Bioresource Technology, 2017, 243: 520-527.
[14] Yuan J, Chadwick D, Zhang D F, et al. Effects of aeration rate on maturity and gaseous emissions during sewage sludge composting[J]. Waste Management, 2016, 56: 403-410.
[15] Liu B B, Wei Q, Zhang B, et al. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China[J]. Science of the Total Environment, 2013, 447: 361-369.
[16] 刘洪涛, 张悦. 国情背景下我国城镇污水厂污泥土地利用的瓶颈[J]. 中国给水排水, 2013, 29(20): 1-4.
Liu H T, Zhang Y. Key issues on land application of sewage sludge in Chinese national conditions[J]. China Water Wastewater, 2013, 29(20): 1-4.
[17] Boller M. Tracking heavy metals reveals sustainability deficits of urban drainage systems[J]. Water Science and Technology, 1997, 35(9): 77-87.
[18] 乔显亮, 骆永明, 吴胜春. 污泥的土地利用及其环境影响[J]. 土壤, 2000, 32(2): 79-85.
[19] Singh R P, Agrawal M. Variations in heavy metal accumulation, growth and yield of rice plants grown at different sewage sludge amendment rates[J]. Ecotoxicology and Environmental Safety, 2010, 73(4): 632-641.
[20] Rizzardini C B, Goi D. Sustainability of domestic sewage sludge disposal[J]. Sustainability, 2014, 6(5): 2424-2434.
[21] 田渭花, 王蕾, 关建玲, 等. 渭河陕西段水体重金属污染现状及其来源探析[J]. 环境工程技术学报, 2017, 7(6): 684-690.
Tian W H, Wang L, Guan J L, et al. Heavy metal pollution and source analysis of Weihe River in Shaanxi Province[J]. Journal of Environmental Engineering Technology, 2017, 7(6): 684-690.
[22] 86/278/EEC, Council directive on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture[S].
[23] 503. Standards for the Use or Disposal of Sewage Sludge[S].
[24] GB 4284-2018, 农用污泥污染物控制标准[S].
[25] 张含, 李伟, 王佳伟, 等. 城市污泥重金属在高级厌氧消化工艺系统中的迁移转化及风险评价[J]. 环境工程学报, 2021, 15(1): 289-297.
Zhang H, Li W, Wang J W, et al. Migration and transformation of heavy metals in sewage sludge during advanced anaerobic digestion process and risk assessment[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 289-297.
[26] 姚聪颖, 曹吉鑫, 彭祚登, 等. 北京排水污泥重金属含量的季节变化特征及污染风险评价[J]. 环境保护与循环经济, 2020, 40(8): 48-52.
[27] 孟国欣, 查同刚, 张晓霞, 等. 北京市污水处理厂污泥重金属污染特征和生态风险评价[J]. 生态环境学报, 2017, 26(9): 1570-1576.
Meng G X, Zha T G, Zhang X X, et al. Heavy metal pollution characteristics and ecological risk assessment of the sludge from wastewater treatment plants in Beijing[J]. Ecology and Environmental Sciences, 2017, 26(9): 1570-1576.
[28] 储杰. 上海市某污水处理厂污泥重金属特性及主成分分析[J]. 净水技术, 2021, 40(S1): 179-182.
Chu J. Heavy metals characterization and principal component analysis of sewage sludge from a municipal wastewater treatment plant in Shanghai[J]. Water Purification Technology, 2021, 40(S1): 179-182.
[29] 张灿, 陈虹, 余忆玄, 等. 我国沿海地区城镇污水处理厂污泥重金属污染状况及其处置分析[J]. 环境科学, 2013, 34(4): 1345-1350.
Zhang C, Chen H, Yu Y X, et al. Pollution characteristics of heavy metals in sludge from wastewater treatment plants and sludge disposal in Chinese Coastal Areas[J]. Environmental Science, 2013, 34(4): 1345-1350.
[30] Zhang J L, Xu X. Spatial distribution characteristics and potential risk assessment of heavy metals in sludge of Shanghai sewage treatment plant: a case study[J]. Sustainability, 2023, 15(4): 3465.
[31] 吕丰锦, 刘俊新. 我国南北方城市污水处理厂污泥性质比较分析[J]. 给水排水, 2016, 52(S1): 63-66.
[32] 严霞. 东莞市城镇污水处理厂污泥中养分及重金属特征分析[J]. 皮革制作与环保科技, 2021, 2(23): 139-141.
Yan X. Feature analysis of nutrients and heavy metals in sludge from municipal wastewater treatment plants in Dongguan City[J]. Leather Manufacture and Environmental Technology, 2021, 2(23): 139-141.
[33] 林敏, 姚建国, 马贞依, 等. 杭州市政污泥中重金属污染及形态特征[J]. 环境科学与技术, 2020, 43(11): 54-58.
Lin M, Yao J G, Ma Z Y, et al. Pollution and morphological characteristics of heavy netals in municipal sludge from Hangzhou[J]. Environmental Science & Technology, 2020, 43(11): 54-58.
[34] 涂剑成, 赵庆良, 杨倩倩. 东北地区城市污水处理厂污泥中重金属的形态分布及其潜在生态风险评价[J]. 环境科学学报, 2012, 32(3): 689-695.
Tu J C, Zhao Q L, Yang Q Q. Fractional distribution and assessment of potential ecological risk of heavy metals in municipal sludges from wastewater treatment plants in Northeast China[J]. Acta Scientiae Circumstantiae, 2012, 32(3): 689-695.
[35] 王晓林. 山东省城市污水处理厂污泥重金属污染特征及风险评价[J]. 环境污染与防治, 2016, 38(8): 59-63, 68.
Wang X L. Pollution characteristics and risk assessment of heavy metals in sewage sludge from municipal wastewater treatment plants in Shandong[J]. Environmental Pollution and Control, 2016, 38(8): 59-63, 68.
[36] 邓炳波, 田超, 司友斌. 合肥市污水处理厂污泥重金属分布特征及其生态风险评价[J]. 环境污染与防治, 2015, 37(8): 46-51, 57.
Deng B B, Tian C, Si Y B. Heavy metal characteristics and its potential ecological risk assessment in the sludge from Hefei municipal wastewater treatment plants[J]. Environmental Pollution and Control, 2015, 37(8): 46-51, 57.
[37] Yang T, Huang H J, Lai F Y. Pollution hazards of heavy metals in sewage sludge from four wastewater treatment plants in Nanchang, China[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(10): 2249-2259.
[38] 文竹, 李江, 王兴, 等. 贵州省污水处理厂污泥中重金属形态分布及其潜在生态风险评价[J]. 中国农村水利水电, 2016(12): 67-73, 78.
Wen Z, Li J, Wang X, et al. Fractionation and environmental assessment of heavy metals in sewage sludge from municipal wastewater treatment plants of Guizhou Province[J]. China Rural Water and Hydropower, 2016(12): 67-73, 78.
[39] 承书振, 孙长顺, 王丽香, 等. 陕西省城镇污泥养分与重金属含量特征分析[J]. 环境工程, 2020, 38(5): 65-69.
Cheng S Z, Sun C S, Wang L X, et al. Analysis on content characteristics of nutrients and heavy metals in urban sludge of Shaanxi Province[J]. Environmental Engineering, 2020, 38(5): 65-69.
[40] 张康, 戴亮, 任珺, 等. 兰州市城市污泥中重金属污染特征及其生态风险评价[A]. 见: 《环境工程》2019年全国学术年会论文集[C]. 北京: 《工业建筑》杂志社有限公司, 2019. 333-339.
[41] 徐荣乐, 黄业翔, 许谦, 等. 南宁市市政污泥及资源化产品重金属特性分析与污染风险评价[J]. 环境科技, 2022, 35(1): 51-56.
Xu R L, Huang Y X, Xu Q, et al. Heavy metal characteristics and pollution risk assessment of municipal sludge and resource products in Nanning[J]. Environmental Science and Technology, 2022, 35(1): 51-56.
[42] 方程, 王旭彤, 常可可, 等. 西藏高原典型城市重金属特性分析[A]. 见: 中国环境科学学会2022年科学技术年会——环境工程技术创新与应用分会场论文集(三)[C]. 南昌: 《工业建筑》杂志社有限公司, 2022. 651-658.
[43] 郝春明, 陈有鑑, 李琼, 等. 浙江平湖农田土壤安全质量评价[J]. 能源环境保护, 2009, 23(1): 52-56.
Hao C M, Chen Y J, Li Q, et al. Evaluation of surface soil safety quality in Pinghu Zhejiang Province[J]. Energy Environmental Protection, 2009, 23(1): 52-56.
[44] 白莉萍, 齐洪涛, 伏亚萍, 等. 北京地区不同城镇污水处理厂堆肥污泥的营养含量和重金属污染[J]. 环境科学, 2014, 35(12): 4648-4654.
Bai L P, Qi H T, Fu Y P, et al. Nutrient contents and heavy metal pollutions in composted sewage sludge from different municipal wastewater treatment plants in Beijing region[J]. Environmental Science, 2014, 35(12): 4648-4654.
[45] 李雅嫔, 杨军, 雷梅, 等. 北京市城市污泥土地利用的重金属污染风险评估[J]. 中国给水排水, 2015, 31(9): 117-120.
Li Y P, Yang J, Lei M, et al. Pollution risk assessment of heavy metals in sewage sludge for land application in Beijing[J]. China Water & Wastewater, 2015, 31(9): 117-120.
[46] Zorpas A A, Arapoglou D, Panagiotis K. Waste paper and clinoptilolite as a bulking material with dewatered anaerobically stabilized primary sewage sludge(DASPSS)for compost production[J]. Waste Management, 2003, 23(1): 27-35.
[47] Wagner D J, Bacon G D, Knocke W R, et al. Changes and variability in concentration of heavy metals in sewage sludge during composting[J]. Environmental Technology, 1990, 11(10): 949-960.
[48] Cai Q Y, Mo C H, Wu Q T, et al. Concentration and speciation of heavy metals in six different sewage sludge-composts[J]. Journal of Hazardous Materials, 2007, 147(3): 1063-1072.
[49] Zheng G D, Gao D, Chen T B, et al. Stabilization of nickel and chromium in sewage sludge during aerobic composting[J]. Journal of Hazardous Materials, 2007, 142(1-2): 216-221.
[50] Xu S, Li L, Zhan J, et al. Variation and factors on heavy metal speciation during co-composting of rural sewage sludge and typical rural organic solid waste[J]. Journal of Environmental Management, 2022, 306. DOI:10.1016/j.jenvman.2021.114418
[51] Walter I, Martínez F, Cala V. Heavy metal speciation and phytotoxic effects of three representative sewage sludges for agricultural uses[J]. Environmental Pollution, 2006, 139(3): 507-514.
[52] Gao D, Zheng G D, Chen T B, et al. Changes of Cu, Zn, and Cd speciation in sewage sludge during composting[J]. Journal of Environmental Sciences, 2005, 17(6): 957-961.
[53] Pathania Deepak. Heavy metals: sources, toxicity and remediation techniques[M]. New York: Nova Publishers, 2016.
[54] Nafez A H, Nikaeen M, Kadkhodaie S, et al. Sewage sludge composting: quality assessment for agricultural application[J]. Environmental Monitoring and Assessment, 2015, 187(11). DOI:10.1007/s10661-015-4940-5
[55] 黄俊熙, 严兴, 雷芳, 等. 添加辅料对污泥堆肥产品的生物肥效的影响[J]. 环境工程, 2021, 39(3): 142-147.
Huang J X, Yan X, Lei F, et al. Improvement of biological fertilizer efficiency of sludge compost products by adding auxiliary materials[J]. Environmental Engineering, 2021, 39(3): 142-147.
[56] 冀拯宇, 周吉祥, 郭康莉, 等. 连续施用无害化污泥堆肥对沙质潮土肥力的影响[J]. 植物营养与肥料学报, 2018, 24(5): 1276-1284.
Ji Z Y, Zhou J X, Guo K L, et al. Effects of continuous application of non-hazardous sewage sludge compost on fertility of sandy fluvo-aquic soil[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1276-1284.
[57] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
[58] Lake D L, Kirk P W W, Lester J N. Fractionation, characterization, and speciation of heavy metals in sewage sludge and sludge‐amended soils: a review[J]. Journal of Environmental Quality, 1984, 13(2): 175-183.
[59] Awasthi S K, Duan Y, Liu T M, et al. Can biochar regulate the fate of heavy metals(Cu and Zn)resistant bacteria community during the poultry manure composting?[J]. Journal of Hazardous Materials, 2021, 406. DOI:10.1016/j.jhazmat.2020.124593
[60] Martínez C E, McBride M B. Dissolved and labile concentrations of Cd, Cu, Pb, and Zn in aged ferrihydrite-organic matter systems[J]. Environmental Science & Technology, 1999, 33(5): 745-750.
[61] Smith S R. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge[J]. Environment International, 2009, 35(1): 142-156.
[62] Barthod J, Rumpel C, Dignac M F. Composting with additives to improve organic amendments. A review[J]. Agronomy for Sustainable Development, 2018, 38(2). DOI:10.1007/s13593-018-0491-9
[63] Shan G C, Li W G, Gao Y J, et al. Additives for reducing nitrogen loss during composting: a review[J]. Journal of Cleaner Production, 2021, 307. DOI:10.1016/j.jclepro.2021.127308
[64] Liu H T, Wang L X, Zhong R Z, et al. Binding characteristics of humic substances with Cu and Zn in response to inorganic mineral additives during swine manure composting[J]. Journal of Environmental Management, 2022, 305. DOI:10.1016/j.jenvman.2021.114387
[65] Ozdemir S, Turp S M, Oz N. Simultaneous dry-sorption of heavy metals by porous adsorbents during sludge composting[J]. Environmental Engineering Research, 2019, 25(2): 258-265.
[66] Achiba W B, Gabteni N, Lakhdar A, et al. Effects of 5-year application of municipal solid waste compost on the distribution and mobility of heavy metals in a Tunisian calcareous soil[J]. Agriculture, 2009, 130(3-4): 156-163.
[67] Carbonell G, De Imperial R M, Torrijos M, et al. Effects of municipal solid waste compost and mineral fertilizer amendments on soil properties and heavy metals distribution in maize plants(Zea mays L.)[J]. Chemosphere, 2011, 85(10): 1614-1623.
[68] Wang Q, Wang Z, Awasthi M K, et al. Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting[J]. Bioresource Technology, 2016, 220: 297-304.
[69] Chen X M, Zhao Y, Zhao X Y, et al. Selective pressures of heavy metals on microbial community determine microbial functional roles during composting: sensitive, resistant and actor[J]. Journal of Hazardous Materials, 2020, 398. DOI:10.1016/j.jhazmat.2020.122858
[70] Chen Y, Xu Y P, Qu F J, et al. Effects of different loading rates and types of biochar on passivations of Cu and Zn via swine manure composting[J]. Journal of Arid Land, 2020, 12(6): 1056-1070.
[71] 陈镇新, 檀笑, 解启来, 等. 不同辅料配比对城市污泥堆肥效果及重金属形态转化的影响[J]. 江苏农业科学, 2017, 45(1): 227-234.
[72] Kang J, Zhang Z Q, Wang J J. Influence of humic substances on bioavailability of Cu and Zn during sewage sludge composting[J]. Bioresource Technology, 2011, 102(17): 8022-8026.
[73] Ignatowicz K. The impact of sewage sludge treatment on the content of selected heavy metals and their fractions[J]. Environmental Research, 2017, 156: 19-22.
[74] Bożym M, Siemiątkowski G. Characterization of composted sewage sludge during the maturation process: a pilot scale study[J]. Environmental Science and Pollution Research, 2018, 25(34): 34332-34342.
[75] Wang X K, Zheng G D, Chen T B, et al. Effect of phosphate amendments on improving the fertilizer efficiency and reducing the mobility of heavy metals during sewage sludge composting[J]. Journal of Environmental Management, 2019, 235: 124-132.
[76] Liu H T, Guo X X. Hydroxyapatite reduces potential Cadmium risk by amendment of sludge compost to turf-grass grown soil in a consecutive two-year study[J]. Science of the Total Environment, 2019, 661: 48-54.
[77] Zorpas A A, Inglezakis V J, Loizidou M. Heavy metals fractionation before, during and after composting of sewage sludge with natural zeolite[J]. Waste Management, 2008, 28(11): 2054-2060.
[78] Wong J W C, Selvam A. Speciation of heavy metals during co-composting of sewage sludge with lime[J]. Chemosphere, 2006, 63(6): 980-986.
[79] Liu W, Huo R, Xu J X, et al. Effects of biochar on nitrogen transformation and heavy metals in sludge composting[J]. Bioresource Technology, 2017, 235: 43-49.
[80] Bakar A A, Mahmood N Z, Teixeira Da Silva J A, et al. Vermicomposting of sewage sludge by Lumbricus rubellus using spent mushroom compost as feed material: effect on concentration of heavy metals[J]. Biotechnology and Bioprocess Engineering, 2011, 16(5): 1036-1043.
[81] 马倩, 朱伟, 龚淼, 等. 超临界水气化处理对脱水污泥中重金属环境风险的影响[J]. 环境科学学报, 2015, 35(5): 1417-1425.
Ma Q, Zhu W, Gong M, et al. Influence of supercritical water gasification treatment on environmental risk of heavy metals in dewatered sewage sludge[J]. Acta Scientiae Circumstantiae, 2015, 35(5): 1417-1425.
[82] Brown S, Chaney R, Hallfrisch J, et al. In situ soil treatments to reduce the phyto‐ and bioavailability of lead, zinc, and cadmium[J]. Journal of Environmental Quality, 2004, 33(2): 522-531.
[83] Wu L H, Cheng M M, Li Z, et al. Major nutrients, heavy metals and PBDEs in soils after long-term sewage sludge application[J]. Journal of Soils and Sediments, 2012, 12(4): 531-541.
[84] McGrath S P, Cegarra J. Chemical extractability of heavy metals during and after long‐term applications of sewage sludge to soil[J]. Journal of Soil Science, 1992, 43(2): 313-321.
[85] McGrath S P, Zhao F J, Dunham S J, et al. Long‐term changes in the extractability and bioavailability of zinc and cadmium after sludge application[J]. Journal of Environmental Quality, 2000, 29(3): 875-883.
[86] Parat C, Chaussod R, Lévêque J, et al. Long-term effects of metal-containing farmyard manure and sewage sludge on soil organic matter in a fluvisol[J]. Soil Biology and Biochemistry, 2005, 37(4): 673-679.
[87] 方文. 污泥堆肥土地利用中重金属的释放及分配研究[D]. 北京: 清华大学, 2017.
Fang W. Leaching and partitioning of heavy metals during land application of sewage sludge compost[D]. Beijing: Tsinghua University, 2017.
[88] 王丽霞, 杜子文, 封莉, 等. 连续施用城市污泥后林地土壤中重金属的含量变化及生态风险[J]. 环境工程学报, 2021, 15(3): 1092-1102.
Wang L X, Du Z W, Feng L, et al. Eco-environmental risk assessment of urban sludge application in forest land[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 1092-1102.
[89] 董文, 张青, 王煌平, 等. 长期施用污泥对土壤-萝卜系统重金属积累及土壤养分含量的影响[J]. 农业资源与环境学报, 2021, 38(4): 647-654.
Dong W, Zhang Q, Wang H P, et al. Effects of the long-term application of sludge on heavy metal accumulation and soil nutrient content in soil-radish system[J]. Journal of Agricultural Resources and Environment, 2021, 38(4): 647-654.
[90] Smith S R. Effect of soil pH on availability to crops of metals in sewage sludge-treated soils. I. Nickel, copper and zinc uptake and toxicity to ryegrass[J]. Environmental Pollution, 1994, 85(3): 321-327.
[91] Wei Y J, Liu Y S. Effects of sewage sludge compost application on crops and cropland in a 3-year field study[J]. Chemosphere, 2005, 59(9): 1257-1265.
[92] Gigliotti G, Businelli D, Giusquiani P L. Trace metals uptake and distribution in corn plants grown on a 6-year urban waste compost amended soil[J]. Agriculture, 1996, 58(2-3): 199-206.
[93] 刘文杰. 昆明市污泥堆肥产品土地利用中重金属环境安全性研究[D]. 北京: 清华大学, 2014.
Liu W J. Environmenatal security of heavy metals in sewage sludge compost applicated on the land of Kunming[D]. Beijing: Tsinghua University, 2014.
[94] Li F L, Shao L Z, Chen Y H, et al. Leaching characteristic of potentially toxic metals of artificial soil made from municipal sludge compost[J]. Chemosphere, 2021, 270. DOI:10.1016/j.chemosphere.2020.128632
[95] Fang W, Wei Y H, Liu J G. Comparative characterization of sewage sludge compost and soil: heavy metal leaching characteristics[J]. Journal of Hazardous Materials, 2016, 310: 1-10.
[96] Fang W, Delapp R C, Kosson D S, et al. Release of heavy metals during long-term land application of sewage sludge compost: Percolation leaching tests with repeated additions of compost[J]. Chemosphere, 2017, 169: 271-280.
[97] Bragato G, Leita L, Figliolia A, et al. Effects of sewage sludge pre-treatment on microbial biomass and biovailability of heavy metals[J]. Soil and Tillage Research, 1998, 46(1-2): 129-134.
[98] Jalali M, Arfania H. Leaching of heavy metals and nutrients from calcareous sandy‐loam soil receiving municipal solid sewage sludge[J]. Journal of Plant Nutrition and Soil Science, 2010, 173(3): 407-416.
[99] 张红振, 骆永明, 宋静, 等. 基于中性盐提取的土壤重金属固液分配与自由态金属离子浓度测定[J]. 环境科学学报, 2010, 30(1): 124-132.
Zhang H Z, Luo Y M, Song J, et al. Solid-solution partitioning of soil heavy metals and free-ion concentration measurement in neutral salt extractions[J]. Acta Scientiae Circumstantiae, 2010, 30(1): 124-132.
[100] Golui D, Datta S P, Dwivedi B S, et al. Prediction of free metal ion activity in contaminated soils using WHAM Ⅶ, baker soil test and solubility model[J]. Chemosphere, 2020, 243. DOI:10.1016/j.chemosphere.2019.125408
[101] 赵晓鹏, 顾雪元. 地球化学模型在土壤重金属形态研究中的应用进展[J]. 环境化学, 2019, 38(1): 59-70.
Zhao X P, Gu X Y. Application of geochemical models in heavy metals speciation in soils: a review[J]. Environmental Chemistry, 2019, 38(1): 59-70.
[102] Van Der Sloot H A, Kosson D S, Van Zomeren A. Leaching, geochemical modelling and field verification of a municipal solid waste and a predominantly non-degradable waste landfill[J]. Waste Management, 2017, 63: 74-95.
[103] Zhang Y, Jiang J G, Chen M Z. MINTEQ modeling for evaluating the leaching behavior of heavy metals in MSWI fly ash[J]. Journal of Environmental Sciences, 2008, 20(11): 1398-1402.