2. 河海大学环境学院, 南京 210098;
3. 国电环境保护研究院有限公司, 南京 210031;
4. 江苏环保产业技术研究院股份公司, 南京 211800
2. College of Environment, Hohai University, Nanjing 210098, China;
3. State Power Environmental Protection Research Institute Co., Ltd., Nanjing 210031, China;
4. Jiangsu Academy of Environmental Industry and Technology Corporation, Nanjing 211800, China
剩余污泥是污水处理的主要副产物, 我国的污泥年产量预计在2025年将超过9 000万t[1, 2]. 一方面, 污泥因富含有机质被用作生物质资源[3], 而另一方面, 其携带的致病菌、重金属等污染物存在极大的环境风险[4]. 因此, 绿色可持续的污泥处置技术亟需深入研究. 厌氧消化工艺在污泥资源化和无害化处置方面兼具优势[5, 6], 但污泥中微塑料(microplastics, MPs)和抗生素耐药基因(antibiotic resistance genes, ARGs)等新污染物[7]的存在可能对其厌氧消化处置带来重大挑战.
MPs是尺寸小于5 mm的塑料颗粒, 主要来源于微米级的个人护理品组分及塑料产品在环境压力下的破碎分解[8]. MPs在污水处理过程中难以降解, 污泥成为污水中90%以上MPs的最终归宿[9]. 聚乙烯(polyethylene, PE)、聚苯乙烯(polystyrene, PS)、聚对苯二甲酸乙二醇酯(polyethylene terephthalate, PET)、聚酰胺(polyamide, PA)、聚氯乙烯(polyvinyl chloride, PVC)和聚丙烯(polypropylene, PP)是污泥中最丰富的MPs[10 ~ 12]. 厌氧消化过程中, PE-MPs通过对有机污染物的吸附降低微生物的水解活性[13], PET-MPs可以降低关键水解菌(Bacteroides vadin HA17)和酸化菌(Clostridium、Sphaerochaeta)的丰度[14]. 相反地, PA-MPs可通过产生内酰胺渗滤液使产气量提高39.5%, PVC-MPs通过对有机底物的增溶作用提升17.9%的沼气产率[15]. 不同MPs对污泥厌氧消化效能的影响复杂多样, 其作用机制也有待阐明, 此过程中ARGs的变化也值得关注.
污泥是ARGs重要的源和汇[16]. 有研究表明, 厌氧消化可有效降低污泥中部分ARGs(sul1、tetA、tetO和tetX等)的水平, 但也有一些ARGs被发现富集[6]. 此外, Wang等[17]发现厌氧消化过程中PE-MPs可以通过促进ARGs水平转移增加其丰度, Luo等[18]报道PVC-MPs可以刺激功能微生物和致病菌获得ARGs. MPs对污泥厌氧消化的效能和ARGs的赋存都具有重大影响, 但仍需系统研究揭示不同MPs在此过程中的作用机制.
本文选择污泥中浓度较高的典型MPs(PA、PE和PP)[10 ~ 12]作为研究对象, 旨在考察其对污泥厌氧消化产甲烷的影响, 结合溶解性有机物组成和微生物变化特征解析其影响机制. 同时, 探究ARGs、可移动遗传元件(mobile genetic elements, MGEs)和宿主菌在厌氧消化过程中的变化, 阐明MPs对厌氧消化去除ARGs的作用机制. 本研究同步探究了典型MPs对剩余污泥厌氧消化资源化和无害化的影响, 以期为有机废弃物的处理处置提供参考.
1 材料与方法 1.1 实验材料实验所用污泥取自南京市某污水处理厂, 通过重力沉降浓缩并过1 mm筛网去除大颗粒进行预处理. 预处理后的污泥性质如下:pH为6.5±0.1, ρ[总固体(total solids, TS)]为(19.1±0.1)g·L-1, ρ[挥发性固体(volatile solid, VS)]为(10.7±0.1)g·L-1, ρ[可溶性化学需氧量(soluble chemical oxygen demand, SCOD)]为(1235±30)mg·L-1, ρ[溶解性有机碳(dissolved organic carbon, DOC)]为(14.7±0.1)mg·L-1. 选取的MPs(PA、PE和PP)分别购自宇部工业、埃克森美孚和中国台湾台塑, 筛分后的实际粒径为(1.0±0.1)mm, 经去离子水清洗并干燥后用于实验.
1.2 实验设计与采样容量为600 mL的玻璃血清瓶被用作厌氧消化反应器, 设置4组, 每组3个重复. 各反应器加入300 mL预处理后的污泥作为消化底物. 对照组不添加MPs, 实验组分别添加PA-MPs、PE-MPs和PP-MPs颗粒, 丰度(以TS计)为50颗·g-1. 氮气冲洗5 min去除反应器中的空气, 密封后于摇床中[160 r·min-1, (35±1)℃]开展实验.
每2 d采集瓶中气体并使用气相色谱检测甲烷含量. 定期采集反应器中混合物, 8 000 r·min-1离心5 min后过0.45 μm滤膜, 上清液用于各项理化指标测定. 沉淀物储存于-20 ℃以备DNA提取. 所用MPs具有疏水性且不可生物降解, 厌氧消化后仍停留在反应器中.
1.3 DNA提取及宏基因组分析采用CTAB标准方法进行DNA提取[19]. 使用Qbiut3.0(Thermo Fisher Scientific, Waltham, MA, USA)和1%琼脂糖凝胶电泳进行DNA纯度和完整性的检测. 每组反应器取3份DNA提取物混合进行测序.
对提取的DNA进行酶切打断、末端修复、PCR扩增和产物纯化形成测序文库, 使用Illumina NovaSeq6000高通量测序平台进行双末端配对(150 bp)测序. 使用Trimmomatic(V.0.33)过滤原始读数得到高质量测序数据后利用MEGAHIT(V.1.1.2)进行宏基因组装. 过滤短于300 bp的重叠群序列后使用QUAST(V.2.3)对组装结果进行评估. MetaGeneMark(V.3.26)被用于识别基因组中的编码区域. MMseq2(V.11)被用于去除冗余, 相似性为95%, 覆盖度为90%.
利用Diamond(V.0.9.29.130)将非冗余基因的蛋白序列在NR和KEGG数据库中进行BLAST比对(e < 10-5), 并使用MEGAN对注释到的功能和分类进行计算. 基因和物种的丰度由匹配的读数确定, 并通过salmon[20]对丰度进行计算(以每106份转录本计). 在CARD数据库中使用rgi进行序列比对, 与参考序列相似度 > 80%的蛋白序列被认为是ARGs, 含有ARGs序列的物种被认为是潜在宿主菌.
1.4 数据处理与分析采用修正的Gompertz方程[21]对甲烷的产量速率进行模拟, 公式如下:
![]() |
式中, P为给定时长t(d)的累计甲烷产量(mL·g-1);Rm为最大产甲烷速率(mL·g-1·d-1);Pm为最大甲烷生产潜力(mL·g-1);λ为滞后相位时长(d).
采用荧光区域积分法[22]对激发-发射荧光谱图(EEM)的各区域占比进行分析. 公式如下:
![]() |
式中, Si为积分区域面积;I为荧光强度;ϕi为区域积分体积;Pi为区域占总积分体积的比例.
采用SPSS(V.26.0)进行单因素方差分析, 评估样本间的显著性差异. Origin2023被用于计算MGEs与ARGs之间的皮尔逊相关性(P < 0.05)以及条形图、折线图和热图的可视化. 利用Gephi(V.0.9.5)进行宿主菌与ARGs之间共现网络的可视化.
2 结果与讨论 2.1 MPs对污泥厌氧消化的效能的影响甲烷是污泥厌氧消化的重要副产物, 其产量是衡量厌氧消化效能的重要指标[23]. 本实验甲烷产量如图 1所示. 对照组中, 甲烷日产量(以VS计, 下同)在第6 d达到峰值, 为23.04 mL·g-1, 28 d的累计甲烷产量达到160.4 mL·g-1. 投加PA-MPs、PE-MPs和PP-MPs的实验组反应器中, 甲烷日产量峰值(mL·g-1)分别为23.52(第6 d)、26.98(第8 d)和28.85(第8 d);累计甲烷产量分别达到163.95、196.33和206.68 mL·g-1. PA-MPs对甲烷产量无明显影响(P > 0.05), 而PE-MPs和PP-MPs作用下甲烷产量提升了22.3%和28.8%, 显著提高了污泥厌氧消化的产甲烷潜力.
![]() |
图 1 各反应器中的甲烷产量 Fig. 1 Methane production in each reactor |
采用修正Gompertz模型对厌氧消化产甲烷动力学进行了模拟(表 1). 滞后期(λ)接近0 d, 表明反应器性能良好, 迅速进入厌氧消化进程[24], 但MPs的存在轻微延迟了反应器的启动. 在PA-MPs、PE-MPs和PP-MPs作用下, 最大产甲烷潜力(Pm)相较对照组分别增加了1.83、35.55和46.14 mL·g-1, 最大甲烷产率(Rm)提升了0.55、2.31和2.86 mL·g-1·d-1. 模型拟合结果与实际甲烷产效能一致, 进一步表明PE-MPs和PP-MPs对污泥厌氧消化产甲烷效能的显著促进作用.
![]() |
表 1 修正Gompertz模型拟合参数 Table 1 Modified Gompertz model parameters |
产甲烷过程中, 有机物的溶解、水解等步骤具有关键影响[25]. SCOD和DOC反映了污泥中有机物的溶出情况(图 2). 厌氧消化2 d后, 各反应器中ρ(SCOD)和ρ(DOC)分别为1 903.2~6 428.5 mg·L-1和130.5~163.2 mg·L-1. PA对有机物溶出无显著影响, 而PE-MPs和PP-MPs显著(P < 0.05)促进了SCOD和DOC的增加. 污泥中PO43--P会随着大分子物质被胞外酶分解而释放, 而含氮化合物的分解则会生成NH4+-N, 其浓度直接反映了污泥水解情况[26]. PA-MPs和PE-MPs对PO43--P和NH4+-N影响不大, 而PP-MPs使其浓度分别提高了7.5%和5.7%, 有助于有机物的水解. 通过EEM光谱考察了反应器中溶解性有机物的组成(图 3). PA中的图谱与对照组相似, 而PE中Ⅰ区和Ⅳ区荧光强度显著高于对照组, 表明PE-MPs促进了酪氨酸类物质和溶解性微生物产物的溶出, 小分子有机物的增加有助于提高底物的可生物降解性[27]. 采用区域积分法(FRI)对溶解性有机物的各组成进行了分析(表 2), PA、PE和PP反应器中Ⅰ区(酪氨酸类物质)占比不同程度降低(0.44%~3.34%), 而Ⅳ区(可溶性微生物产物)比例有所增加(0.41%~1.43%). 值得注意的是, PP中Ⅲ区(富里酸类物质)和Ⅴ区(腐植酸类物质)占比增加明显, 这表明PP-MPs可能通过促进难降解有机质的溶出提高溶解性有机物的浓度[28]. 综上可知, PA-MPs对污泥厌氧消化影响不大, 而PE-MPs和PP-MPs通过对污泥中有机底物的增溶作用和提升水解效率等途径促进甲烷的生成. 此外, 之前的研究表明小粒径(40 μm)的PE-MPs会抑制蛋白质和葡萄糖的降解[29], 但较大粒径(1 000 μm)呈现促进作用[30], MPs粒径差异对厌氧消化过程的影响还需要进一步探究.
![]() |
*表示有显著影响(P < 0.05), **表示有显著影响(P < 0.01) 图 2 溶解和水解阶段的主要理化性质 Fig. 2 Main physicochemical properties of dissolution and hydrolysis stages |
![]() |
图 3 激发-发射矩阵光谱图 Fig. 3 Spectrum of excitation-emission matrix |
![]() |
表 2 各荧光区域积分占比/% Table 2 Integral proportion of each fluorescence region/% |
2.2 MPs对污泥厌氧消化ARGs和MGEs分布的影响 2.2.1 MPs对ARGs分布的影响
经过28 d厌氧消化后各反应器中检测到的ARGs的分布如图 4所示. 所有反应器中共检测到了58种不同的ARGs亚型, 分别属于11种耐药类型. CK、PA、PE和PP反应器中ARGs的总丰度分别为552、524、604和572, 对应的亚型的数量分别为37、37、35和30种. 相较于对照组, PA-MPs使ARGs丰度降低了5.1%, 对ARGs的多样性无明显影响;PE-MPs和PP-MPs使ARGs丰度增加了9.4%和3.6%, 但PP-MPs减少了7种ARGs亚型, 主要属于多重耐药类(multidrug)、氨基糖苷类(aminoglycoside)和四环素类(tetracycline). PA-MPs有助于ARGs丰度的削减, PE-MPs和PP-MPs虽能降低ARGs的多样性, 但也导致了部分ARGs的富集.
![]() |
图 4 各反应器中ARGs的分布 Fig. 4 Distribution of ARGs in each reactor |
多重耐药类ARGs在各反应器中的丰度最高(381~468)且涵盖的亚型最多(14~19种), 是发挥主导作用的ARGs, 这与之前研究的结果一致[31]. 相较于对照组, 多重耐药类ARGs在PA-MPs作用下丰度下降了34, 在PE-MPs和PP-MPs作用下增加了53和18, 与总丰度变化趋势相同. PE-MPs促进了氨基糖苷类、四环素类和氨基香豆素类(aminocoumarin)ARGs的增殖(5~7), 现有研究也表明PE-MP在厌氧消化过程中会导致ARGs的增加[17, 18, 30]. PP-MPs虽然降低了多重耐药类、氨基糖苷类和四环素类ARGs的多样性, 但对多重耐药类、大环内酯类(macrolide)、磺胺类(sulfonamide)和苯丙醇类(phenicol)ARGs的选择性富集(1.04~2.55倍)导致了ARGs总丰度的增加. 从ARGs亚型来看(图 5), 属于多重耐药类的rsmA(145.3)、rpoB2(84.0)、sul1(49.8)、sul2(36.0)和oqxB(27.0)是平均丰度最高的5种ARGs. PA-MPs显著降低了sul1、sul4、mdtB、VEB-3、MexK和rpoB2的丰度, PE-MPs显著增加了oqxB、rpoB2和tet32的丰度, 而PP-MPs显著增加了rsmA和rpoB2的丰度. 不同MPs对主要ARGs的选择性削减或增加是导致ARGs变化的主要原因.
![]() |
1.acrB, 2.adeF, 3.Bado_rpoB_RIF, 4.Cstr_tetA, 5.ErmF, 6.lsaE, 7.mdsB, 8.mel, 9.MexD, 10.MexI, 11.MexK, 12.MuxB, 13.oqxB, 14.OXA-101, 15.OXA-21, 16.OXA-347, 17.rpoB2, 18.rsmA, 19.smeE, 20.sul1, 21.sul2, 22.sul3, 23.tetX, 24.vatF, 25.VEB-3, 26.VEB-9, 27.AAC(6')-Ib7, 28.AAC(6')-IIa, 29.aadA, 30.aadA11, 31.aadA13, 32.aadA3, 33.aadA5, 34.aadS, 35.amrB, 36.APH(3″)-Ib, 37.APH(6)-Id, 38.EreA, 39.EreA2, 40.macB, 41.mef(B), 42.tet(C), 43.tet(G), 44.tet32, 45.tet36, 46.tetA(58), 47.tetM, 48.tetQ, 49.mdtB, 50.mdtC, 51.novA, 52.qacL, 53.sul4, 54.rosB, 55.catB3, 56.cmlA9, 57.arr-4, 58.lnuF 图 5 ARGs亚型的丰度 Fig. 5 Abundance of ARGs subtypes |
插入序列(insertion sequence)广泛存在于细菌染色体中, 能在基因组不同位点插入, 从而介导ARGs的转移;整合子(integron)是与ARGs传播直接相关的MGEs[32]. 整合子和插入序列在不同反应器中的分布如图 6所示. 相较于对照组, PA反应器中intI无明显变化, 而在PE和PP反应器中增加了23.3%和17.6%;PA-MPs、PE-MPs和PP-MPs作用下, intI1的丰度减少了10.7%~22.7%, 而intIA的丰度有所增加(7~10). 有研究表明MPs可以通过对MGEs的作用直接促进ARGs传播[18], intI介导的水平基因转移可能是PE-MPs和PP-MPs促进ARGs增殖的重要原因. 同时, PE-MPs对插入序列整体影响不大, 而PP-MPs显著降低了除IS481的所有插入序列的丰度(8.8%~78.6%), PA-MPs对于IS66、IS91和ISNCY也具有削减作用(11.6%~28.6%).
![]() |
a1.rsmA, a2.sul2, a3.EreA2, a4.MuxB, a5.aadA, a6.Bado_rpoB_RIF, a7.tet(C), a8.tetM, a9.tet32, a10.qacL, a11.tetQ, a12.ErmF, a13.mef(B), a14.acrB, a15.APH(6)-Id, a16.aadA5, a17.arr-4, a18.mel, a19.VEB-9, a20.MexD;b1.∑Integron, b2.intI, b3.intI1, b4.∑Insertion sequence, b5.IS21, b6.IS66, b7.IS200/IS605, b8.IS91, b9.IS481, b10.ISNCY, b11.IS1595 图 6 MGEs的丰度及其与ARGs的相关性 Fig. 6 Abundance of MGEs and their correlation with ARGs |
分析了MGEs和ARGs之间的相关性(图 6). 整合子的丰度与sul2、Bado_rpoB_RIF和tet32正相关(P < 0.05), 其中intI与tet(C)和MexD正相关(P < 0.01), intI1与aadA和arr-4正相关(P < 0.05). 整合子与部分ARGs的正向关系解释了PE-MPs显著促进ARGs丰度提高的原因. 插入序列中, IS21与tetQ(P < 0.05)正相关, IS66与tetM(P < 0.05)正相关, IS200/IS605与aadA(P < 0.05)正相关, IS481与sul2(P < 0.05)、Bado_rpoB_RIF和aadA5正相关(P < 0.05), ISNCY与ErmF正相关(P < 0.05), IS1595与MuxB和tetQ正相关(P < 0.05). 由耐药类型可知, 插入序列主要介导了多重耐药类、氨基糖苷类和四环素类ARGs的水平转移. 值得注意的是, 与IS481密切相关的sul2在各反应器中都具有较高丰度, IS481引起的ARGs传播可能成为限制厌氧消化去除ARGs的重要因素.
2.3 微生物群落对MPs的响应及ARGs宿主菌的变化 2.3.1 细菌和古菌群落对MPs的响应各反应器中的微生物多样性指数如表 3所示. Observed Species显示PA、PE和PP相较于对照组物种数量分别减少了35、276和322种, ACE和Chao1指数在MPs作用下也有所降低. 这表明MPs降低了反应器中微生物的丰富度, 且PP-MPs的效果最为显著, 其次是PE-MPs和PA-MPs. Shannon和Simpson指数衡量了反应器中微生物的多样性, 其中PA-MPs、PE-MPs和PP-MPs分别使Shannon指数从6.538降至6.467、6.451和6.508, 这表明MPs使微生物群落的多样性降低. 此外MPs反应器中Pielou Evenness指数的下降还表明微生物群落的均一度也有所下降, 可能是MPs对特定菌群的富集导致微生物群落结构的改变.
![]() |
表 3 不同反应器中微生物群落的Alpha多样性 Table 3 Alpha diversity of microbial communities in different reactor |
属水平细菌的组成如图 7所示, Candidatus_Promineofilum(7.68%)、Nitrospira(7.49%)、Candidatus_Accumulibacter(2.32%)、Dechloromonas(2.19%)和Lautropia(1.92%)是平均相对丰度最高的5种细菌属. Candidatus_Promineofilum在乳酸发酵生成丙酸的途径中起重要作用[33], PA-MPs和PE-MPs对其有促进作用, 而PP-MPs抑制其生长. Nitrospira在厌氧消化中与氨的转化密切相关[34, 35], MPs作用下其相对丰度的降低有助于减少硝酸盐的积累, 从而缓解对产甲烷菌活性的抑制. Candidatus_Accumulibacter可以通过三羧酸循环代谢氨基酸化合物, 从而促进有机物的分解[36], Dechloromonas也被认为在氨基酸代谢中发挥关键作用[37], PP-MPs对这两种菌属的明显促进作用有助于产甲烷过程, 这与2.1节的结果一致.
![]() |
图 7 属水平细菌和古菌群落结构 Fig. 7 Community structure of bacteria and archaea at genus level |
从古菌属的组成来看(图 7), Methanothrix、Candidatus_Methanofastidiosum和Methanospirillum依次为相对丰度最高的古菌, 占古菌属的83.9%~86.6%. Methanothrix是严格的乙酸营养型产甲烷菌, 其参与产甲烷时仅以乙酸作为底物[38]. PA-MPs和PE-MPs促进其增加, 而PP-MPs抑制其生长, 这表明PA-MPs和PE-MPs有利于乙酸营养途径产甲烷. Candidatus_Methanofastidiosum可以利用CO2和H2合成甲烷[39], PP-MPs使其丰度显著增加, 表明PP-MPs有助于促进氢营养途径产甲烷. Methanospirillum是具有高耐氨性的古菌属[39], 在MPs作用下其丰度不同程度降低, 可能意味着MPs作用下厌氧消化后期的氨抑制被削弱. 此外, PP-MPs促进了氢营养型产甲烷菌Methanolinea和Methanobacterium的生长[38], 对兼性产甲烷菌Methanosarcina也具有富集作用[40]. 值得注意的是, 氢营养型产甲烷菌对环境的适应能力比乙酸营养型产甲烷菌强[41], 推测PP-MPs通过对氢营养型产甲烷菌的富集从而显著促进污泥厌氧消化产甲烷.
2.3.2 ARGs宿主菌的变化ARGs的宿主菌是微生物群落的重要组成部分, 也是影响ARGs发生和转移的关键因素[42]. 通过宏基因组装对不同反应器中的ARGs宿主菌进行了鉴定. 门水平宿主菌与ARGs的共现关系如图 8所示, Proteobacteria、Planctomycetes、Nitrospirae、Firmicutes和Chloroflexi等9个菌门被识别为ARGs的宿主, 携带了超过90%的ARGs. 其中, Proteobacteria是最重要的宿主, 携带44种ARGs亚型, 主要为多重耐药类和氨基糖苷类;其次是Bacteroidetes和Chloroflexi, 分别携带5和4种ARGs亚型. 丰度最高的几种ARGs亚型中, rsmA、sul1和sul2仅有Proteobacteria一个宿主, 而rpoB2可以在Proteobacteria、Chloroflexi、Nitrospirae、Firmicutes、Acidobacteria和Actinobacteria等多个菌门间传播, oqxB也具有不止一个宿主. Proteobacteria和Actinobacteria在中温厌氧消化中与超过一半的ARGs密切相关[43], 作为污泥厌氧消化中的优势菌属, MPs对其富集会导致ARGs的传播. Bacteroidetes中包含多种病原菌[44], 其丰度在MPs作用下降低13.6%~22.3%, 厌氧消化过程对病原体的有效去除可能是其携带的ARGs去除的重要因素[45]. MPs对Nitrospirae和Firmicutes的抑制(5.8%~17.6%)也有助于rpoB2和oqxB等ARGs的削减.
![]() |
图 8 ARGs和门水平宿主菌间的共现关系 Fig. 8 Co-occurrence relationship between ARGs and host phyla |
进一步分析了属水平宿主菌与ARGs的共现关系(图 9). Acinetobacter、Actinobacillu、Nitrospira和Pseudomonas等36个菌属被识别为ARGs的宿主. 丰度最高的5种ARGs中, rsmA的主要宿主属是Arenimonas, PA-MPs对其相对丰度的削减有助于rsmA的去除. rpoB2的宿主菌属具有多样性, PP-MPs有利于对其宿主的富集从而增加其丰度, 这与2.2节的结果一致. sul1和sul2的主要宿主菌属分别是Acinetobacter和Actinobacillus. Acinetobacter的MGEs以携带耐药基因的遗传结构为特征[46], Actinobacillus也被发现是多种ARGs的潜在宿主[47], 这两种菌属在各反应器中的相对丰度极低, 但对ARGs的传播具有重要贡献. oqxB的最主要宿主是Nitrospira, 是厌氧消化水解过程中的重要功能菌[48], PA-MPs对其有明显的抑制作用, 可能有助于其携带的ARGs的削减. 此外, aadS、acrB、APH(6)-Id、MexK、Bado_rpoB_RIF、mdtB、MexD、MuxB、qacL和sul4等ARGs也可以在多个菌群间传播. 不同MPs在厌氧消化过程中化学添加剂的浸出改变了微生物的生长代谢过程[49], 因此对ARGs的宿主产生了选择性富集或抑制作用[50], 以此造成不同反应器中ARGs分布特征的差异. 总而言之, PA-MPs可能更有利于降低ARGs宿主菌的丰度, 而PE-MPs和PP-MPs在厌氧消化过程中虽然使微生物的多样性和丰富度降低, 但宿主菌的富集仍增加了ARGs传播的风险.
![]() |
图 9 ARGs和属水平宿主菌间的共现关系 Fig. 9 Co-occurrence relationship between ARGs and host genera |
(1)PA-MPs、PE-MPs和PP-MPs的投加均对剩余污泥厌氧消化产甲烷效能具有积极影响, 且PE-MPs和PP-MPs效果显著. MPs通过促进污泥中有机物的溶出和水解提高甲烷产量和产生速率. 机制分析发现, MPs对Candidatus_Accumulibacter和Dechloromonas等菌属的促进有助于有机物的分解;PP-MPs通过对Candidatus_Methanofastidiosum、Methanolinea和Methanobacterium等氢营养型产甲烷菌的富集, 强化了甲烷化过程.
(2)PA-MPs提高了厌氧消化对ARGs的去除, 而PE-MPs和PP-MPs对ARGs的去除有不利影响. 整合子和插入序列等MGEs与ARGs水平转移密切相关, PE-MPs促进了intI1的增加导致部分ARGs的增殖, 插入序列介导了多重耐药类、氨基糖苷类和四环素类ARGs的水平转移.
(3)对ARGs的宿主菌的分析发现, 门水平上, Proteobacteria是导致ARGs传播的关键宿主, 厌氧消化对Bacteroidetes中病原体的去除有助于ARGs的削减;属水平上, Arenimonas、Acinetobacter、Actinobacillus和Nitrospira是丰度最高的5种ARGs(rsmA、rpoB2、sul1、sul2和oqxB)的主要宿主, 厌氧消化过程中, MPs对宿主菌的选择性富集或抑制导致了ARGs分布特征的差异.
[1] | He Z W, Wang F, Zou Z S, et al. Recent advances and perspectives in roles of humic acid in anaerobic digestion of waste activated sludge[J]. Chemical Engineering Journal, 2023, 466. DOI:10.1016/j.cej.2023.143081 |
[2] | Zou X S, Wang Y R, Dai Y H, et al. Batch and semi-continuous experiments examining the sludge mesophilic anaerobic digestive performance with different varieties of rice straw[J]. Bioresource Technology, 2022, 346. DOI:10.1016/j.biortech.2021.126651 |
[3] | Jin H Y, He Z W, Ren Y X, et al. Current advances and challenges for direct interspecies electron transfer in anaerobic digestion of waste activated sludge[J]. Chemical Engineering Journal, 2022, 450. DOI:10.1016/j.cej.2022.137973 |
[4] | Cayetano R D A, Park J, Kim G B, et al. Enhanced anaerobic digestion of waste-activated sludge via bioaugmentation strategy-Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2) analysis through hydrolytic enzymes and possible linkage to system performance[J]. Bioresource Technology, 2021, 332. DOI:10.1016/j.biortech.2021.125014 |
[5] |
夏雪, 邵钱祺, 曹悦, 等. 不同处理模式下污泥厌氧消化的能源回收与碳排放分析[J]. 环境工程, 2023, 41(7): 1-7, 13. Xia X, Shao Q Q, Cao Y, et al. Analysis of energy recovery and carbon emission during sludge anaerobic digestion under different treatment routes[J]. Environmental Engineering, 2023, 41(7): 1-7, 13. |
[6] | Mortezaei Y, Williams M R, Demirer G N. Effect of temperature and solids retention time on the removal of antibiotic resistance genes during anaerobic digestion of sludge[J]. Bioresource Technology Reports, 2023, 21. DOI:10.1016/j.biteb.2023.101377 |
[7] |
周帅, 黄啊潮, 黄泽枫, 等. 聚苯乙烯微塑料对污水中胞外耐药基因的影响及其机制[J]. 环境科学, 2024, 45(6): 3671-3678. Zhou S, Huang A C, Huang Z F, et al. Effects and mechanisms of polystyrene microplastics on extracellular antibiotic resistance genes in wastewater[J]. Environmental Science, 2024, 45(6): 3671-3678. |
[8] |
程宏, 陈荣. 九龙江口微塑料与抗生素抗性基因污染的分布特征[J]. 环境科学, 2022, 43(11): 4924-4930. Cheng H, Chen R. Distribution of microplastic and antibiotic resistance gene pollution in Jiulong River estuary[J]. Environmental Science, 2022, 43(11): 4924-4930. |
[9] | Li D H, Liu C M, Luo R B, et al. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J]. Bioinformatics, 2015, 31(10): 1674-1676. DOI:10.1093/bioinformatics/btv033 |
[10] | Mohammad Mirsoleimani Azizi S, Hai F I, Lu W J, et al. A review of mechanisms underlying the impacts of (nano)microplastics on anaerobic digestion[J]. Bioresource Technology, 2021, 329. DOI:10.1016/j.biortech.2021.124894 |
[11] | Wei W, Chen X M, Ni B J. Different pathways of microplastics entering the sludge treatment system distinctively affect anaerobic sludge fermentation processes[J]. Environmental Science & Technology, 2021, 55(16): 11274-11283. |
[12] | Zhang Y T, Wei W, Sun J, et al. Long-term effects of polyvinyl chloride microplastics on anaerobic granular sludge for recovering methane from wastewater[J]. Environmental Science & Technology, 2020, 54(15): 9662-9671. |
[13] | Akbay H E G, Akarsu C, Isik Z, et al. Investigation of degradation potential of polyethylene microplastics in anaerobic digestion process using cosmetics industry wastewater[J]. Biochemical Engineering Journal, 2022, 187. DOI:10.1016/j.bej.2022.108619 |
[14] | Wang P, Guo Y W, Yu M, et al. The effect and mechanism of polyethylene terephthalate microplastics on anaerobic co-digestion of sewage sludge and food waste[J]. Biochemical Engineering Journal, 2023, 198. DOI:10.1016/j.bej.2023.109012 |
[15] | Sun M, Xiao K K, Zhu Y W, et al. Deciphering the role of microplastic size on anaerobic sludge digestion: changes of dissolved organic matter, leaching compounds and microbial community[J]. Environmental Research, 2022, 214. DOI:10.1016/j.envres.2022.114032 |
[16] | Wang J Q, Xu S Q, Zhao K, et al. Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) during sewage sludge treatment and disposal: a review[J]. Science of the Total Environment, 2023, 877. DOI:10.1016/j.scitotenv.2023.162772 |
[17] | Wang S, Zeng D F, Jin B, et al. Deciphering the role of polyethylene microplastics on antibiotic resistance genes and mobile genetic elements fate in sludge thermophilic anaerobic digestion process[J]. Chemical Engineering Journal, 2023, 452. DOI:10.1016/j.cej.2022.139520 |
[18] | Luo T Y, Dai X H, Chen Z J, et al. Different microplastics distinctively enriched the antibiotic resistance genes in anaerobic sludge digestion through shifting specific hosts and promoting horizontal gene flow[J]. Water Research, 2023, 228. DOI:10.1016/j.watres.2022.119356 |
[19] | Tang Z R, Huang C H, Li W, et al. Horizontal transfer of intracellular and extracellular ARGs in sludge compost under sulfamethoxazole stress[J]. Chemical Engineering Journal, 2023, 454. DOI:10.1016/j.cej.2022.139968 |
[20] |
桑金慧, 何振杰, 余相宇, 等. 基于宏基因组学分析安徽地区畜禽粪便微生物耐药性特征[J]. 中国微生态学杂志, 2024, 36(1): 29-40. Sang J H, He Z J, Yu X Y, et al. Macrogenomics-based analysis of microbial resistance of microbes in pig and chicken faeces in Anhui region[J]. Chinese Journal of Microecology, 2024, 36(1): 29-40. |
[21] | Nguyen D D, Chang S W, Jeong S Y, et al. Dry thermophilic semi-continuous anaerobic digestion of food waste: performance evaluation, modified Gompertz model analysis, and energy balance[J]. Energy Conversion and Management, 2016, 128: 203-210. DOI:10.1016/j.enconman.2016.09.066 |
[22] | Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. |
[23] |
柳金虎, 张无敌, 尹芳, 等. 污水处理厂剩余污泥厌氧消化特性研究[J]. 云南师范大学学报(自然科学版), 2023, 43(6): 1-5. Liu J H, Zhang W D, Yin F, et al. Anaerobic digestion characteristics of residual sludge in wastewater treatment plants[J]. Journal of Yunnan Normal University (Natural Sciences Edition), 2023, 43(6): 1-5. |
[24] |
马晶伟, 易可为, 何秋来, 等. 氧氟沙星与聚苯乙烯微塑料复合污染对剩余污泥厌氧消化的影响[J]. 环境工程学报, 2022, 16(7): 2335-2346. Ma J W, Yi K W, He Q L, et al. Effects of combined ofloxacin and polystyrene microplastics on anaerobic digestion of waste activated sludge[J]. Chinese Journal of Environmental Engineering, 2022, 16(7): 2335-2346. |
[25] | Wang Z X, Wang T F, Si B C, et al. Accelerating anaerobic digestion for methane production: potential role of direct interspecies electron transfer[J]. Renewable and Sustainable Energy Reviews, 2021, 145. DOI:10.1016/j.rser.2021.111069 |
[26] | Li P, Zhao W J, Yan L J, et al. Inclusion of abandoned rhubarb stalk enhanced anaerobic fermentation of alfalfa on the Qinghai Tibetan Plateau[J]. Bioresource Technology, 2022, 347. DOI:10.1016/j.biortech.2021.126347 |
[27] | Li Y X, Huang W X, Fang S Y, et al. Zinc pyrithione induced volatile fatty acids promotion derived from sludge anaerobic digestion: interrelating the affected steps with microbial metabolic regulation and adaptive responses[J]. Water Research, 2023, 234. DOI:10.1016/j.watres.2023.119816 |
[28] |
岳文慧, 刘吉宝, 郭建宁, 等. 污泥热水解厌氧消化滤液处理工程溶解性有机物[J]. 中国环境科学, 2024, 44(2): 699-707. Yue W H, Liu J B, Guo J N, et al. Characteristics of dissolved organic matters in the treatment of the dewatering liquor of anaerobic digestion pretreated by thermal hydrolysis[J]. China Environmental Science, 2024, 44(2): 699-707. |
[29] | Wei W, Huang Q S, Sun J, et al. Revealing the mechanisms of polyethylene microplastics affecting anaerobic digestion of waste activated sludge[J]. Environmental Science & Technology, 2019, 53(16): 9604-9613. |
[30] | Shi J H, Dang Q L, Zhang C Y, et al. Insight into effects of polyethylene microplastics in anaerobic digestion systems of waste activated sludge: interactions of digestion performance, microbial communities and antibiotic resistance genes[J]. Environmental Pollution, 2022, 310. DOI:10.1016/j.envpol.2022.119859 |
[31] | Qiu Z G, Yu Y M, Chen Z L, et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(13): 4944-4949. |
[32] |
胡健双. 高标准污水处理厂沿程ARGs、MGEs赋存特征和微生物群落相关性研究[D]. 无锡: 江南大学, 2023. Hu J S. Occurrence characteristics of ARGs and MGEs in high standard sewage treatment plants and correlation to microbial community[D]. Wuxi: Jiangnan University, 2023. |
[33] | Wu S L, Wei W, Ngo H H, et al. In-situ production of lactate driving the biotransformation of waste activated sludge to medium-chain fatty acid[J]. Journal of Environmental Management, 2023, 345. DOI:10.1016/j.jenvman.2023.118524 |
[34] | Li M T, Rao L, Wang L, et al. Bioaugmentation with syntrophic volatile fatty acids-oxidizing consortia to alleviate the ammonia inhibition in continuously anaerobic digestion of municipal sludge[J]. Chemosphere, 2022, 288. DOI:10.1016/j.chemosphere.2021.132389 |
[35] |
郭宇新, 齐嵘, 肖淑敏, 等. 我国城市污水处理工艺中活性污泥的功能群落结构解析[J]. 环境科学, 2025, 46(2): 934-943. Guo Y X, Qi R, Xiao S M, et al. Microbial community structure analysis of activated sludge in Chinese biological sewage wastewater treatment processes[J]. Environmental Science, 2025, 46(2): 934-943. |
[36] | Sun H W, Zhang X, Zhang F, et al. Tetrasphaera, rather than Candidatus Accumulibacter as performance indicator of free ammonia inhibition during the enhanced biological phosphorus removal processes[J]. Journal of Environmental Chemical Engineering, 2021, 9(5). DOI:10.1016/j.jece.2021.106219 |
[37] | Wang S Y, Ping Q, Li Y M. Comprehensively understanding metabolic pathways of protein during the anaerobic digestion of waste activated sludge[J]. Chemosphere, 2022, 297. DOI:10.1016/j.chemosphere.2022.134117 |
[38] | Seswoya R, Yang L K, Fen A S, et al. Mesophilic anaerobic co-digestion of fruit and vegetable wasteand domestic primary sewage sludge: performance and kinetic[J]. International Journal of Integrated Engineering, 2019, 11(6): 268-273. |
[39] | Zhang X X, Wang Y W, Jiao P B, et al. Microbiome-functionality in anaerobic digesters: a critical review[J]. Water Research, 2024, 249. DOI:10.1016/j.watres.2023.120891 |
[40] | Schorn S, Ahmerkamp S, Bullock E, et al. Diverse methylotrophic methanogenic archaea cause high methane emissions from seagrass meadows[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(9). DOI:10.1073/pnas.2106628119 |
[41] |
杨硕. 抗生素与重金属胁迫下猪粪厌氧消化效能及抗性基因削减[D]. 哈尔滨: 哈尔滨工业大学, 2022. Yang S. Anaerobic digestion efficiency and resistance genes reduction of swine manure under selective pressure of antibiotics and heavy metals[D]. Harbin: Harbin Institute of Technology, 2022. |
[42] | Liu Z T, Yao J Q, Ma H Y, et al. Bacterial hosts and genetic characteristics of antibiotic resistance genes in wastewater treatment plants of Xinjiang (China) revealed by metagenomics[J]. Applied Sciences, 2022, 12(6). DOI:10.3390/app12063100 |
[43] | Wu Y, Cui E P, Zuo Y R, et al. Influence of two-phase anaerobic digestion on fate of selected antibiotic resistance genes and class Ⅰ integrons in municipal wastewater sludge[J]. Bioresource Technology, 2016, 211: 414-421. DOI:10.1016/j.biortech.2016.03.086 |
[44] | Yang W, Cai C, Yang D H, et al. Implications for assessing sludge hygienization: differential responses of the bacterial community, human pathogenic bacteria, and fecal indicator bacteria to sludge pretreatment-anaerobic digestion[J]. Journal of Hazardous Materials, 2023, 443. DOI:10.1016/j.jhazmat.2022.130110 |
[45] | Zhan J, Han Y P, Xu S, et al. Succession and change of potential pathogens in the co-composting of rural sewage sludge and food waste[J]. Waste Management, 2022, 149: 248-258. DOI:10.1016/j.wasman.2022.06.028 |
[46] | Jeon J H, Jang K M, Lee J H, et al. Transmission of antibiotic resistance genes through mobile genetic elements in Acinetobacter baumannii and gene-transfer prevention[J]. Science of the Total Environment, 2023, 857. DOI:10.1016/j.scitotenv.2022.159497 |
[47] | Zou Y, Zhang Y, Zhou J, et al. Effects of composting pig manure at different mature stages on ARGs in different types of soil-vegetable systems[J]. Journal of Environmental Management, 2022, 321. DOI:10.1016/j.jenvman.2022.116042 |
[48] | Liu X, Wu F J, Zhang M, et al. Role of potassium ferrate in anaerobic digestion of waste activated sludge: phenotypes and genotypes[J]. Bioresource Technology, 2023, 383. DOI:10.1016/j.biortech.2023.129247 |
[49] | Liu X R, Deng Q, Zheng Y Y, et al. Microplastics aging in wastewater treatment plants: focusing on physicochemical characteristics changes and corresponding environmental risks[J]. Water Research, 2022, 221. DOI:10.1016/j.watres.2022.118780 |
[50] | Manu M K, Luo L W, Kumar R, et al. A review on mechanistic understanding of microplastic pollution on the performance of anaerobic digestion[J]. Environmental Pollution, 2023, 325. DOI:10.1016/j.envpol.2023.121426 |