2. 南京大学环境学院, 南京 210023
2. School of Environment, Nanjing University, Nanjing 210023, China
塑料产品因其优越的质地、性能和低成本等特性, 在世界各地被广泛生产和使用[1~4]. 然而, 大量的塑料废弃物随着农业生产活动如地膜覆盖、化肥施用和灌溉等进入到土壤环境中, 经由各种生物或非生物学过程, 以上塑料废弃物被分解成为尺寸更小的碎片和颗粒, 成为土壤中的新型污染物——微塑料(microplastics, MPs)[5~7]. 微塑料普遍存在于水田、菜地、河湖滨岸带土壤及海洋中[8~13]. 土壤中的微塑料污染物不仅能够抑制植物如水芹、萝卜和小麦等的根系生长, 还会引起植物叶片光合作用能力的降低和体内抗氧化物酶活性的提高, 影响农产品的产量和品质[14, 15]. 因此, 人们亟需开展土壤中微塑料的生态效应及环境风险研究.
微塑料通常具有较小的粒径(0.1~5 μm), 较大的比表面积, 较多的表面官能团和带电荷等特性[16]. 这使得微塑料不仅能够直接影响土壤的理化性质, 还能通过静电结合、表面络合等作用携带其他污染物产生严重的生态环境风险[17, 18]. 农田土壤上存在微塑料如聚乙烯(PE)、聚苯乙烯(PS)和Cd的复合污染问题[19, 20]. 重金属镉(Cd)是我国农田土壤中典型的污染物类型之一, 具有较强的生物体毒性和食物链迁移能力. Huang等[21]的Meta分析显示, 生物不可降解型PE微塑料能够提高土壤中Cd的生物有效性, 进而增加植物根和叶中Cd的积累量. 目前对微塑料提高土壤重金属有效性的研究多集中于阐明土壤粒径组成、pH和溶解性有机质(DOM)总量等改变对不同微塑料-重金属复合污染的响应机制, 而缺乏对DOM组成特征的深入探讨[18, 22]. Liu等[23]还发现生物可降解型聚乳酸(PLA)微塑料能提高土壤Cd的有效性, 但却降低了植物中Cd的积累量和迁移能力. 由此可见, 农田土壤上微塑料和Cd的复合污染能够带来更为严重的环境风险, 但相关机制还尚不明晰. 本研究主要针对菜地土壤上不同种类微塑料共存对土壤Cd生物有效性和生菜中Cd积累量的影响展开研究, 旨在建立微塑料类型、土壤理化性质尤其是土壤溶解性有机质(DOM)组成特征与土壤中Cd环境行为之间的相互关系, 从而明确共存微塑料对土壤-植物系统中Cd生态环境风险的影响及机制.
1 材料与方法 1.1 试验材料的制备本试验土壤选取无污染的洁净耕地土壤(黄棕壤), 于2021年5月29日采自南京市江宁区牛首山. 采集深度约为0~15 cm的菜地表层土壤, 手动筛除较大的石子瓦片等杂物. 本试验土壤的pH为4.33±0.03, 阳离子交换量(CEC)值为(18.22±0.82)cmol·kg-1, ω[有效磷(AP)]为(2.29±0.44)mg·kg-1, ω[铵态氮(NH4+-N)]为(1.01±0.10)mg·kg-1, ω[溶解性有机碳(DOC)]为(68.93±11.72)mg·kg-1. 两种微塑料为可降解微塑料聚乙烯(PE)和不可降解微塑料聚己二酸/对苯二甲酸丁二醇酯(PBAT), 均采购自天津倍思乐色谱技术开发中心. 微塑料样品呈白色细小颗粒状, 经适当研磨后, 用金属筛网选出粒径为150~300 μm的微塑料颗粒备用. 微塑料颗粒的形貌特征经扫描电镜(SEM)分析如图 1.
![]() |
图 1 PE和PBAT两种微塑料的扫描电镜图 Fig. 1 SEM images of two microplastics, PE and PBAT |
土壤样品于温室通风处自然静置, 待完全风干后拣去植物残体、石子碎屑等杂物, 适当研磨过10目尼龙网筛后备用. 将硝酸镉[Cd(NO3)2]溶液加入上述土壤中分别制备得到不同梯度的Cd污染土壤, 对照组[CK:ω(总Cd)为0.13 mg·kg-1]、低含量污染组[CK+Cdlow:ω(总Cd)为0.84 mg·kg-1)]和高含量污染组[CK+Cdhigh:ω(总Cd)为1.90 mg·kg-1]. 将上述污染土壤老化培养1个月, 每3 d通过称重加水保持土壤含水率为70%田间最大持水量. 为制备不同微塑料污染的土壤, 分别向上述CK、CK+Cdlow和CK+Cdhigh的污染土壤中加入5%的PE和PBAT微塑料, 混合均匀. 每3 d通过称重加水保持每份土壤含水率为70%田间最大持水量, 继续老化培养1个月. 老化结束后获得PE+Cdlow、PBAT+Cdlow、PE+Cdhigh和PBAT+Cdhigh这4个MPs-Cd复合污染处理组.
1.3 盆栽试验购买生长期20 d的生菜幼苗(Lactuca sativa L. var. ramosa Hort.)用于盆栽试验. 生菜苗单株高约10~15 cm, 重约5~15 g, 叶片较大呈嫩绿色, 根部细密丰富呈白色. 每个花盆栽种两颗形状、大小无显著差异的生菜苗. 将所有花盆置于智能培养箱(PX-600)中进行培养60 d. 培养箱内环境条件:光照16 h, 温度20 ℃;黑暗8 h, 温度18 ℃, 24 h为一个周期, 光照和黑暗交替进行. 每隔3 d用去离子水为土壤补充水分, 用称重法计算并调整浇水量和补水时间间隔, 使土壤含水率能稳定保持在70%田间最大持水量水平.
1.4 样品分析 1.4.1 土壤基本理化性质及有效态Cd含量分析土样经自然风干后研磨, 过100目筛网, 用于土壤理化性质分析. 参照《土壤农业化学分析方法》[24]测定土壤pH值、AP和NH4+-N含量. 土壤有效态Cd(Cd-CaCl2)通过0.01 mol·L-1的CaCl2提取, 经ICP-MS测定浸提液中的Cd含量[25].
1.4.2 土壤DOM组成及含量分析土壤自然风干后, 过2 mm筛. 风干土壤在去离子水∶土=5∶1的条件下, 振荡离心提取上清液, 上清液过0.45 μm滤膜, 获得土壤DOM浸提液. 通过总有机碳分析仪(TOC-VCPH/CPN, Shimadzu, Kyoto, Japan)测定并计算得到DOC含量[26]. 通过荧光分光光度计(F-7000 FL spectrophotometer)对DOM的组成信息进行分析. 激发波长扫描范围200~450 nm, 发射波长扫描范围250~600 nm, 激发和发射狭缝宽度均为5 nm, 扫描速度12 000 nm·min-1. 获得的三维荧光数据, 在RStudio平台用R语言程序进行分析, 去除拉曼散射和瑞利散射并进行插值拟合, 得到各处理组土壤DOM的三维荧光光谱图(3D-EEMs). 分析指数包括荧光指数(fluorescence index, FI)、生物源指数(biological index, BIX)、腐殖化指数(humification index, HIX). 参考朱金杰等[27]的研究, 各指数的计算公式如下:
![]() |
(1) |
![]() |
(2) |
![]() |
(3) |
其中, Ex为激发波长(nm), Em为发射波长(nm), a为荧光强度.
1.4.3 生菜根和叶中Cd含量分析将收获的生菜用去离子水彻底洗净, 然后用10 mmol·L-1的乙二胺四乙酸(EDTA)漂洗以去除吸附的金属, 再用去离子水清洗. 生菜根和叶鲜样在70 ℃下烘干后用HNO3-HClO4混合物(20∶1, 体积比)消解, 消解液过滤后通过ICP-MS测定Cd的含量.
1.5 数据处理试验数据经Excel 2019进行初步整理后, 采用Origin2023软件做图, Canoco5进行RDA冗余分析, 采用Duncan检验后的单向方差分析(ANOVA)来评估组间的显著差异.
2 结果与讨论 2.1 MPs-Cd污染对土壤理化性质的影响从图 2(a)可以看出, 土壤呈弱酸性, MPs污染土壤pH值略有上升, 但并不显著. 土壤CEC值随MPs和Cd的输入, 总体上呈现一定的下降趋势[图 2(b)]. 高含量Cd水平下, PE处理组的CEC值显著高于PBAT组. 尽管MPs和Cd污染对土壤有效磷含量的影响不显著, 土壤中NH4+-N的含量会随外源污染物的输入而显著下降[图 2(c)和2(d)]. 但不同MPs种类对土壤有效磷和NH4+-N含量的影响无显著性差异. 与低含量Cd单一污染组相比, PE微塑料显著提高了土壤DOC的含量. 然而, 土壤中DOC含量在对照组、高含量Cd和PBAT污染物组之间不存在显著性差异[图 2(e)]. 土壤理化性质随微塑料的粒径、种类及丰度的变化, 结果多样[22, 28]. 与本研究的结果一致, Zhang等[29]发现200 μm的MPs能够降低水稻土的CEC值, 增加土壤有机质含量;这与微塑料的比表面积性质、表面固着微生物多样性等关系密切. PBAT是一种生物可降解塑料, 它自身的有机物比PE更易于脱落, 更易于被微生物吸收利用, 短期内能够提高土壤的DOC含量[25], 但长期培养条件下可能会降低或不显著影响土壤DOC的储量[30, 31]. 土壤中的有毒污染物能够胁迫氮转化相关微生物的活性, 从而影响土壤氮的硝化-反硝化作用[32]. Chen等[33]的研究还发现, 微塑料表面的生物膜结构能够促进土壤中铵态氮和硝态氮的氧化和反硝化行为, 进而降低土壤中有效态氮的含量水平. 这与本研究的结果相一致. 综合上述结果发现, 土壤中的微塑料和Cd能够一定程度地影响土壤C和N的元素周转, 本试验条件下的MPs-Cd复合污染对土壤理化性质具有一定的协同效应风险.
![]() |
1.CK, 2.CK+Cdlow, 3. PE+Cdlow, 4. PBAT+Cdlow, 5. CK+Cdhigh, 6.PE+Cdhigh, 7.PBAT+Cdhigh;不同的字母表示处理组间存在P < 0.05水平上的差异 图 2 MPs-Cd污染土壤上化学性质pH、CEC、AP、NH4+-N和DOC的响应 Fig. 2 Responses of chemical properties pH, CEC, AP, NH4+-N, and DOC on MPs-Cd-contaminated soil |
土壤DOM的荧光指数FI可用来指示DOM中腐殖质物质的来源(陆源或微生物活动), 是DOM降解程度和芳香性敏感程度的重要指标[34]. 当FI < 1.4时DOM以陆源输入为主, 当FI > 1.9时DOM则主要来源于土壤微生物活动[35]. 从表 1可以看出, 土壤DOM主要来源为微生物活动, 自生源特征比较显著, 腐殖化程度较弱. MPs-Cd复合污染土壤的FI值有不同幅度的升高, 这表明在MPs-Cd复合污染下土壤DOM的微生物来源特征更为显著. 低含量Cd污染下微塑料的加入提高了土壤FI值, 且PBAT处理组高于PE处理组. 腐殖化指数HIX值表征了陆地源DOM中类腐殖质物质的腐殖质化程度[36]. HIX < 4说明DOM腐殖化特征不显著, 6 < HIX < 10表示DOM腐殖质特征强, HIX在10~16之间表明DOM有显著的腐殖质化特征[35]. 与FI值不同, 土壤受到Cd和MPs胁迫后的HIX值均下降, 这表明Cd和MPs污染物均能降低土壤DOM的腐殖化程度. 与对照相比, 高含量Cd污染下土壤DOM的HIX值降低程度高于低含量Cd组, 这表明土壤Cd含量越高DOM的腐殖化程度越低. 相比于PE, PBAT处理组的HIX值更低, 即PBAT对DOM腐殖化程度的影响更大. PBAT作为一种典型的生物可降解型微塑料, 其粗糙表面能够为土壤微生物定殖提供场所, 促进微生物对PBAT释放DOM和土壤DOM的利用, 进而增加土壤中微生物代谢类产物的生成, 一定程度上降低DOM的腐殖化水平[37, 38]. 自生源指标BIX指示DOM自生源特征的强弱. BIX > 1时DOM主要为自生来源, BIX < 1时DOM自生来源特征则不明显. BIX值越大自生源特征越明显, 类蛋白组分贡献越大, 生物可利用性越高[39]. 与HIX相同, MPs-Cd污染土壤上DOM的BIX值均降低, 两种污染物显著地削弱了土壤DOM的自生源特征. 与单独的Cd胁迫相比, MPs的加入能在一定程度上抑制土壤BIX值的下降, 削弱了土壤DOM的腐殖化进程. 综合来看, 土壤上MPs-Cd复合污染对土壤DOM荧光特征的影响受到MPs种类及Cd含量水平的影响.
![]() |
表 1 MPs-Cd污染下土壤DOM的荧光指数FI、HIX和BIX值 Table 1 Fluorescence index FI, HIX, and BIX of DOM in MPs-Cd-contaminated soil |
荧光溶解性有机质(FDOM)是DOM吸收紫外-可见光之后可以发出荧光的部分, 是识别DOM组成结构及性质的关键要素[40, 41]. 通常DOM中的荧光团会按照激发波长和发射波长的不同被划分为类腐殖质荧光团和类蛋白质荧光团, 不同的荧光团对应不同的荧光峰[42, 43]. 基于PARAFAC模型对不同处理组土壤DOM的三维荧光光谱进行分析[图 3(a)], 得到两种荧光组分成分1和成分2. 通过Openfluor数据库中的比对发现, DOM成分1为类腐植酸(humic-like acid)[44], 成分2为酪氨酸(tyrosine)[45]. 图 3对成分1和成分2的荧光光谱图[图 3(c)和3(e)]、分半验证结果[图 3(d)和3(f)]及其贡献率[图 3(b)]进行了分析. 结果发现, 空白对照组成分1的贡献率最高, 达到了83%;在土壤Cd和MPs污染下成分1的贡献率相比于对照组有不同程度的下降. 低含量和高含量的Cd污染下, 成分1的贡献率分别降低了11%和30%. 这表明高含量Cd污染对DOM组分贡献率的影响更显著. 与PE相比, 低含量和高含量Cd污染下, PBAT均能显著降低土壤成分1的贡献率, 降低程度达到25%和34%. 这与土壤荧光指数如FI、HIX等的结果一致, 外源微塑料尤其是生物可降解型微塑料的输入显著提高了土壤微生物对DOM的利用能力.
![]() |
(a1)CK, (a2)CK+Cdlow, (a3)PE+Cdlow, (a4)PBAT+Cdlow, (a5)CK+Cdhigh, (a6)PE+Cdhigh, (a7)PBAT+Cdhigh;b1.CK, b2.CK+Cdlow, b3. PE+Cdlow, b4. PBAT+Cdlow, b5. CK+Cdhigh, b6.PE+Cdhigh, b7.PBAT+Cdhigh;(d)和(f)中浅色曲线表示激发波长Ex, 深色曲线表示发射波长Em 图 3 MPs-Cd污染下, 土壤DOM的三维荧光光谱图、荧光组分、分半验证结果及贡献率 Fig. 3 Three-dimensional fluorescence spectrum, fluorescence components, split-half verification results, and contribution rate of soil DOM under MPs-Cd contamination |
土壤中有效态Cd(Cd-CaCl2)含量和生菜组织中Cd的积累量如图 4所示. 从图 4(a)中可以发现, 土壤Cd-CaCl2含量随Cd污染水平的增加而增加;MPs的加入对土壤Cd-CaCl2含量的影响不显著(P > 0.05). 生菜根和叶中Cd的积累量随土壤Cd含量的增加而增加, MPs增加了生菜根中Cd的积累, 但对叶中Cd的积累量影响不显著. MPs能够降低或提高土壤中重金属污染物的生物有效性, 这与MPs改变了土壤理化性质及土壤固相结合重金属形态等行为有关[46, 47]. 然而, 本研究中两种MPs对土壤主要理化指标的影响均不显著. 进入土壤中的Cd能够通过共质体和质外体途径穿过根部皮层进入木质部, 一部分在皮层细胞间沉积, 一部分向植物的地上部分转移[48]. Jia等[49]的研究发现, PE污染增加了油菜对土壤中Cu和Pb等重金属的吸收. 微塑料可能通过改变根际微生物, 干扰生菜根部ATP结合酶转运体(ABC转运体)的代谢和植物激素信号转导, 从而增加生菜对Cd的吸收[50].
![]() |
1.CK, 2.CK+Cdlow, 3. PE+Cdlow, 4. PBAT+Cdlow, 5. CK+Cdhigh, 6.PE+Cdhigh, 7.PBAT+Cdhigh;不同的字母表示处理组存在P < 0.05水平上的差异 图 4 土壤中Cd-CaCl2提取态Cd含量及生菜组织中Cd积累量 Fig. 4 Cd-CaCl2-extracted Cd content in soil and Cd accumulation in lettuce tissues |
土壤理化性质与土壤Cd-CaCl2生菜中Cd积累量之间的相关性分析结果如图 5所示. 从图 5(a)中可以看出, 土壤DOM的自生源特征BIX和类腐殖质组分(成分1)含量与NH4+-N含量之间呈显著正相关性, 这表明MPs-Cd污染土壤中DOM和NH4+-N的微生物周转利用过程存在协同性. 其他土壤性质如pH、CEC和AP等与DOM组成特征之间的相关性不显著. 土壤中Cd-CaCl2含量与土壤总Cd含量之间呈现显著正相关性, 但与土壤化学性质及DOM组成特征之间的相关性不显著. Tang等[51]研究也发现, 土壤pH和有机质OM与CaCl2提取态重金属含量之间并不总是显著相关的, 这与不同土壤理化指标的改变强度有关. 生菜根和叶中Cd的积累量主要受到土壤总Cd与Cd-CaCl2含量的影响(P < 0.05). 尽管土壤DOM的组成特征与生菜中Cd积累量之间的相关性不显著, 但生菜根和叶中Cd的含量能够随土壤DOM腐殖化程度和类腐殖质含量的增加而降低. 土壤DOM尤其是大分子量的腐植酸类物质能够通过表面络合、螯合作用甚至是影响主要矿质养分有效性等方式直接或间接地降低土壤重金属的生物有效性及生物体内的积累、传递能力[52]. 土壤中总Cd和Cd-CaCl2含量与生菜中Cd积累量之间的相关性均高于0.85, RDA的分析结果与Pearson相一致[图 5(b)]. 由此可见, MPs-Cd污染土壤上植物中Cd的积累和传递行为主要受到土壤Cd含量及有效性的影响, 有关土壤DOM组成特征的解析能够为阐明土壤重金属环境行为及风险提供新的视角.
![]() |
1.pH, 2.CEC, 3.NH4+-N, 4.AP, 5.DOC, 6.FI, 7.HIX, 8.BIX, 9.成分1, 10.成分2, 11.TCd, 12.Cd-CaCl2, 13.根中的Cd, 14.叶中的Cd;TCd表示土壤总Cd;(a)色柱中红色表示正相关性, 蓝色表示负相关性, 颜色越深相关性越强, 圆形的颜色和方向的不同展示了相关性的正负, *表示P < 0.05;(b)中红色箭头表示自变量, 蓝色箭头表示因变量 图 5 MPs-Cd污染下, 土壤化学性质与三维荧光参数及土壤和生菜中Cd含量的Pearson相关性分析和RDA分析 Fig. 5 Pearson correlation analysis and RDA analysis between soil chemical properties and three-dimensional fluorescence parameters and Cd content in soil and lettuce under MPs-Cd contamination |
(1)MPs能够降低土壤CEC值和NH4+-N含量, 提高DOC含量, 不可生物降解的PE对DOC含量提升的作用更显著. 土壤中MPs和Cd的复合污染带来了一定的协同效应风险.
(2)MPs-Cd污染使土壤DOM微生物源特征变得更加显著, 降低了DOM腐殖化程度, 同时削弱了DOM的自生源特征. 土壤Cd含量越高, DOM的腐殖化程度越低. 相比于PE和其他土壤性质, PBAT和NH4+-N对DOM来源及腐殖化程度的影响更为显著. 土壤MPs-Cd复合污染能够改变土壤中DOM的组成特征, 其中PBAT的影响更为显著.
(3)MPs输入增加了生菜根中Cd的积累量, 但对叶中Cd的积累量影响不显著. 生菜根和叶中Cd的积累量主要受到土壤总Cd与Cd-CaCl2含量的影响(P < 0.05);生菜中Cd的积累量还会随土壤DOM腐殖化程度和类腐殖质含量的增加而降低.
[1] | Hohn S, Acevedo-Trejos E, Abrams J F, et al. The long-term legacy of plastic mass production[J]. Science of the Total Environment, 2020, 746. DOI:10.1016/j.scitotenv.2020.141115 |
[2] | Babazadeh F, Gharavi S, Soudi M R, et al. Potential for polyethylene terephthalate (PET) degradation revealed by metabarcoding and bacterial isolates from soil around a bitumen source in southwestern Iran[J]. Journal of Polymers and the Environment, 2023, 31(4): 1279-1291. DOI:10.1007/s10924-022-02683-z |
[3] | Yu Y, Craig N, Su L. A hidden pathway for human exposure to micro- and nanoplastics—the mechanical fragmentation of plastic products during daily use[J]. Toxics, 2023, 11(9). DOI:10.3390/TOXICS11090774 |
[4] | Jang M, Lee M, Chung S, et al. Ecotoxicity assessment of additives in commercial biodegradable plastic products: Implications for sustainability and environmental risk[J]. Science of the Total Environment, 2024, 931. DOI:10.1016/J.SCITOTENV.2024.172903 |
[5] |
姚晶晶, 韦存茜, 孙梦捷. 食品接触材料中微塑料的释放及检测[J]. 包装工程, 2023, 44(19): 33-41. Yao J J, Wei C Q, Sun M J, et al. Release and detection of microplastics in food contact materials[J]. Packaging Engineering, 2023, 44(19): 33-41. |
[6] | Munhoz D R, Harkes P, Beriot N, et al. Microplastics: a review of policies and responses[J]. Microplastics, 2022, 2(1): 1-26. DOI:10.3390/microplastics2010001 |
[7] | Ma Y B, Xie Z Y, Hamid N, et al. Recent advances in micro (nano) plastics in the environment: distribution, health risks, challenges and future prospects[J]. Aquatic Toxicology, 2023, 261. DOI:10.1016/J.AQUATOX.2023.106597 |
[8] |
教明明, 卓依恒, 孙泽林, 等. 挠力河自然保护区不同类型土地中微塑料分布与组成特征[J]. 土壤与作物, 2023, 12(2): 141-152. Jiao M M, Zhuo Y H, Sun Z L, et al. Distribution and composition characteristics of microplastics from different types of land in Naolihe Nature Reserve[J]. Soils and Crops, 2023, 12(2): 141-152. |
[9] | Do V M, Trinh V T, Le X T T, et al. Evaluation of microplastic bioaccumulation capacity of mussel (Perna viridis) and surrounding environment in the north coast of Vietnam[J]. Marine Pollution Bulletin, 2023, 199. DOI:10.1016/J.MARPOLBUL.2023.115987 |
[10] | Chen S, Feng T Z, Lin X N, et al. Effect of microplastics on the adsorption and desorption properties of cadmium in Soil[J]. Bulletin of Environmental Contamination and Toxicology, 2023, 110(1). DOI:10.1007/S00128-022-03669-2 |
[11] | Shafea L, Yap J, Beriot N, et al. Microplastics in agroecosystems: a review of effects on soil biota and key soil functions[J]. Journal of Plant Nutrition and Soil Science, 2023, 186(1): 5-22. DOI:10.1002/jpln.202200136 |
[12] |
时馨竹, 孙丽娜, 李珍, 等. 沈阳周边农田土壤中微塑料组成与分布[J]. 农业环境科学学报, 2021, 40(7): 1498-1508. Shi X Z, Sun L N, Li Z, et al. Composition and distribution of microplastics in farmland soil around Shenyang[J]. Journal of Agro-Environment Science, 2021, 40(7): 1498-1508. |
[13] | Liu M T, Lu S B, Song Y, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China[J]. Environmental Pollution, 2018, 242: 855-862. DOI:10.1016/j.envpol.2018.07.051 |
[14] | Bosker T, Bouwman L J, Brun N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum [J]. Chemosphere, 2019, 226: 774-781. DOI:10.1016/j.chemosphere.2019.03.163 |
[15] |
崔敏, 高冉, 余松国, 等. 微塑料对樱桃萝卜生长的影响[J]. 安徽农业大学学报, 2022, 49(6): 899-905. Cui M, Gao R, Yu S G, et al. Effects of the growth of cherry radish affected by different microplastics[J]. Journal of Anhui Agricultural University, 2022, 49(6): 899-905. |
[16] | Yang L, Zhang Y L, Kang S C, et al. Microplastics in soil: a review on methods, occurrence, sources, and potential risk[J]. Science of the Total Environment, 2021, 780. DOI:10.1016/J.SCITOTENV.2021.146546 |
[17] | Wang F L, Wang X X, Song N N. Polyethylene microplastics increase cadmium uptake in lettuce (Lactuca sativa L.) by altering the soil microenvironment[J]. Science of the Total Environment, 2021, 784. DOI:10.1016/J.SCITOTENV.2021.147133 |
[18] | Wang Y M, Tang L, Chen J, et al. Susceptibility of Cd availability in microplastics contaminated paddy soil: Influence of ferric minerals and sulfate reduction[J]. Journal of Hazardous Materials, 2024, 465. DOI:10.1016/J.JHAZMAT.2023.133343 |
[19] |
王迪, 徐绍辉, 邵明艳, 等. PE-Cd复合污染土壤中Cd释放迁移特征及机制[J]. 环境科学, 2024, 45(2): 1069-1079. Wang D, Xu S H, Shao M Y, et al. Characteristics and mechanism of Cd release and transport in soil contaminated with PE-Cd[J]. Environmental Science, 2024, 45(2): 1069-1079. |
[20] | Zhao M, Xu L, Wang X X, et al. Microplastics promoted cadmium accumulation in maize plants by improving active cadmium and amino acid synthesis[J]. Journal of Hazardous Materials, 2023, 447. DOI:10.1016/J.JHAZMAT.2023.130788 |
[21] | Huang F Y, Hu J Z, Chen L, et al. Microplastics may increase the environmental risks of Cd via promoting Cd uptake by plants: a meta-analysis[J]. Journal of Hazardous Materials, 2023, 448. DOI:10.1016/J.JHAZMAT.2023.130887 |
[22] | Feng Z W, Zhu N Y, Wu H Z, et al. Microplastic coupled with soil dissolved organic matter mediated changes in the soil chemical and microbial characteristics[J]. Chemosphere, 2024, 359. DOI:10.1016/J.CHEMOSPHERE.2024.142361 |
[23] | Liu Y Y, Cui W Z, Li W G, et al. Effects of microplastics on cadmium accumulation by rice and arbuscular mycorrhizal fungal communities in cadmium-contaminated soil[J]. Journal of Hazardous Materials, 2023, 442. DOI:10.1016/J.JHAZMAT.2022.130102 |
[24] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[25] | Wang Y M, Tang D D, Zhang X H, et al. Effects of soil amendments on cadmium transfer along the lettuce-snail food chain: influence of chemical speciation[J]. Science of the Total Environment, 2019, 649: 801-807. DOI:10.1016/j.scitotenv.2018.08.323 |
[26] |
梅孔灿, 程蕾, 张秋芳, 等. 不同植物来源可溶性有机质对亚热带森林土壤酶活性的影响[J]. 植物生态学报, 2020, 44(12): 1273-1284. Mei K C, Cheng L, Zhang Q F, et al. Effects of dissolved organic matter from different plant sources on soil enzyme activities in subtropical forests[J]. Chinese Journal of Plant Ecology, 2020, 44(12): 1273-1284. DOI:10.17521/cjpe.2020.0097 |
[27] |
朱金杰, 邹楠, 钟寰, 等. 富营养化巢湖沉积物溶解性有机质光谱时空分布特征及其环境意义[J]. 环境科学学报, 2020, 40(7): 2528-2538. Zhu J J, Zou N, Zhong H, et al. Spatiotemporal characteristics and its environmental application of dissolved organic matter (DOM) in sediments from Chaohu Lake, a eutrophic lake[J]. Acta Scientiae Circumstantiae, 2020, 40(7): 2528-2538. |
[28] | Wen X F, Yin L S, Zhou Z Y, et al. Microplastics can affect soil properties and chemical speciation of metals in yellow-brown soil[J]. Ecotoxicology and Environmental Safety, 2022, 243. DOI:10.1016/J.ECOENV.2022.113958 |
[29] | Zhang Q Y, Guo W J, Wang B Y, et al. Influences of microplastics types and size on soil properties and cadmium adsorption in paddy soil after one rice season[J]. Resources, Environment and Sustainability, 2023, 11. DOI:10.1016/J.RESENV.2022.100102 |
[30] | Yu H, Zhang Z, Zhang Y, et al. Effects of microplastics on soil organic carbon and greenhouse gas emissions in the context of straw incorporation: a comparison with different types of soil[J]. Environmental Pollution, 2021, 288. DOI:10.1016/J.ENVPOL.2021.117733 |
[31] | Meng F R, Yang X M, Riksen M, et al. Effect of different polymers of microplastics on soil organic carbon and nitrogen–a mesocosm experiment[J]. Environmental Research, 2022, 204. DOI:10.1016/J.ENVRES.2021.111938 |
[32] | Haddad S A, Tabatabai M A, Loynachan T E. Effects of liming and selected heavy metals on ammonium release in waterlogged agricultural soils[J]. Biology and Fertility of Soils, 2017, 53(2): 153-158. DOI:10.1007/s00374-016-1163-z |
[33] | Chen H P, Wang Y H, Sun X, et al. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function[J]. Chemosphere, 2020, 243. DOI:10.1016/j.chemosphere.2019.125271 |
[34] | Feng F, Jiang Y H, Jia Y F, et al. Exogenous-organic-matter-driven mobilization of groundwater arsenic[J]. Environmental Science and Ecotechnology, 2023, 15. DOI:10.1016/J.ESE.2023.100243 |
[35] | Ohno T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science & Technology, 2002, 36(4): 742-746. |
[36] | Lu K T, Gao H J, Yu H B, et al. Insight into variations of DOM fractions in different latitudinal rural black-odor waterbodies of eastern China using fluorescence spectroscopy coupled with structure equation model[J]. Science of the Total Environment, 2022, 816. DOI:10.1016/J.SCITOTENV.2021.151531 |
[37] | Chen J, Li J Z, Feng Z W, et al. Relevance of dissolved organic matter components on the adsorption behaviors of cadmium onto non-biodegradable and biodegradable microplastics in an agricultural soil[J]. Journal of Soils and Sediments, 2024, 24(3): 1237-1249. DOI:10.1007/s11368-024-03731-y |
[38] | Zhou A Y, Ji Q S, Kong X C, et al. Response of soil property and microbial community to biodegradable microplastics, conventional microplastics and straw residue[J]. Applied Soil Ecology, 2024, 196. DOI:10.1016/J.APSOIL.2024.105302 |
[39] | Hansen A M, Kraus T E C, Pellerin B A, et al. Optical properties of dissolved organic matter (DOM): effects of biological and photolytic degradation[J]. Limnology and Oceanography, 2016, 61(3): 1015-1032. DOI:10.1002/lno.10270 |
[40] |
许金鑫. 城市河流溶解性有机质的光谱特征研究——以黄浦江为例[D]. 上海: 上海师范大学, 2020. Xu J X. Spectral characteristics of dissolved organic matter in urban rivers——a case study of Huangpu River, Shanghai[D]. Shanghai: Shanghai Normal University, 2020. |
[41] | Du Y X, Lu Y H, Roebuck J A, et al. Direct versus indirect effects of human activities on dissolved organic matter in highly impacted lakes[J]. Science of the Total Environment, 2021, 752. DOI:10.1016/j.scitotenv.2020.141839 |
[42] |
卜鑫宇. 三江平原典型农田-河沼系统中DOM的光谱特征研究[D]. 哈尔滨: 东北农业大学, 2023. Bu X Y. Spectral characteristics of dissolved organic matter in typical farmland-river-marsh system of Sanjiang Plain, Northeast China[D]. Harbin: Northeast Agricultural University, 2023. |
[43] | Retelletti Brogi S, Casotti R, Misson B, et al. DOM biological lability in an estuarine system in two contrasting periods[J]. Journal of Marine Science and Engineering, 2021, 9(2). DOI:10.3390/JMSE9020172 |
[44] | Panettieri M, Guigue J, Prévost-Bouré N C, et al. Grassland-cropland rotation cycles in crop-livestock farming systems regulate priming effect potential in soils through modulation of microbial communities, composition of soil organic matter and abiotic soil properties[J]. Agriculture, 2020, 299. DOI:10.1016/j.agee.2020.106973 |
[45] | Wünsch U J, Murphy K R, Stedmon C A. Fluorescence quantum yields of natural organic matter and organic compounds: implications for the fluorescence-based interpretation of organic matter composition[J]. Frontiers in Marine Science, 2015, 2. DOI:10.3389/fmars.2015.00098 |
[46] | Cao Y X, Ma X Y, Chen N, et al. Polypropylene microplastics affect the distribution and bioavailability of cadmium by changing soil components during soil aging[J]. Journal of Hazardous Materials, 2023, 443. DOI:10.1016/J.JHAZMAT.2022.130079 |
[47] | Abbasi S, Moore F, Keshavarzi B, et al. PET-microplastics as a vector for heavy metals in a simulated plant rhizosphere zone[J]. Science of the Total Environment, 2020, 744. DOI:10.1016/j.scitotenv.2020.140984 |
[48] |
王晓娟, 王文斌, 杨龙, 等. 重金属镉(Cd)在植物体内的转运途径及其调控机制[J]. 生态学报, 2015, 35(23): 7921-7929. Wang X J, Wang W B, Yang L, et al. Transport pathways of cadmium (Cd) and its regulatory mechanisms in plant[J]. Acta Ecologica Sinica, 2015, 35(23): 7921-7929. |
[49] | Jia H, Wu D, Yu Y, et al. Impact of microplastics on bioaccumulation of heavy metals in rape (Brassica napus L.)[J]. Chemosphere, 2022, 288. DOI:10.1016/J.CHEMOSPHERE.2021.132576 |
[50] | Xu G H, Lin X L, Yu Y. Different effects and mechanisms of polystyrene micro- and nano-plastics on the uptake of heavy metals (Cu, Zn, Pb and Cd) by lettuce (Lactuca sativa L.)[J]. Environmental Pollution, 2023, 316. DOI:10.1016/J.ENVPOL.2022.120656 |
[51] | Tang J Y, Zhang L H, Zhang J C, et al. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost[J]. Science of the Total Environment, 2020, 701. DOI:10.1016/j.scitotenv.2019.134751 |
[52] | Yuan C L, Li Q, Sun Z Y, et al. Effects of natural organic matter on cadmium mobility in paddy soil: a review[J]. Journal of Environmental Sciences, 2021, 104: 204-215. DOI:10.1016/j.jes.2020.11.016 |