环境科学  2025, Vol. 46 Issue (4): 2292-2300   PDF    
农田土壤有机碳及活性碳组分对秸秆和地膜覆盖响应的Meta分析
杨那, 毛晓涵, 李彦, 郝红玉, 王朝辉, 李紫燕     
西北农林科技大学资源环境学院, 农业农村部西北植物营养与农业环境重点实验室, 杨凌 712100
摘要: 为研究地表覆盖在不同环境和农田管理措施下对土壤有机碳(SOC)及碳组分影响的差异, 利用Meta定量分析方法分析秸秆和地膜覆盖下SOC及活性碳组分的变化, 并对试验地点的环境和农田管理措施进行分组, 探究其在不同条件下的变化特征. 相比于地膜覆盖, 秸秆覆盖更有利于提高SOC、可溶性有机碳(DOC)和微生物量碳(MBC)含量. 年均气温 > 10℃时秸秆覆盖下SOC相对变化率比地膜覆盖下高14.93%, 气温 < 10℃时, 地膜覆盖比秸秆覆盖高6.47%;降雨量显著影响秸秆覆盖下MBC含量, 不同降雨量下MBC变化率差异达到27.02%. 轮作能提高秸秆覆盖下SOC及活性碳组分含量, 但地膜覆盖下不轮作使SOC含量显著降低4.52%. DOC响应比与SOC响应比呈显著正相关, MBC响应比与SOC响应比没有显著相关关系;地膜覆盖时长与SOC响应比呈显著负相关. 综上, 秸秆和地膜覆盖在不同环境和管理措施下对SOC和活性碳组分的影响有差异, 相较于地膜覆盖, 秸秆覆盖在各种环境和管理措施下更有利于提高SOC及活性碳组分含量.
关键词: 覆盖措施      土壤有机碳(SOC)      碳组分      环境因素      田间管理     
Meta-analysis of Soil Organic Carbon and Its Active Fractions in Response to Straw and Film Mulching
YANG Na , MAO Xiao-han , LI Yan , HAO Hong-yu , WANG Zhao-hui , LI Zi-yan     
Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
Abstract: In order to study the differences in the effects of mulching measures on soil organic carbon (SOC) and carbon fractions under different environments and farmland management measures, the Meta-quantitative analysis method was used to analyze the changes in SOC and carbon fractions under straw and film mulching, and the environmental and farmland management measures at the test sites were grouped to explore their change characteristics under different environments. Compared with film mulching, straw mulching was more beneficial to increase SOC, dissolved organic carbon (DOC), and microbial biomass carbon (MBC) contents. The SOC percentage change rate under straw mulching was 14.93% higher than that under film mulching when the mean annual temperature was higher than 10℃, and the SOC percentage change rate under film mulching was 6.47% higher than that under straw mulching when the mean annual temperature was lower than 10℃. The difference in MBC percentage change rate between different mean annual precipitation amounts reached 27.02%. Crop rotation was conducive to increasing SOC and carbon fractions under straw mulching, but the percentage change rate of SOC under film mulching without crop rotation decreased by 4.52%. There was a significant positive correlation between DOC response ratio and SOC response ratio, but no significant correlation between MBC response ratio and SOC response ratio, and the film mulching time had a significant negative correlation with SOC response ratio. Compared with film mulching, straw mulching was more conducive to increasing SOC and active carbon fractions content under various environmental and management measures.
Key words: mulching measures      soil organic carbon (SOC)      carbon fractions      environmental factors      field management     

土壤有机碳(soil organic carbon, SOC)含量是指示土壤质量和健康的重要指标[1], SOC对提高耕地质量、保持粮食稳产高产起关键作用[2]. 活性有机碳是土壤碳库中最活跃的组分, 周转速率快、易被分解转化, 与SOC相比, 活性碳组分与氮、磷等土壤养分以及土壤理化性质的相关性更高[3], 因此可作为管理措施对土壤质量影响的早期指标. 可溶性有机碳(DOC)是土壤微生物可直接获得的能量来源, 是由SOC的降解、转化和矿化作用形成的[4], 土壤微生物量碳(MBC)是土壤碳的主要来源, 耕层土壤微生物量碳占SOC的3%左右[5], 能够反映土壤微生物利用碳的效率, 进而反映土壤的营养状况和生物活性是否充足[6], 但有研究表明初始DOC含量与CO2释放呈正相关[7], 不稳定的碳组分也是碳损失的主要来源.

地表覆盖措施通过改善土壤水热条件和增加养分有效性来提高作物产量[8], 目前秸秆和地膜是我国农业主要的覆盖方式, 秸秆覆盖能够提高资源利用率, 减少污染并提供土壤有机质, 同时可以减少土壤表面的蒸发损失, 保护土壤表面不受降雨冲击, 促进土壤团聚结构形成, 提高微生物活性[9];长期秸秆覆盖增加了SOC及其组分的含量, 并且随着覆盖时间增长有增加趋势[10]. 覆膜有利于增加作物根系碳输入[11], 对土壤固碳有重要作用, 目前地膜覆盖对SOC的影响还没有一致结论, 有部分数据表明地膜覆盖提高了SOC含量[12], 也有研究称虽然地膜覆盖在保温和提高水分利用效率上优于秸秆覆盖, 但土壤温度升高会增加农田土壤的CO2排放[13], 如果有机碳矿化不能与碳输入保持平衡就将面临碳损失的风险. 活性碳组分受土壤、气候、水分、田间管理措施等的影响较大, 各个研究对于地膜覆盖下土壤活性碳组分变化的结论不一致, 张成娥等[14]的结果表明覆膜提高土壤水分和温度, 会增加土壤MBC含量, 但也有研究称覆膜会降低MBC含量[15].

了解土壤有机碳组分的变化有助于揭示SOC的形成机制, 需要进一步研究不同来源、形成机制和功能的有机碳组分对覆盖的响应及其影响因素[16]. 以往的研究主要集中于探讨秸秆和地膜覆盖对于SOC的影响, 有必要研究不同环境和管理措施下土壤活性碳组分对秸秆和地膜覆盖的响应, 以及覆盖措施的长期效应. 本文应用Meta分析方法, 对秸秆和地膜覆盖下的SOC、DOC和MBC的变化进行定量分析, 并根据环境和农田管理措施(包括pH、年均气温、年均降水、施氮量、种植模式、作物类型和覆盖时间)进行分类, 以期为评估覆盖措施的可持续性, 提高农业生产和生态效益提供理论支持.

1 材料与方法 1.1 数据收集

借助中国知网(CNKI)和Web of Science等中英文数据库, 输入关键词:秸秆覆盖、地膜覆盖、土壤有机碳(SOC)、可溶性有机碳(DOC)、微生物量碳(MBC)、碳组分、施肥条件、覆盖方式、气候条件、“straw”、“film”、“mulch”、“mulching”、“carbon fractions”等进行检索. 为减小文献筛选带来的偏差, 使本研究更具有准确性, 所选文献需满足以下条件:①试验地点为中国. ②试验中有未进行任何覆盖措施的对照组和进行了不同覆盖措施的试验组, 且在对照组和试验组中提供了SOC、DOC、MBC在内的至少一个参数. ③给出了所提供参数的均值、标准差或标准误差以及重复数. ④文献必须明确采样深度, 如果文献只提供土壤有机质含量, 则乘以有机碳转换系数0.58[17]. ⑤Meta分析中每一项研究均是独立的, 对于在不同文献中出现的相同数据, 以及同一文献下的不同处理, 其数据提取过程中只使用一次[18]. 基于以上筛选方法和条件要求, 本研究共收集了在2000~2023年发表的文献81篇, 数据量如表 1所列.

表 1 Meta分析涉及的样本数据 Table 1 Sample data involved in Meta-analysis

1.2 数据分析

本研究主要分析在秸秆覆盖(SM)和地膜覆盖(PFM)下农田SOC、DOC和MBC的变化及其对环境和农田管理措施的响应, 计算方法如下.

当原始数据以文字或表格形式出现时, 则直接收集, 若以图表的形式出现时, 则运用Origin 2018软件来获取相关数据. 在一些研究中, 如果提供的是标准误差(standard error, SE), 则使用以下公式转化为标准差(standard deviation, SD)[19].

(1)

式中, 为对应数据样本量的平方根.

本研究运用MetaWin 2.1软件对数据进行分析, 通过计算各指标在不同覆盖措施下的效应值(lnR)来对所提取的数据进行量化. 其计算公式如下:

(2)
(3)

式中, XCXE分别为对照组和试验组中每个指标的平均值. 对应指标效应值(lnR)的方差Var(lnRR)的计算公式如下:

(4)

式中, NCXCSCNEXESE分别为对照组和试验组的样本数、平均值、标准差.

通过MetaWin 2.1软件对获得的数据对进行分析, 可以计算出对应的效应值(lnR)和方差[Var(lnRR)], 并检验不同试验结果间效应值的异质性, 若P < 0.05, 则选用随机效应模型进行Meta分析, 否则采用固定效应模型. 然后通过软件的随机效应模型计算出平均加权反应比/合并效应值(R+)及95%置信区间. 获得的R+若大于0, 说明为正效应;若小于0, 说明为负效应. 获得的95%置信区间若包括0, 则说明覆盖措施的变化没有产生显著影响(P > 0.05), 若大于0, 说明产生了显著的正效应(P < 0.05), 若小于0, 则说明产生了显著的负效应(P < 0.05).

为使结果更加直观, 本研究采用相对于对照组的变化率(%)来估计各指标的变化[20], 计算公式如下:

(5)

经过Kolmogorov-Smirnov检验, P > 0.05说明响应比数据满足正态分布, 可以用于Meta分析(表 2). 此外, 采用组间异质性检验确定SOC及碳组分对不同覆盖措施的响应, P < 0.05说明组间差异有统计学意义[21]. 通过回归分析, 拟合了活性碳组分响应比与SOC响应比以及覆盖时长与SOC响应比的关系. 本研究运用Excel 2010软件进行数据整理归纳, 并借助MetaWin 2.1计算各指标的相对变化率, 使用Graghpad Prism 9和Origin 2018软件绘制图表.

表 2 正态分布检验 Table 2 Normal distribution test

2 结果与分析 2.1 覆盖措施对SOC和活性碳组分的影响

秸秆和地膜覆盖对SOC和活性碳组分的影响有差异, 并且在不同土层间存在异质性. 由图 1可知, 秸秆覆盖显著提高了0~20 cm和20~50 cm土层SOC含量, 其变化率在5.97%~9.13%和2.02%~6.90%之间, 地膜覆盖对SOC没有显著影响. 秸秆和地膜覆盖都显著提高了0~20 cm土层DOC含量, 增幅分别达到13.49%和7.54%, 两种覆盖方式都没有显著影响表层土壤MBC含量, 但总体趋势是在秸秆覆盖升高, 地膜覆盖降低[图 1(a)]. 在20~50 cm土层, 秸秆和地膜覆盖分别显著提高了43.28%和21.65%的MBC含量[图 1(b)]. DOC响应比与SOC响应比呈显著正相关(P < 0.01), MBC响应比与SOC响应比之间没有显著相关关系(图 2).

SM表示秸秆覆盖;PFM表示地膜覆盖;误差线表示相对变化率95%的置信区间, *表示有显著影响(P < 0.05), n表示样本数 图 1 秸秆和地膜覆盖对SOC、DOC、MBC相对变化率的影响 Fig. 1 Effects of straw and film mulch on the percentage change rates of SOC, DOC, and MBC

图 2 活性碳组分响应比与SOC响应比的关系 Fig. 2 Relationship between soil active carbon fractions response ratio with SOC response ratio

2.2 不同环境和农田管理措施下SOC对覆盖措施的响应

秸秆覆盖在不同环境条件下对SOC含量都有提升作用, 这种作用受降雨量的影响较小, 对气温更敏感, 图 3(a)表明在年均气温 > 10℃时, SOC的相对变化率比年均气温 < 10℃时高7.32%, 而在地膜覆盖下年均气温 < 10℃时显著增加了SOC含量, 变化率在0.13%~1.79%之间[图 3(b)]. 如图 3(c)所示, 施氮量对于秸秆覆盖下的SOC影响较大, 施氮量为210~450 kg·hm-2时SOC相对变化率最高, 达到14.44%, 而不同施氮量下地膜覆盖对SOC没有显著影响[图 3(d)]. 轮作和不轮作都会显著增加秸秆覆盖下的SOC, 但不轮作时, 地膜覆盖下SOC含量显著下降, 变化率在-0.92%~-7.99%之间;秸秆覆盖下种植不同作物均显著增加SOC含量, 变化率大小为:玉米 > 甘草 > 小麦, 地膜覆盖下仅在种植小麦时SOC显著降低, 其变化率为-0.72%~-4.38%[图 3(c)3(d)]. 此外, 秸秆覆盖时长与SOC响应比没有显著相关关系, 但地膜覆盖时长与SOC的响应比呈显著负相关(P < 0.01)(图 4).

(a)和(c)秸秆覆盖, (b)和(d)地膜覆盖;误差线表示相对变化率95%的置信区间, *表示有显著影响(P < 0.05), n表示样本数 图 3 环境和管理措施对秸秆和地膜覆盖下SOC相对变化率的影响 Fig. 3 Effects of environmente and management measures on the percentage change of SOC under straw and film mulching

图 4 秸秆和地膜覆盖时长与SOC响应比的关系 Fig. 4 Relationship between straw and film mulching times with SOC response ratio

2.3 不同环境和农田管理措施下DOC对覆盖措施的响应

两种覆盖方式下DOC对环境因素的响应有显著差异. 当pH < 7时, 秸秆和地膜覆盖下DOC含量分别显著提高9.79%和20.93%;在不同年均气温条件下秸秆和地膜覆盖均能显著提高DOC含量;降雨量 > 400 mm时秸秆和覆膜分别使DOC含量提高13.87%和15.52%, 降雨量 < 400 mm时仅秸秆覆盖显著提高了DOC含量, 其变化率为2.09%~26.21%[图 5(a)5(b)]. 秸秆覆盖下施氮量提高会增加DOC相对变化率, 而地膜覆盖在低施氮量时的相对变化率最大, 为4.46%~16.32%;轮作均显著提高了秸秆和地膜覆盖下的DOC含量, 覆膜的相对变化率比秸秆覆盖高7.08%[图 5(c)5(d)].

(a)和(c)秸秆覆盖, (b)和(d)地膜覆盖;误差线表示相对变化率95%的置信区间, *表示有显著影响(P < 0.05), n表示样本数, 下同 图 5 环境和管理措施对秸秆和地膜覆盖下DOC相对变化率的影响 Fig. 5 Effects of environmente and management measures on the percentage change of DOC under straw and film mulching

2.4 不同环境和农田管理措施下MBC对覆盖措施的响应

pH > 7时, 秸秆覆盖显著提高MBC含量, 相对变化率为13.87%~29.74%, pH < 7时, 覆膜使MBC显著提高15.56%;在年均气温 < 10℃和降雨量 < 400 mm时, 秸秆覆盖下土壤MBC分别显著提高了24.59%和26.08%, 气温和降水对覆膜下的MBC没有显著影响[图 6(a)6(b)]. 两种覆盖方式下, 施氮量高时的MBC均小于施氮量低时的MBC, 且在秸秆覆盖下相对变化率的差异更大, 达到23.82%;不同种植模式下, 仅在秸秆覆盖轮作时MBC含量显著升高, 变化率为21.21%~51.57%;两种覆盖方式下种植不同的作物对MBC的影响表现一致, 秸秆覆盖下种植甘草的相对变化率最高, 达到51.42%[图 6(c)6(d)].

图 6 环境和管理措施对秸秆和地膜覆盖下MBC相对变化率的影响 Fig. 6 Effects of environmente and management measures on the percentage change of MBC under straw and film mulching

3 讨论 3.1 覆盖措施对SOC及活性碳组分的影响

基于来自全国81项研究的1 118对数据, 本研究发现秸秆覆盖显著提高了0~20 cm和20~50 cm土层SOC含量(图 1), 微生物分解的有机物和秸秆分解物是SOC的主要来源, 秸秆向土壤中提供果胶、有机酸、游离氨基酸和矿质元素等物质提高土壤有机质输入[22], 促进微生物生长繁殖, 提高土壤酶活性, 从而提高SOC含量[23], 秸秆覆盖还有利于保持土壤温度、湿度等环境因子稳定[24], 秸秆分解产生的大量有机质颗粒能够促进大团聚体的形成和大团聚体中SOC的积累[25]. 结果显示地膜覆盖下0~20 cm土层的SOC含量有降低趋势[图 1(a)], 原因是地膜覆盖会提高SOC矿化和微生物活动, 使更多的惰性碳组分转化为活性碳组分[26], 在增加作物产量的同时也可能对土壤质量和可持续性产生负面影响.

微生物代谢物是DOC的重要组成部分, 受土壤环境的影响较大[27], 秸秆覆盖下0~20 cm土层DOC增加高于地膜覆盖[图 1(a)]. 秸秆分解向土壤输入的活性有机碳会促进土壤原有稳定性有机碳矿化而产生正激发效应, 产生大量的DOC, 并随着雨水下渗至土壤, 有利于增加有机碳含量[28], 并且秸秆覆盖能利用更多降水, 为微生物分解有机质、释放养分提供有利条件, 而覆膜后地温升高会刺激微生物活性[29], DOC作为微生物代谢的产物, 其含量上升也意味着更高的微生物代谢速率, 在产生DOC的同时也提高了对DOC的消耗[30].

MBC对农业生态系统中养分循环的速度起着关键的控制作用[31]. 秸秆和地膜都显著提高了20~50 cm土层的MBC含量[图 1(b)], Dong等[32]的研究表明, 在秸秆分解过程中, 刺激微生物产生更多不稳定有机碳, 缓解微生物的营养限制;地膜覆盖下良好的土壤水热条件促进土壤有机质分解, 有利于微生物量增加[33], 并且深层土壤空气与地表空气交换少, 增加了土壤CO2浓度, 在一定程度上缓解土壤微生物呼吸导致的碳损失[4], 这也可能是地膜覆盖下表层和深层土壤MBC变化规律不同的原因.

3.2 不同环境和管理措施下覆盖对SOC和活性碳组分的影响

pH对地膜覆盖下SOC含量没有显著影响[图 3(b)], 地膜覆盖主要应用于中国西北半干旱地区, 碱性土壤的高缓冲能力和富含碳酸钙母质的高亲和力[34], 使pH对SOC的影响较小. 当pH > 7时, 秸秆覆盖能提高土壤MBC含量[图 6(a)], 有研究表明相比于酸性土壤, 添加秸秆更能促进碱性土壤中真菌、细菌和放线菌数量的增加[35], 这些微生物参与有机质的分解、腐殖质的形成, 调控土壤中能量和养分循环, 促进MBC含量增加. 秸秆和地膜覆盖分别在年均气温 > 10℃和 < 10℃时更有利于提高SOC含量[图 3(a)3(b)], 秸秆覆盖会降低地温[36], 较高的年平均气温有利于促进秸秆分解, 覆膜带来的增温效果能够促进植物根系生长, 提高根际碳输入和微生物对土壤有机物的分解, 而温度过高则会加速SOC矿化, 造成损失. 秸秆和地膜覆盖都能够提高不同温度条件下的DOC含量[图 5(a)5(b)], 覆盖措施能够促进植物生长, 提高根系分泌物释放速率, 增加土壤DOC含量. 不同降雨量下秸秆覆盖的SOC相对变化率没有明显差异, 由于雨水和径流会分离和运输轻颗粒, SOC密度轻, 容易与黏土大小的矿物颗粒结合[37], SOC损失会随着降雨量的增加而增加[38], 但秸秆覆盖通过增加地表的粗糙度来减少地表径流的产生和降低表面流速[39], 有利于降水均匀入渗[40], 为微生物生长创造有利条件.

提高施氮量能增加秸秆覆盖下SOC含量[图 3(d)], 施氮可以通过减小土壤碳氮比来增加微生物数量、促进植物生长, 还能加快秸秆腐解[41]. Ullah等[42]的研究表明秸秆和施氮会改变水解酶和氧化酶的活性, 也有助于提高BG酶活性[43], 而土壤酶活性与SOC含量呈显著正相关[44]. 有研究称施肥与秸秆还田的交互作用对SOC有显著影响, 由于土壤硝态氮能够促进秸秆碳在土壤表层的积累, 从而增加表层SOC的固存[45]. 不同的施氮量对覆膜下的SOC无显著影响(图 2), 有研究表明覆膜加施氮会造成大团聚体中的SOC增加[46], 使SOC容易被矿化, 长期地膜覆盖会消耗SOC[47], 不利于碳的积累[48]. 施肥增加了残茬量与根系对土壤的碳输入[49], 其与微生物分解损失之间的平衡可能是增施氮肥后SOC差异不显著的部分原因[50]. 地膜覆盖下, 与低施氮量相比高施氮量下土壤DOC的相对变化率减小, 可能与外源有机物供给不足有关[15], 碳氮比降低导致微生物生长繁殖受限, 覆膜下较高的根系生物量也会加剧微生物与作物的养分竞争. 轮作提高了秸秆覆盖下的DOC和MBC含量[图 5(c)图 6(c)], 地膜覆盖下不轮作显著降低SOC和MBC含量[图 3(d)图 6(d)], 轮作可以平衡由地膜覆盖造成的碳损失. 轮作有利于大团聚体的形成, 有效改善土壤团粒结构及稳定性[51], 有助于形成良好的土壤结构. 杨滨娟等[52]认为, 轮作有利于提高土壤碳库活度、碳库指数活度和碳库管理指数, 轮作下更丰富的作物物种多样性改变了土壤系统中碳输入的质量[53], 增加作物多样性也会改变土壤中碳形态, 从而提高土壤肥力和微生物生物量[54]. 相比小麦和甘草, 种植玉米在秸秆和地膜覆盖下SOC的相对变化率均为最高, 这与玉米较大的根系和作物残留能带来更多有机物输入有关[55].

秸秆覆盖时长与SOC响应比无显著相关关系[图 4(a)], 连续秸秆覆盖会降低表层土壤容重[56], 使SOC暴露在空气中, 矿化速率加快, 同时有机物输入引起的激发效应也会造成SOC损失. 这是连续秸秆覆盖下SOC含量增加后维持相对稳定的原因. 地膜覆盖下SOC响应比和覆盖时长呈显著负相关[图 4(b)], 说明长期地膜覆盖会加剧SOC损失, 但也有研究称SOC含量随地膜覆盖年限的增加呈现先逐步提高后降低的趋势, 在覆盖2 a时出现峰值, 4 a后SOC含量出现负增长[57]. 地膜覆盖增加了土壤中水稳性大团聚体比例[58], 能在短期内提高SOC含量, 但长期的地膜覆盖反而会增加土壤养分消耗和转化速率, 进而加剧土壤养分的消耗和SOC的矿化分解[59]. 地膜覆盖促进了土壤中有机物的分解和转化, 使DOC含量增加[60], 结果表明DOC和SOC含量呈显著正相关, 但覆膜时长与SOC呈显著负相关, 所以本研究认为地膜覆盖下DOC增加只是短期效应, 土壤微生物对DOC的需求较大, 随着覆膜时间增加, SOC含量下降, 土壤中DOC含量也将降低[61].

4 结论

(1)相比于地膜覆盖, 秸秆覆盖更有利于提高SOC以及活性碳组分含量. DOC响应比与SOC响应比呈显著正相关关系, MBC响应比与SOC响应比没有显著相关关系.

(2)在年均气温 > 10℃时, 秸秆覆盖下SOC和DOC相对变化率高于地膜覆盖. 秸秆覆盖显著提高了不同降雨量下SOC和DOC的相对变化率;降雨量 < 400 mm时, 秸秆和地膜覆盖下MBC相对变化率均高于降雨量 > 400 mm时的相对变化率.

(3)秸秆覆盖下增加施氮量有利于提高SOC和DOC相对变化率, 地膜覆盖下施氮量提高使DOC相对变化率显著降低;相比不轮作, 轮作能提高秸秆和地膜覆盖下SOC及活性碳组分相对变化率, 值得注意的是, 地膜覆盖下不轮作使SOC相对变化率显著下降. 地膜覆盖时长与SOC响应比呈显著负相关, 长期覆膜会造成更大的SOC损失.

参考文献
[1] 李怡燃, 王秀薪, 梁耀文, 等. 农田土壤团聚体有机碳对秸秆还田响应的Meta分析[J]. 中国生态农业学报(中英文), 2024, 32(1): 41-52.
Li Y R, Wang X X, Liang Y W, et al. Response of farmland soil aggregate-associated organic carbon to straw return: a meta-analysis[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 41-52.
[2] 黄巧义, 林碧珊, 饶国良, 等. 秸秆还田配施石灰对酸性水稻土有机碳及碳库管理指数的影响[J]. 环境科学, 2023, 44(10): 5813-5822.
Huang Q Y, Lin B S, Rao G L, et al. Effects of straw returning with lime on SOC and carbon pool management in acidic paddy soil[J]. Environmental Science, 2023, 44(10): 5813-5822.
[3] Blair G J, Lefroy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459-1466.
[4] Huang C X, Cheng C P, Wang Z Y, et al. Straw strip mulching increased soil organic carbon components of a wheat field in dry farming regions of the Loess Plateau[J]. Water, 2022, 14(17). DOI:10.3390/w14172645
[5] Tuo Y, Wang Z Y, Zheng Y, et al. Effect of water and fertilizer regulation on the soil microbial biomass carbon and nitrogen, enzyme activity, and saponin content of Panax notoginseng [J]. Agricultural Water Management, 2023, 278. DOI:10.1016/j.agwat.2023.108145
[6] Ren F L, Sun N, Xu M, et al. Changes in soil microbial biomass with manure application in cropping systems: A meta-analysis[J]. Soil and Tillage Research, 2019, 194. DOI:10.1016/j.still.2019.06.008
[7] Marschner B, Kalbitz K. Controls of bioavailability and biodegradability of dissolved organic matter in soils[J]. Geoderma, 2003, 113(3-4): 211-235.
[8] Li Q, Li H B, Zhang L, et al. Mulching improves yield and water-use efficiency of potato cropping in China: A meta-analysis[J]. Field Crops Research, 2018, 221: 50-60.
[9] Sharma P, Abrol V, Sharma R K. Impact of tillage and mulch management on economics, energy requirement and crop performance in maize–wheat rotation in rainfed subhumid inceptisols, India[J]. European Journal of Agronomy, 2011, 34(1): 46-51. DOI:10.1016/j.eja.2010.10.003
[10] 吴海梅, 周彦莉, 郑浩飞, 等. 秸秆带状覆盖对土壤有机碳及其活性组分的影响[J]. 干旱地区农业研究, 2022, 40(1): 61-69.
Wu H M, Zhou Y L, Zheng H F, et al. Effects of straw strip mulching on soil organic carbon and active carbon fractions[J]. Agricultural Research in the Arid Areas, 2022, 40(1): 61-69.
[11] Zhang F, Zhang W J, Li M, et al. Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change?[J]. Agricultural Systems, 2017, 150: 67-77.
[12] Yu Y X, Zhang Y X, Xiao M, et al. A meta-analysis of film mulching cultivation effects on soil organic carbon and soil greenhouse gas fluxes[J]. CATENA, 2021, 206. DOI:10.1016/j.catena.2021.105483
[13] Wall G W, Mclain J E T, Kimball B A, et al. Infrared warming affects intrarow soil carbon dioxide efflux during vegetative growth of spring wheat[J]. Agronomy Journal, 2013, 105(3): 607-618.
[14] 张成娥, 梁银丽, 贺秀斌. 地膜覆盖玉米对土壤微生物量的影响[J]. 生态学报, 2002, 22(4): 508-512.
Zhang C E, Liang Y L, He X B. Effects of plastic cover cultivation on soil microbial Biomass[J]. Acta Ecologica Sinica, 2002, 22(4): 508-512.
[15] 于树, 汪景宽, 高艳梅. 地膜覆盖及不同施肥处理对土壤微生物量碳和氮的影响[J]. 沈阳农业大学学报, 2006, 37(4): 602-606.
Yu S, Wang J K, Gao Y M. Effect of plastic mulching and different fertilization treatments on soil microbial biomass carbon and nitrogen[J]. Journal of Shenyang Agricultural University, 2006, 37(4): 602-606.
[16] Hu Q J, Thomas B W, Powlson D, et al. Soil organic carbon fractions in response to soil, environmental and agronomic factors under cover cropping systems: A global meta-analysis[J]. Agriculture, Ecosystems & Environment, 2023, 355. DOI:10.1016/j.agee.2023.108591
[17] 田康, 赵永存, 邢喆, 等. 中国保护性耕作农田土壤有机碳变化速率研究——基于长期试验点的Meta分析[J]. 土壤学报, 2013, 50(3): 433-440.
Tian K, Zhao Y C, Xing Z, et al. A meta-analysis of long-term experiment data for characterizing the topsoil organic carbon changes under different conservation tillage in cropland of China[J]. Acta Pedologica Sinica, 2013, 50(3): 433-440.
[18] 魏早强, 罗珠珠, 牛伊宁, 等. 土壤有机碳组分对土地利用方式响应的Meta分析[J]. 草业科学, 2022, 39(6): 1115-1128.
Wei Z Q, Luo Z Z, Niu Y N, et al. Meta-analysis of soil organic carbon fraction response to land uses[J]. Pratacultural Science, 2022, 39(6): 1115-1128.
[19] Romero-Olivares A L, Allison S D, Treseder K K. Soil microbes and their response to experimental warming over time: A meta-analysis of field studies[J]. Soil Biology and Biochemistry, 2017, 107: 32-40.
[20] Liu C, Lu M, Cui J, et al. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis[J]. Global Change Biology, 2014, 20(5): 1366-1381.
[21] Feng J G, Zhu B. A global meta-analysis of soil respiration and its components in response to phosphorus addition[J]. Soil Biology and Biochemistry, 2019, 135: 38-47.
[22] Gao H J, Chen X, Wei J L, et al. Decomposition dynamics and changes in chemical composition of wheat straw residue under anaerobic and aerobic conditions[J]. PLoS One, 2016, 11(7). DOI:10.1371/journal.pone.0158172
[23] Ahmed W, Qaswar M, Jing H, et al. Tillage practices improve rice yield and soil phosphorus fractions in two typical paddy soils[J]. Journal of Soils and Sediments, 2020, 20(2): 850-861.
[24] Li C H, Li Y, Xie J B, et al. Accumulation of organic carbon and its association with macro-aggregates during 100 years of oasis formation[J]. CATENA, 2019, 172: 770-780.
[25] Guo L J, Shi J, Lin W, et al. Soil bacteria mediate soil organic carbon sequestration under different tillage and straw management in rice-wheat cropping systems[J]. Agriculture, 2022, 12(10). DOI:10.3390/agriculture12101552
[26] Li F M, Song Q H, Jjemba P K, et al. Dynamics of soil microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid agro-ecosystem[J]. Soil Biology and Biochemistry, 2004, 36(11): 1893-1902.
[27] Plaza-Bonilla D, Álvaro-Fuentes J, Cantero-Martínez C. Identifying soil organic carbon fractions sensitive to agricultural management practices[J]. Soil and Tillage Research, 2014, 139: 19-22.
[28] Ma Z Z, Zhang X C, Zheng B Y, et al. Effects of plastic and straw mulching on soil microbial P limitations in maize fields: Dependency on soil organic carbon demonstrated by ecoenzymatic stoichiometry[J]. Geoderma, 2021, 388. DOI:10.1016/j.geoderma.2021.114928
[29] 宋秋华, 李凤民, 王俊, 等. 覆膜对春小麦农田微生物数量和土壤养分的影响[J]. 生态学报, 2002, 22(12): 2125-2132.
Song Q H, Li F M, Wang J, et al. Effect of various mulching durations with plastic film on soil microbial quantity and plant nutrients of spring wheat field in semi-arid Loess Plateau of China[J]. Acta Ecologica Sinica, 2002, 22(12): 2125-2132.
[30] Neff J C, Asner G P. Dissolved organic carbon in terrestrial ecosystems: Synthesis and a model[J]. Ecosystems, 2001, 4(1): 29-48.
[31] Nunan N, Morgan M A, Herlihy M. Ultraviolet absorbance (280nm) of compounds released from soil during chloroform fumigation as an estimate of the microbial biomass[J]. Soil Biology and Biochemistry, 1998, 30(12): 1599-1603.
[32] Dong Q G, Yang Y C, Yu K, et al. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China[J]. Agricultural Water Management, 2018, 201: 133-143.
[33] 邢文超, 王俊, 朱少青, 等. 长期秸秆和地膜覆盖对旱作冬小麦农田土壤碳组分的影响[J]. 干旱地区农业研究, 2023, 41(6): 107-115.
Xing W C, Wang J, Zhu S Q, et al. Effects of long-term straw and plastic film mulching on soil carbon fractions in dryland winter wheat farmland[J]. Agricultural Research in the Arid Areas, 2023, 41(6): 107-115.
[34] Tran C T K, Watts-Williams S J, Smernik R J, et al. Effects of plant roots and arbuscular mycorrhizas on soil phosphorus leaching[J]. Science of the Total Environment, 2020, 722. DOI:10.1016/j.scitotenv.2020.137847
[35] 梅沛沛, 余常兵, 吴言凤, 等. 稻秸还田方式对酸性和碱性土壤养分含量、微生物数量及油菜生长的影响[J]. 土壤通报, 2020, 51(2): 365-371.
Mei P P, Yu C B, Wu Y F, et al. Effects of rice straw returning on soil properties, microbial number and rape growth in acid and alkaline soils[J]. Chinese Journal of Soil Science, 2020, 51(2): 365-371.
[36] Stagnari F, Galieni A, Speca S, et al. Effects of straw mulch on growth and yield of durum wheat during transition to Conservation Agriculture in Mediterranean environment[J]. Field Crops Research, 2014, 167: 51-63.
[37] Cao Z X, Chen Z J, Gao J M, et al. Comparisons of soil organic carbon enrichment and loss in sediments among red soil, black soil, and loess in China[J]. SN Applied Sciences, 2022, 4(10). DOI:10.1007/s42452-022-05166-x
[38] Nie X D, Li Z W, Huang J Q, et al. Soil organic carbon loss and selective transportation under field simulated rainfall events[J]. PLoS One, 2014, 9(8). DOI:10.1371/journal.pone.0105927
[39] 吴瑶琴, 吴攀, 徐勤学, 等. 秸秆覆盖对喀斯特不同类型坡耕地降雨产流的影响[J]. 节水灌溉, 2023(6): 27-33.
Wu Y Q, Wu P, Xu Q X, et al. Effects of straw cover on rainfall runoff in different types of karst slope farmland[J]. Water Saving Irrigation, 2023(6): 27-33.
[40] 叶元生, 黄彩霞. 西北旱地秸秆覆盖对小麦产量及农田生态效应的影响[J]. 农业工程, 2020, 10(8): 106-113.
Ye Y S, Huang C X. Effects of straw mulching on wheat yield and farmland ecological effect in northwest dry land[J]. Agricultural Engineering, 2020, 10(8): 106-113.
[41] 郑文魁, 卢永健, 邓晓阳, 等. 控释氮肥对玉米秸秆腐解及潮土有机碳组分的影响[J]. 水土保持学报, 2020, 34(5): 292-298.
Zheng W K, Lu Y J, Deng X Y, et al. Effects of controlled-release nitrogen fertilizer on decomposition of maize straw and organic carbon fractions in fluvo-aquic soil[J]. Journal of Soil and Water Conservation, 2020, 34(5): 292-298.
[42] Ullah S, Ai C, Huang S H, et al. The responses of extracellular enzyme activities and microbial community composition under nitrogen addition in an upland soil[J]. PLoS One, 2019, 14(9). DOI:10.1371/journal.pone.0223026
[43] Akhtar K, Wang W Y, Ren G X, et al. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China[J]. Soil and Tillage Research, 2018, 182: 94-102.
[44] Bastida F, Kandeler E, Hernández T, et al. Long-term effect of municipal solid waste amendment on microbial abundance and humus-associated enzyme activities under semiarid conditions[J]. Microbial Ecology, 2008, 55(4): 651-661.
[45] Zhao X, Virk A L, Ma S T, et al. Dynamics in soil organic carbon of wheat-maize dominant cropping system in the North China Plain under tillage and residue management[J]. Journal of Environmental Management, 2020, 265. DOI:10.1016/j.jenvman.2020.110549
[46] Jin X X, An T T, Gall A R, et al. Long-term plastic film mulching and fertilization treatments changed the annual distribution of residual maize straw C in soil aggregates under field conditions: characterization by 13C tracing[J]. Journal of Soils and Sediments, 2018, 18(1): 169-178.
[47] Wang Y Q, Guo T J, Qi L R, et al. Meta-analysis of ridge-furrow cultivation effects on maize production and water use efficiency[J]. Agricultural Water Management, 2020, 234. DOI:10.1016/j.agwat.2020.106144
[48] Huang Y, Liu Q, Jia W Q, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment[J]. Environmental Pollution, 2020, 260. DOI:10.1016/j.envpol.2020.114096
[49] 刘欣宇, 卢江, 孟璇, 等. 不同施肥措施下长江经济带地区农田土壤有机碳含量的变化分析[J]. 环境科学, 2023, 44(8): 4647-4654.
Liu X Y, Lu J, Meng X, et al. Analysis on change in soil organic carbon content of farmland in Yangtze river economic belt under different fertilizing measures[J]. Environmental Science, 2023, 44(8): 4647-4654.
[50] Chen Q Y, Liu Z J, Zhou J B, et al. Long-term straw mulching with nitrogen fertilization increases nutrient and microbial determinants of soil quality in a maize-wheat rotation on China's Loess Plateau[J]. Science of the Total Environment, 2021, 775. DOI:10.1016/j.scitotenv.2021.145930
[51] 鲁泽让, 李永梅, 杨春怀, 等. 连续周年轮作休耕对土壤团聚体稳定性及有机碳的影响[J]. 环境科学, 2024, 45(3): 1644-1654.
Lu Z R, Li Y M, Yang C H, et al. Effects of continuous annual crop rotation and fallow on soil aggregate stability and organic carbon[J]. Environmental Science, 2024, 45(3): 1644-1654.
[52] 杨滨娟, 李新梅, 胡启良, 等. 不同轮作休耕模式对稻田土壤有机碳及其组分的影响[J]. 华中农业大学学报, 2022, 41(6): 51-58.
Yang B J, Li X M, Hu Q L, et al. Effects of rotation and fallow patterns on organic carbon and its components in soil of paddy fields[J]. Journal of Huazhong Agricultural University, 2022, 41(6): 51-58.
[53] Hall S J, Russell A E, Moore A R. Do corn-soybean rotations enhance decomposition of soil organic matter?[J]. Plant and Soil, 2019, 444(1-2): 427-442.
[54] King A E, Blesh J. Crop rotations for increased soil carbon: perenniality as a guiding principle[J]. Ecological Applications, 2018, 28(1): 249-261.
[55] Mo F, Yu K L, Crowther T W, et al. How plastic mulching affects net primary productivity, soil C fluxes and organic carbon balance in dry agroecosystems in China[J]. Journal of Cleaner Production, 2020, 263. DOI:10.1016/j.jclepro.2020.121470
[56] 陈帅, 陈强, 孙涛, 等. 黑土坡耕地秸秆覆盖对表层土壤结构和导气性的影响[J]. 水土保持通报, 2016, 36(1): 17-21.
Chen S, Chen Q, Sun T, et al. Effects of straw mulching on topsoil structure and air permeability in black soil sloping farmland[J]. Bulletin of Soil and Water Conservation, 2016, 36(1): 17-21.
[57] 岳良. 覆盖栽培对渭北旱塬春玉米土壤水分、养分与酶活性的影响[D]. 杨凌: 西北农林科技大学, 2021.
Yue L. Effects of spring maize mulching cultivationon soil moisture, nutrients and enzyme activities in Weibei Dryland[D]. Yangling: Northwest A & F University, 2021.
[58] 刘秀, 司鹏飞, 张哲, 等. 地膜覆盖对北方旱地土壤水稳性团聚体及有机碳分布的影响[J]. 生态学报, 2018, 38(21): 7870-7877.
Liu X, Si P F, Zhang Z, et al. Effects of film mulching on soil aggregations and organic carbon contents in northern dryland regions[J]. Acta Ecologica Sinica, 2018, 38(21): 7870-7877.
[59] 王琳, 李玲玲, 高立峰, 等. 长期保护性耕作对黄绵土总有机碳和易氧化有机碳动态的影响[J]. 中国生态农业学报, 2013, 21(9): 1057-1063.
Wang L, Li L L, Gao L F, et al. Effect of long-term conservation tillage on total organic carbon and readily oxidizable organic carbon in loess soils[J]. Chinese Journal of Eco-Agriculture, 2013, 21(9): 1057-1063.
[60] 司鹏飞. 秋季覆膜对北方旱地土壤有机碳变化及影响机制的研究[D]. 沈阳: 沈阳农业大学, 2019.
Si P F. Effects of autumn plastic film mulching on soil organic carbon and its influence mechanism in dryland of Northern China[D]. Shengyang: Shenyang Agricultural University, 2019.
[61] 黄靖宇, 宋长春, 张金波, 等. 凋落物输入对三江平原弃耕农田土壤基础呼吸和活性碳组分的影响[J]. 生态学报, 2008, 28(7): 3417-3424.
Huang J Y, Song C C, Zhang J B, et al. Influence of litter importation on basal respiration and labile carbon in restored farmland in Sanjiang Plain[J]. Acta Ecologica Sinica, 2008, 28(7): 3417-3424.