2. 河南省地质局地质灾害防治中心, 郑州 450000
2. Prevention and Control Center for the Geological Disaster of Henan Geological Bureau, Zhengzhou 450000, China
近年来, 由于冶矿活动、垃圾处理、燃料燃烧、工业废水和农田污染排放等导致我国农田土壤重金属污染问题日益严峻, 其中镉(Cd)污染尤为严重[1]. 2014年《全国土壤污染调查公报》数据表明, Cd在全国土壤点位超标率最高, 高达7.0%, 在无机污染物中位居首位[2]. 土壤Cd污染严重改变了土壤理化性质、生态环境质量和土壤肥力, 影响农作物产量与品质, 对我国粮食安全和农业绿色可持续发展造成严重威胁[3]. Cd是植物体非必需元素, 植物体内Cd不断累积会阻碍养分吸收并造成水分失衡, 抑制植物光合作用和呼吸作用, 干扰能量供应和代谢过程, 继而影响植物正常生长发育[4]. 高含量Cd还可破坏植物体内活性氧(ROS)稳态, 造成细胞结构损伤, 导致膜脂质过氧化, 严重时造成植物死亡[5]. 此外, 土壤Cd毒性高、迁移性强, 极易通过食物链传递进入人体, 诱发各种疾病, 对人类生命健康产生威胁[6, 7].
除重金属Cd污染外, 近年来塑料、农用薄膜、合成纺织品等大量不合理使用对环境同样产生了严重的污染问题. 自然环境中不同种类、大小不一的塑料碎片在紫外线氧化作用下逐渐转化为微米和纳米级塑料颗粒[8], 其中粒径小于5 mm的塑料碎片称为微塑料(microplastics, MPs)[9]. 当前, MPs已在土壤中大量积累. 已有调查表明, 云南省高原耕地MPs平均丰度高达9.8 × 103个·kg-1[10];长江下游农田MPs平均丰度为37.32个·kg-1[11];在渤海和黄海海滩土壤中MPs丰度在1.3~14 712.5个·kg-1[12]. MPs中含有高浓度邻苯二甲酸酯(PAE)、溴化阻燃剂(BFR)等多种添加剂[13], 进入农田土壤中容易被作物吸收继而对农业生态系统以及人体健康产生严重威胁. 累积在土壤中的MPs易吸附携带有害污染物并改变土壤理化性质, 影响土壤酶活性和微生物群落生长, 对植物体生长发育造成不利影响[14, 15]. 有研究表明, 外源添加高浓度MPs对植株叶片生物量、叶绿素含量以及光合作用具有显著抑制效应[16]. Wang等[17]研究认为, 10%聚乳酸MPs显著降低了玉米叶片生物量和叶绿素含量. 另有研究发现MPs有效抑制植物根长, 破坏植物体内抗氧化酶系统平衡[18]. 目前, MPs作为一种新型污染物已备受关注, 土壤MPs污染已成为未来环境风险防控的重要目标. 因此, 深入研究并系统评估MPs对农业生态系统影响和人类健康风险对有效规划制定MPs安全防控策略意义重大.
事实上, 重金属Cd与MPs广泛存在于土壤环境中, 二者在土壤环境中共同暴露已不可避免[19, 20]. Cd和MPs在生态环境中联合效应已逐渐引起国内外学者关注和重视. 有研究表明, MPs可吸附重金属Cd并作为载体将其转移到生物体内, 增加其毒害抑制效应[21]. 此外, MPs比表面积大, 疏水性强, 容易吸附重金属Cd形成络合物, 从而增加Cd的溶解度, 增大被植物吸收的可能性[22]. 吴萍等[23]指出, Cd与聚乙烯MPs联合处理显著降低了少花龙葵生物量, 且提高了植物体内Cd含量, 对植物产生了毒害作用. Cd-MPs组合(聚苯乙烯、聚对苯二甲酸类塑料)对水稻种子萌发的抑制效应显著高于单一重金属Cd和MPs[24]. 然而, 另有研究表明, 聚乙烯MPs可减少绿豆幼苗对土壤Cd吸收, 对植株株高具有一定的促进作用[25];Wang等[26]指出聚对苯二甲酸-己二酸丁二醇酯微塑料(PBAT-MPs)和聚乳酸微塑料(PLA-MPs)降低了芥菜地上部和根部的Cd含量. 综合分析, 目前国内外对Cd与MPs交互作用研究主要集中在模拟溶液环境中[27], 而有关MPs进入土壤后如何影响土壤-植株理化性质以及两者复合胁迫效应的报道仍相对较少, 结论不尽一致[28].
小麦作为我国及全球最重要的粮食作物, 具有适应性强、产量高、营养价值丰富、用途广泛等特点. 有研究表明, 小麦对Cd和MPs响应均较敏感, 不仅可有效吸收土壤Cd和MPs, 同时将其运输、积累和分布到不同部位中[19, 29]. 而在实际种植条件下, 小麦在受到Cd污染同时, 也会受到MPs毒害作用. 基于此, 本文以冬小麦为研究对象, 选用聚丙烯微塑料(polypropylene microplastics, PP-MPs)联合重金属Cd污染物, 深入研究二者单一或复合污染下土壤理化性质变化及其对小麦生理生态的影响, 旨在为揭示重金属Cd和MPs污染对土壤-植株系统生理生态影响及污染治理提供数据参考和技术支撑.
1 材料与方法 1.1 材料与土壤供试小麦品种为“郑麦336”, 属高产、优质、多抗、广适的半冬性小麦品种. 本试验所用两种粒径(10 μm和500 μm)聚丙烯微塑料(PP-MPs)均购自于东莞市中联塑化科技有限公司. 10 μm PP-MPs呈不规则条状分布, 边缘凹凸不平, 表面分布较多薄片层;500 μm PP-MPs则为不规则球状颗粒, 表面布满球形突起, 微观结构下表面呈多孔状且纹路清晰(图 1). 供试土壤为砂质潮土, 采自河南农业大学原阳科教园区试验基地(0~20 cm). 土壤pH为7.58, ω(有机质)为18.6 g·kg-1, ω(碱解氮)为85.3 mg·kg-1, ω(速效磷)为19.2 mg·kg-1, ω(速效钾)为115.8 mg·kg-1, ω(Cd)为0.217 mg·kg-1和ω(有效态Cd)为0.051 mg·kg-1.
![]() |
(a)表示10 μm PP-MPs的整体形貌, (b)表示10 μm PP-MPs的细节形貌, (c)表示500 μm PP-MPs的整体形貌, (d)表示500 μm PP-MPs的细节形貌 图 1 10 μm和500 μmPP-MPs扫描电镜图 Fig. 1 SEM images of 10 μm and 500 μm PP-MPs |
土壤盆栽试验于2023年3~7月在河南省郑州市河南农业大学光照培养室进行. 昼夜温度均保持为20 ℃, 16 h/8 h(光/暗), 相对湿度为55%~65%. 试验包括两个变量:Cd含量和PP-MPs质量分数(10 μm和500 μm). ω(Cd)设0 mg·kg–1和5 mg·kg-1两个梯度, PP-MPs质量分数设4个梯度, 分别为0、0.5%、1.0%和5.0%. 本试验共计7个处理, 分别为Cd0+PP0(CK)、Cd0+PP0.5、Cd0+PP1.0、Cd0+PP5.0、Cd5.0+PP0.5、Cd5.0+PP1.0和Cd5.0+PP5.0, 每个处理5个重复, 共计35盆(图 2).
![]() |
图 2 不同质量分数PP-MPs和Cd胁迫对冬小麦生长发育的影响 Fig. 2 Effects of different mass fractions of PP-MPs and Cd stress on the growth and development of winter wheat |
土壤去除杂质后风干、磨碎过2 mm筛网. 选取籽粒饱满且大小均一的冬小麦种子, 质量分数为15%的H2O2浸泡15 min, 去离子水清洗. 在土壤中加入2种粒径、不同处理组PP-MPs和CdCl2·2.5H2O(分析纯), 混合均匀后分装入花盆(高12.3 cm, 底直径10.3 cm, 上口直径14.7 cm), 每盆土壤质量为1.0 kg. 将添加不同暴露量污染物的土壤加水润湿平衡静置一周后将小麦种子均匀播种于盆中(每盆4粒). 每天浇水至最大持水量60%以保持土壤湿度, 每隔7 d随机改变花盆位置以减小误差. 继续培养并分别于出苗后60 d和90 d时采集分析土壤和植株样品, 分析其理化特性及生长发育状况.
1.3 植物指标测定 1.3.1 生长指标分别于冬小麦播种后60 d和90 d, 采用直尺(精确到0.1 cm)测量小麦株高;采用数码相机拍照获得叶片的数字图像, 使用Photoshop图像处理软件计算叶面积[30];烘干称重法测试小麦根和地上部干重.
1.3.2 光合参数和叶绿素含量分别于上述生育期, 采用Li-6 400型便携式光合仪(LI-COR, USA)于1 200 μmol·(m2·s)-1光强下测定其第一片完全展开叶净光合速率(photosynthetic rate, Pn)、气孔导度(stomatal conductance, Gs)、胞间CO2浓度(intercellular CO2 concentration, Ci)和蒸腾速率(transpiration rate, Tr)[31]. 此后, 选取各处理代表性冬小麦叶片, 采用无水乙醇浸提、紫外分光光度计法测定叶片叶绿素a(Chla)、叶绿素b(Chlb)、总叶绿素(Chla+b)和类胡萝卜素(Car)含量[32, 33].
1.3.3 热成像评估于上述各生育时期采用Fluke TiX650型红外热成像仪测试各处理下小麦植株冠层温度. 该仪器空间分辨率为0.87 mrad. 于09:00~11:00将热成像仪固定在冬小麦植株前方, 45°观察角俯视拍摄. 每个重复拍摄4张照片, 采用SmartView专业软件对冬小麦冠层温度进行计算分析.
1.3.4 解剖学分析于各生育期选取冬小麦第一片完全展开叶, 在距离主叶脉0.5 cm左右处剪取1 cm×3 cm大小叶片, 固定包埋后制成叶片横切片, 甲苯胺蓝染色, 在OLYMPUS BH2型植物显微成像分析系统选取5个视野清晰的位置拍摄, 拍摄倍数为200倍. 利用Image-Pro Plus 6.0专业图像分析软件测量叶片厚度解剖指标, 分析探究Cd和PP-MPs胁迫对冬小麦叶片解剖结构影响效应.
1.3.5 抗氧化酶活性于上述各生育期采集冬小麦完全展开叶叶片. 分别采用碘量法测试CAT(catalase)、氮蓝四唑光还原法测定SOD(superoxide dismutase)和愈创木酚法测定POD(peroxidase)的活性 [34, 35].
1.4 土壤分析 1.4.1 土壤理化性质于上述生育期采集各处理土壤样品, 风干后过20目和100目筛. 分别用重铬酸钾-外加热法测定土壤有机质(soil organic matter, SOM), 碱解扩散法测定土壤碱解氮(alkali-hydrolyzable nitrogen, AHN), NaHCO3浸提-钼蓝比色法测定土壤速效磷(available phosphorous, AP), NH4OAc浸提-火焰光度法测定土壤速效钾(available kalium, AK)[36].
1.4.2 土壤酶活性于上述各时期在育苗盆中部采集新鲜土壤测定土壤酶活性. 分别采用靛酚酸比色法测定土壤脲酶(soil urease, S-URE)活性, 对硝基苯酚法测定土壤酸性磷酸酶(soil acid phosphatase, S-ACP)活性, 2, 3, 5-三苯基四唑氯(TTC)法测定土壤脱氢酶(soil dehydrogenase, S-DHA)活性[37~39].
1.5 统计分析为进一步探究Cd和PP-MPs复合胁迫下冬小麦各生长发育指标(株高、叶面积、地上部干重、地下部干重和总干重, 因变量Y)以及相应植株与土壤理化性质(自变量X, 共计20个指标)间定量关系, 明晰影响Cd和PP-MPs胁迫下表型指标变化的关键因子. 采用可有效解决自变量间具有多重共线性问题的偏最小二乘(partial least square, PLS)回归模型深入分析两者(X与Y)间关系. PLS模型集典型相关分析、多元线性回归分析和主成分分析为一体, 不仅可有效降低因子分析维度, 同时又可从多维自变量中寻求影响因变量的关键主控因子, 构建高鲁棒性分析模型[40]. PLS模型监测精度采用实测值与预测值间决定系数(coefficient of determination, R2)、均方根误差(root mean square error, RMSE)和相对分析误差(relative percent deviation, RPD)来表征. R2和RPD值越高, RMSE值越低, 表明模型精准度和稳定性越强. 关键指标选择采用PLS模型中的无量纲评价指标变量重要性投影值(variable importance for projection, VIP)来确定. VIP值可以快速、直观和定量地反映出各自变量在预测因变量时的重要程度, 其临界值为1.0, 值越高, 表明该因子敏感度和影响力则越强[41].
基础数据输入与分析采用Excel 2007进行;双因素方差分析采用SPSS 20.0软件;PLS模型构建与关键因子确定采用Matlab R2012a软件进行;采用Origin 2019软件作图.
2 结果与分析 2.1 植株生长冬小麦株高、叶面积、地上和地下部干重等生长发育指标受Cd和PP-MPs复合污染影响效应如表 1所示. 整体而言, 随Cd含量和PP-MPs质量分数增加, 冬小麦上述生长发育指标均呈下降趋势变化, 且处理间Cd与10 μm小粒径PP-MPs复合污染胁迫效应显著高于500 μm大粒径PP-MPs. 双因素方差分析结果显示, 对于10 μm小粒径PP-MPs, Cd和PP-MPs单一污染对其株高、叶面积和根干重影响效应均达极显著水平(P<0.01), 两者复合污染下(Cd×PP-MPs)叶面积和叶干重达显著水平(P<0.05), 株高和根干重则不显著(NS). 大粒径500 μm两者交互效应除根干重达显著性水平外(P<0.05), 其余均不显著.
![]() |
表 1 Cd与PP-MPs复合污染对小麦生长指标的影响1) Table 1 Effects of plant growth indicators of wheat under combined contamination of Cd and PP-MPs |
2.2 植株光合参数和叶绿素含量
各时期冬小麦叶片光合特性(表 2)和叶绿素含量(图 3)受Cd和PP-MPs影响显著. Cd0处理下, 与PP-MPs0相比, 0.5%、1.0%和5.0% PP-MPs时小麦Pn分别下降15.3%、11.0%、37.6%(10 μm)和6.7%、9.0%和16.8%(500 μm);Tr降幅则分别为10.3%、25.9%、63.8%(10 μm)和10.7%、8.9%和8.9%(500 μm). 与Cd0相比, Cd5.0处理下随PP-MPs质量分数升高, 小麦叶片Pn、Ci、Tr和Gs光合指标则进一步下降且两者复合污染抑制效应明显加剧. 小麦叶片光合色素含量(Chla、Chlb、Chla+b和Car)变化趋势与光合效应相一致, 即分别于Cd0和Cd5.0污染条件下, 随PP-MPs质量分数增加, 光合色素含量逐步降低, 且10 μm PP-MPs复合污染效应显著强于500 μm PP-MPs.
![]() |
表 2 Cd与PP-MPs复合污染对小麦叶片光合特性的影响 Table 2 Effects of leaf photosynthetic characteristics of wheat under combined contamination of Cd and PP-MPs |
![]() |
图 3 Cd与PP-MPs复合污染对小麦叶片叶绿素含量的影响 Fig. 3 Effects of leaf chlorophyll content of wheat under combined contamination of Cd and PP-MPs |
ANOVA结果表明, Cd对小麦光合指标影响均达显著性水平(P<0.05), 10 μm小粒径PP-MPs影响效应与Cd相一致, 但大粒径(500 μm)则不显著, Cd×PP-MPs则均未达显著性水平. 此外, Cd与PP-MPs对小麦叶片叶绿素含量影响效应变化趋势与光合速率等指标均相一致, 表明不同Cd含量污染下, PP-MPs可进一步抑制小麦光合进程, 降低叶绿素含量, 且小粒径(10 μm)抑制效应明显强于大粒径(500 μm)PP-MPs.
2.3 冬小麦植株温度变化冬小麦植株冠层温度在Cd和PP-MPs复合污染条件下均有变化(图 4和表 3). Cd0处理下, 随PP-MPs质量分数增加(0~5.0%), 10 μm粒径时小麦植株冠层平均温度分别为24.50、24.43、24.06和24.03℃;500 μm时则分别为24.50、23.85、23.82和23.84℃, 均呈下降趋势变化, 但大粒径PP-MPs处理间温度差异(0.68℃)高于小粒径(0.47℃). Cd5.0处理下两种粒径PP-MPs小麦冠层温度均进一步下降, 即抑制效应逐渐增强. 与Cd0 PP-MPs0相比, Cd5.0 PP-MPs5.0冠层温度分别降低0.1℃(10 μm)和0.59℃(500 μm). ANOVA结果显示, 10 μm时Cd, PP-MPs及Cd×PP-MPs对植株冠层温度影响均达99%显著性水平(P<0.01), 500 μm时两者交互60 d和90 d分别达极显著(P<0.01)和显著性(P<0.05)水平.
![]() |
暖色(红色,黄色)代表温度高,冷色(紫色)调代表温度低,温度/°C 图 4 Cd与PP-MPs复合污染下小麦植株冠层温度影响效应 Fig. 4 Effects of canopy temperature of wheat under combined contamination of Cd and PP-MPs |
![]() |
表 3 Cd与PP-MPs复合污染对冬小麦植株冠层温度特征影响/℃ Table 3 Effects of canopy temperature characteristics of wheat under combined contamination of Cd and PP-MPs/℃ |
2.4 植物解剖学特征
Cd联合PP-MPs污染条件下, 随PP-MPs质量分数增加, 小粒径(10 μm)时小麦叶片厚度呈逐渐降低趋势(表 4). 60 d和90 d时叶片厚度由Cd0 PP-MPs0的167.9 μm和162.6 μm分别降至Cd5.0 PP-MPs5.0的146.2 μm和126.7 μm. 60 d时Cd, PP-MPs及两者交互作用对叶片厚度影响程度分别为不显著(NS)、极显著(P<0.05)和不显著(NS), 90 d时则分别为显著(P<0.05)、极显著(P<0.01)和不显著(NS). 大粒径(500 μm)时处理间小麦叶片厚度变化趋势则相对较弱, 60 d时双因素影响效应均不显著(NS), 90 d时则分别为显著(P<0.05)、不显著(NS)和极显著(P<0.01).
![]() |
表 4 Cd与PP-MPs复合污染对冬小麦叶片厚度影响/μm Table 4 Effects of leaf thickness of wheat under combined contamination of Cd and PP-MPs/μm |
2.5 植物抗氧化酶活性
植物体内抗氧化酶活性大小是反映植物对逆境适应性的重要指标. 如图 5所示, 与对照(Cd0 PP-MPs0)相比, 随Cd含量和PP-MPs质量分数增加, 冬小麦SOD、POD和CAT活性均呈显著升高趋势变化. 无论10 μm亦或500 μm PP-MPs, 60 d和90 d时Cd、PP-MPs及两者间交互效应对其SOD、POD和CAT活性影响均达极显著水平(P<0.01), 效果较为明显. 该结果表明Cd和PP-MPs复合污染胁迫可有效激活冬小麦植株体内抗氧化酶活性, 增强其抗氧化应答能力.
![]() |
图 5 Cd与PP-MPs复合污染对小麦叶片酶活性的影响 Fig. 5 Effects of leaf enzyme activity of wheat under combined contamination of Cd and PP-MPs |
有机质、碱解氮、速效磷和速效钾是表征土壤肥力特性的重要指标. 外源Cd和PP-MPs对上述土壤理化指标影响明显(表 5). Cd0水平下, 随PP-MPs(10 μm和500 μm)质量分数增加, 供试土壤有机质、碱解氮、速效磷和速效钾均呈升高趋势, 且PP-MPs1.0和PP-MPs5.0间无显著差异. Cd5.0处理时PP-MPs质量分数由0~0.5%时土壤理化指标呈升高变化, 至1.0%时则无明显差异. ANOVA结果表明, 两种PP-MPs尺度下Cd对土壤有机质影响均显著(P<0.05), PP-MPs仅在小尺度(10 μm)下对有机质(P<0.01)和速效磷(P<0.01)影响达显著性水平, 两者交互则均未达显著性水平.
![]() |
表 5 Cd与PP-MPs复合污染对小麦土壤养分状况的影响 Table 5 Effects of soil fertility status of wheat under combined contamination of Cd and PP-MPs |
2.7 土壤酶活性
图 6结果表明, 土壤脲酶、酸性磷酸酶和脱氢酶活性对两种粒径单一PP-MPs处理以及PP-MPs和Cd复合胁迫的响应均达到显著水平, 且均随PP-MPs质量分数增加呈上升趋势. 随Cd含量升高, 与PP-MPs0相比, 10 μm尺寸中高质量分数PP-MPs显著抑制土壤脲酶和脱氢酶活性, 促进酸性磷酸酶活性. 10 μm尺寸PP-MPs与Cd复合胁迫污染下相比于同等质量分数单一PP-MPs处理, 中、低质量分数则抑制了酸性磷酸酶活性, 高质量分数促进酸性磷酸酶;中、高质量分数显著促进土壤脱氢酶活性, 缓解了Cd的毒害作用.
![]() |
图 6 Cd与PP-MPs复合污染对小麦土壤酶活性的影响 Fig. 6 Effects of soil enzyme activity of wheat under combined contamination of Cd and PP-MPs |
在明确不同Cd和PP-MPs复合胁迫污染程度下冬小麦各生育期生长发育、理化特性及光温变化指标变化规律之后, 综合各生育期数据, 利用PLS模型对生育期上述各指标与冬小麦生长指标(株高、叶面积、叶干重、根干重和总干重)间关系进行整体回归分析, 确定监测模型精准度与鲁棒性(表 6). 结果表明, 小粒径10 μm PP-MPs生育期间冬小麦植株各理化指标与上述生长指标间具有较好的拟合关系. 决定系数(R2)均大于0.78, 相对分析误差(RPD)均高于2.0, PLS模型精准度和稳定性均较高. 大粒径PP-MPs模型精度则相对较差, 株高R2仅为0.149, 最高为总干重, R2=0.796, 各指标RPD均在2.0以下, 主要与大粒径PP-MPs对小麦胁迫效应较弱所致. 综上, 本文所采用基于PLS定量分析模型来深入阐释冬小麦不同理化指标与生长发育指标间回归关系, 揭示指示Cd与PP-MPs复合污染关键敏感因子具有较高的可行性.
![]() |
表 6 基于PLS模型的冬小麦生长指标精度分析 Table 6 Accuracy of a PLS model describing the relationship between the indicators and plant growth indicators of winter wheat |
2.8.2 主控因素识别
为进一步确定影响冬小麦生长效应的主控因子, 采用PLS模型的变量重要性投影值(VIP)分析方法, 定量计算了冬小麦20个理化指标对其株高、叶面积、地上部干重、地下部干重以及植株总干重的影响力VIP值(图 7). VIP临界阈值通常为1.0, 其值越大, 则表明该指标在预测因变量变化时的影响力越强, 紧密度越高. 基于此, Cd与PP-MPs复合污染胁迫下, 确定10 μm小粒径PP-MPs影响冬小麦基础生长指标变化响应的最敏感因子为土壤酸性磷酸酶, 土壤脲酶和CAT次之;500 μm大粒径PP-MPs关键影响因子为土壤速效磷含量, 叶片POD活性次之.
![]() |
1.Chla,2.Chlb,3.Chla+b,4.Car,5.Pn,6.Gs,7.Ci,8.Tr,9.平均温度,10.叶厚度,11.SOD,12.POD,13.CAT,14.脲酶,15.酸性磷酸酶,16.脱氢酶,17.ω(有机质),18.ω(速效磷),19.ω(碱解氮),20.ω(速效钾) 图 7 Cd与PP-MPs复合污染下基于PLS模型的冬小麦生长指标关键因子确定 Fig. 7 Major controlling factors of identification based on the PLS model for plant growth indicators of winter wheat |
小麦作为土壤生态系统关键组分和重要粮食作物, 其生长过程中不可避免受到土壤环境影响. 深入研究重金属Cd和PP-MPs复合污染条件下土壤及植株生态毒理学影响效应与机制, 对构建高效可防可控的农田污染治理技术体系意义重大. 本文利用小麦土壤盆栽试验, 通过Cd与2种粒径PP-MPs(10 μm和500 μm)添加, 考察其单一及复合毒性影响. 结果表明, 冬小麦株高、叶面积、生物量等生长发育指标及光合、叶绿素含量等均受Cd与PP-MPs影响显著, 且10 μm小粒径PP-MPs污染抑制效应明显强于500 μm大粒径(表 1、表 2和图 3). 双因素分析表明, Cd与PP-MPs对小麦抑制作用呈协同效应. Wang等[42]研究表明, 暴露于高浓度的MPs和Cd会导致芥菜生理和代谢组学发生改变, 生物量和光合作用参数降低. 这在本研究中也得到证实, 随Cd与PP-MPs暴露量增加, 小麦生长发育指标、光合效率和叶绿素含量均呈下降趋势. 有研究表明, 土壤中MPs极易与重金属Cd产生络合作用, 加剧土壤中重金属富集和毒害作用[43]. 此外, Cd和MPs进入植物体后, 会破坏细胞膜结构与功能, 抑制根系及植物体生长[44, 45]. 与小粒径MPs相比, 大粒径MPs难以进入植物体内则容易积聚在植物根系表面堵塞根系毛孔, 造成根系磨损, 继而阻止水分和营养物质吸收影响植物正常生长发育和光合进程[45, 46]. Meng等[47]研究认为, 小粒径聚苯乙烯MPs能进入蚕豆根系细胞, 通过阻塞细胞连接以及细胞壁孔间的营养物质传输, 降低蚕豆根系生物量和植株生长. 本研究中, 小粒径PP-MPs对小麦根系抑制作用明显, 地下部生物量显著降低了25%~84%. Colzi等[48]和Ren等[49]试验表明, MPs可显著降低葫芦和大白菜光合色素含量和光合效率, 抑制植物生长. 在营养运输与传导方面, MPs络合重金属后可吸附氮磷钾等离子导致植物离子体失衡, 阻碍光传输, 抑制光能吸收、Rubisco酶羧化反应和叶片内CO2扩散等光合过程, 降低植物色素含量和光合速率[50 ~ 52].
作物冠层温度和叶片解剖特性与其光合效能、色素含量等密切相关[53, 54]. 有研究认为, 当作物受到胁迫时会诱导自身调节蒸腾速率, 增强叶片蒸腾散水能力, 提高营养物质运输效率, 去除光合作用期间未转化完全的光所耗散的热能, 继而降低植物冠层温度[55]. 本研究中, 小麦群体对Cd及PP-MPs胁迫响应明显, 随污染程度增加, 其冠层温度升高(表 3), 叶片厚度降低(表 4). 当植物受到重金属和MPs胁迫时, 叶片气孔调节能力和水通道蛋白活性受到抑制, 木质部水力传导率降低. 植物体则通过自身调节根和叶形态和大小来适应外界变化, 以平衡水分吸收和蒸腾作用[56], 这也是本研究中叶片厚度降低和温度升高的原因所在. 郭冰林等[51]研究发现, 随PS-MPs胁迫增加, 小白菜叶片厚度呈先升高后下降趋势, 冠层温度呈先下降后升高的趋势, 这与本研究的结论不一致, 可能是因为不同粒径、浓度的微塑料所产生的效应不同所导致. 此外, SOD、POD和CAT是生物适应和抵抗逆境胁迫的重要酶, 也是清除活性氧的关键酶, 被称为抗氧化酶[57]. 有研究表明, 重金属Cd和MPs均会导致植物产生超氧化物(O2-)、过氧化氢(H2O2)或羟基自由基(HO·)等过量活性氧(ROS), 导致脂质过氧化损伤[58, 59]. 此外, Cd和MPs胁迫会造成作物叶肉细胞结构损伤, 损坏膜系统, 抑制体内谷胱甘肽生物合成, 导致O2-和H2O2等过量产生, 提高体内SOD、POD和CAT等抗氧化酶活性[60, 61]. 抗氧化酶活性增加可将植物体内过多的活性氧自由基转化为低毒害或无害物质, 平衡活性氧含量, 激活作物自身保护机制[62]. 本试验中, 冬小麦SOD、POD和CAT活性均随Cd和PP-MPs胁迫程度增加呈显著升高趋势变化, 且两者间交互效应对其抗氧化酶活性影响均达极显著水平(P<0.01, 图 5). 本研究与Lou等[63]和宗海英等[64]试验的结论相一致, 即Cd和MPs胁迫可显著增强高羊茅和花生体内抗氧化酶活性, 以保护植物免受重金属和MPs诱导的氧化损伤.
土壤理化性质变化对植物生长和生理活动均有重要影响, 研究土壤理化性质变化极其关键. 本试验表明, PP-MPs胁迫后略微增加了土壤有机质、碱解氮、速效磷和速效钾等养分含量(表 5). 这与Yu等[65]研究的结论相一致, 即MPs可增加土壤可溶性有机质养分含量. 梁榕等[66]指出, MPs主要成分中含碳, 且能通过生物和非生物过程与土壤矿物质或有机化合物结合, 将一些含碳化合物固定在土壤团聚体中, 从而增加土壤含碳量, 提高土壤有机质含量. 此外, MPs进入土壤后增加了土壤团聚体比表面积, 从而提高土壤对氮磷钾的吸附容量. 加之Cd和MPs胁迫抑制了植物养分吸收利用能力, 也可造成土壤残留养分量增加. Ya等[67]研究发现, 高质量分数MPs能够改变土壤空隙结构和团聚体, 影响土壤反硝化作用, 同时促进固氮细菌生长来增加土壤氮含量. 另有研究表明, 一定量Cd和MPs复合污染会对土壤理化性状产生不利影响, 降低土壤养分含量[68], 这与本试验的结论不尽一致, 具体机制仍有待深入研究. 作为土壤微生物群落中的重要成分, 土壤酶在催化土壤物质循环和能量流动方面发挥着重要作用. 重金属和MPs加入土壤会影响土壤反硝化作用、固氮细菌生长和土壤有效磷酸盐含量, 提高土壤氮储量和循环效率, 继而影响土壤脲酶活性和磷酸酶活性[69]. 本研究中, 土壤脲酶、酸性磷酸酶和脱氢酶活性对两种粒径单一PP-MPs处理以及PP-MPs和Cd复合胁迫的响应均达到显著水平, 且均随PP-MPs质量分数增加呈上升趋势(图 6), 这与Yi等[70]研究的结果高度相似. 有研究认为, 土壤酶在有机质降解以及土壤养分循环和转化过程中起着至关重要的作用[71]. 阳祝庆等[72]研究发现, PS微塑料显著降低了土壤速效磷和速效钾的含量, 推测是因为微塑料改变了土壤中微生物群落结构, 抑制了脲酶和磷酸酶等酶活性所导致的. 脲酶和磷酸酶与土壤氮磷循环过程紧密相关, MPs添加可有效刺激土壤脲酶和酸性磷酸酶活性[73]. 此外, MPs能够增加土壤持水能力, 而脲酶和酸性磷酸酶活性对土壤水分比较敏感[74], 当土壤中含水量增加时, 脲酶和酸性磷酸酶活性也随之增加[75]. 脱氢酶主要参与微生物呼吸过程, 重金属和MPs添加一定程度上改变了土壤空隙结构, 增强微生物活性, 减少土壤O₂, 从而增强了脱氢酶活性[76].
4 结论(1)Cd与PP-MPs复合污染显著影响冬小麦株高、叶面积、生物量等生长发育指标及光合效率、叶绿素含量等光合特性, 且10 μm小粒径PP-MPs污染抑制效应明显强于500 μm大粒径, 两者呈协同抑制效应.
(2)小麦植株群体对Cd及PP-MPs胁迫响应明显, 随污染程度增加, 其冠层温度升高, 叶片厚度降低. 植株SOD、POD和CAT活性均随Cd和PP-MPs胁迫程度增加呈显著升高趋势变化, 且两者间交互效应对其抗氧化酶活性影响均达极显著水平.
(3)PP-MPs胁迫后略微增加了土壤有机质、碱解氮、速效磷和速效钾等养分含量, 提高了土壤脲酶、酸性磷酸酶和脱氢酶酶活性.
(4)PLS模型结果显示, Cd与10 μm小粒径PP-MPs复合污染胁迫下影响冬小麦生长发育指标变化的关键主控因子为土壤酸性磷酸酶, 500 μm大粒径PP-MPs关键影响因子为土壤速效磷含量. 研究结果为阐明冬小麦Cd与PP-MPs复合胁迫的生理生态机制及构建高效、安全的污染防治策略提供重要理论支撑和思路参考.
[1] |
王晓晶, 杨毅哲, 曹阳, 等. 微塑料与镉及其复合对小麦种子发芽的影响[J]. 农业环境科学学报, 2023, 42(2): 263-273. Wang X J, Yang Y Z, Cao Y, et al. Effect of microplastics, cadmium, and their combination on wheat seed germination[J]. Journal of Agro-Environment Science, 2023, 42(2): 263-273. |
[2] | 陈佳, 包蓉. 我国土壤镉污染现状及防治技术研究[J]. 安徽农学通报, 2020, 26(24): 135-136, 181. |
[3] |
晁建立, 董彰, 李永革, 等. 土壤调理剂对土壤镉含量及小麦镉积累的影响[J]. 安徽农业科学, 2023, 51(19): 53-57. Chao J L, Dong Z, Li Y G, et al. Effects of soil conditioners on soil Cd content and Cd accumulation in wheat[J]. Journal of Anhui Agricultural Sciences, 2023, 51(19): 53-57. |
[4] | Zafar-ul-Hye M, Naeem M, Danish S, et al. Alleviation of cadmium adverse effects by improving nutrients uptake in bitter gourd through cadmium tolerant rhizobacteria[J]. Environments, 2020, 7(8). DOI:10.3390/environments7080054 |
[5] | Huybrechts M, Cuypers A, Deckers J, et al. Cadmium and plant development: An agony from seed to seed[J]. International Journal of Molecular Sciences, 2019, 20(16). DOI:10.3390/ijms20163971 |
[6] | Genchi G, Sinicropi M S, Lauria G, et al. The effects of cadmium toxicity[J]. International Journal of Environmental Research and Public Health, 2020, 17(11). DOI:10.3390/ijerph17113782 |
[7] | Rafiq M T, Aziz R, Yang X E, et al. Phytoavailability of cadmium (Cd) to Pak choi (Brassica chinensis L.) grown in Chinese soils: A model to evaluate the impact of soil Cd pollution on potential dietary toxicity[J]. PLoS One, 2014, 9(11). DOI:10.1371/journal.pone.0111461 |
[8] | Belzagui F, Gutiérrez-Bouzán C, Álvarez-Sánchez A, et al. Textile microfibers reaching aquatic environments: A new estimation approach[J]. Environmental Pollution, 2020, 265. DOI:10.1016/j.envpol.2020.114889 |
[9] | Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, 304(5672). DOI:10.1126/science.1094559 |
[10] | Huang B, Sun L Y, Liu M R, et al. Abundance and distribution characteristics of microplastic in plateau cultivated land of Yunnan Province, China[J]. Environmental Science and Pollution Research, 2021, 28(2): 1675-1688. DOI:10.1007/s11356-020-10527-3 |
[11] | Cao L, Wu D, Liu P, et al. Occurrence, distribution and affecting factors of microplastics in agricultural soils along the lower reaches of Yangtze River, China[J]. Science of the Total Environment, 2021, 794. DOI:10.1016/j.scitotenv.2021.148694 |
[12] | Zhou Q, Zhang H B, Fu C C, et al. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea[J]. Geoderma, 2018, 322: 201-208. DOI:10.1016/j.geoderma.2018.02.015 |
[13] | Luo H W, Liu C Y, He D Q, et al. Effects of aging on environmental behavior of plastic additives: Migration, leaching, and ecotoxicity[J]. Science of the Total Environment, 2022, 849. DOI:10.1016/j.scitotenv.2022.157951 |
[14] | Jin T, Tang J, Lyu H, et al. Activities of microplastics (MPs) in agricultural soil: a review of MPs pollution from the perspective of agricultural ecosystems[J]. Journal of Agricultural and Food Chemistry, 2022, 70(14): 4182-4201. DOI:10.1021/acs.jafc.1c07849 |
[15] |
裴磊, 王发园, 张书武. 微塑料对土壤特性的影响[J]. 山东化工, 2023, 52(18): 126-128, 131. Pei L, Wang F Y, Zhang S W. Effect of microplastics on soil properties[J]. Shandong Chemical Industry, 2023, 52(18): 126-128, 131. |
[16] |
张晨, 简敏菲, 陈宇蒙, 等. 聚苯乙烯微塑料对黑藻生长及生理生化特征的影响[J]. 应用生态学报, 2021, 32(1): 317-325. Zhang C, Jian M F, Chen Y M, et al. Effects of polystyrene microplastics (PS-MPs) on the growth, physiology, and biochemical characteristics of Hydrilla verticillata [J]. Chinese Journal of Applied Ecology, 2021, 32(1): 317-325. |
[17] | Wang F Y, Zhang X Q, Zhang S Q, et al. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil[J]. Chemosphere, 2020, 254. DOI:10.1016/j.chemosphere.2020.126791 |
[18] | Lian Y H, Liu W T, Shi R Y, et al. Effects of polyethylene and polylactic acid microplastics on plant growth and bacterial community in the soil[J]. Journal of Hazardous Materials, 2022, 435. DOI:10.1016/j.jhazmat.2022.129057 |
[19] | Han Z W, Osman R, Liu Y, et al. Analyzing the impacts of cadmium alone and in co-existence with polypropylene microplastics on wheat growth[J]. Frontiers in Plant Science, 2023, 14. DOI:10.3389/fpls.2023.1240472 |
[20] | Wang F Y, Zhang X Q, Zhang S Q, et al. Effects of co-contamination of microplastics and Cd on plant growth and Cd accumulation[J]. Toxics, 2020, 8(2). DOI:10.3390/toxics8020036 |
[21] | Wang F Y, Yang W W, Cheng P, et al. Adsorption characteristics of cadmium onto microplastics from aqueous solutions[J]. Chemosphere, 2019, 235: 1073-1080. DOI:10.1016/j.chemosphere.2019.06.196 |
[22] | Gao X, Hassan I, Peng Y T, et al. Behaviors and influencing factors of the heavy metals adsorption onto microplastics: A review[J]. Journal of Cleaner Production, 2021, 319. DOI:10.1016/j.jclepro.2021.128777 |
[23] |
吴萍, 张杏锋, 高波, 等. 微塑料对超富集植物少花龙葵Cd累积的影响[J]. 环境科学与技术, 2022, 45(1): 174-181. Wu P, Zhang X F, Gao B, et al. Effects of polyethylene on Cd accumulation of hyperaccumulator Solanum photeinocarpum [J]. Environmental Science & Technology, 2022, 45(1): 174-181. |
[24] |
王泽正, 杨亮, 李婕, 等. 微塑料和镉及其复合对水稻种子萌发的影响[J]. 农业环境科学学报, 2021, 40(1): 44-53. Wang Z Z, Yang L, Li J, et al. Single and combined effects of microplastics and cadmium on the germination characteristics of rice seeds[J]. Journal of Agro-Environment Science, 2021, 40(1): 44-53. |
[25] |
郑阳, 查旭琼, 周凯泰, 等. 微塑料-镉复合污染对绿豆种子发芽及幼苗生长的影响[J]. 嘉兴学院学报, 2022, 34(6): 59-64. Zheng Y, Zha X Q, Zhou K T, et al. Effect of microplastic-cadmium combined pollution on germination and seedling growth of mung bean seeds[J]. Journal of Jiaxing University, 2022, 34(6): 59-64. |
[26] | Wang B B, Wang P H, Zhao S B, et al. Combined effects of microplastics and cadmium on the soil-plant system: Phytotoxicity, Cd accumulation and microbial activity[J]. Environmental Pollution, 2023, 333. DOI:10.1016/j.envpol.2023.121960 |
[27] |
胡榆杰, 伍钧, 杨刚, 等. 不同微塑料对水稻土性质、镉有效性及其形态的影响[J]. 农业环境科学学报, 2023, 42(8): 1721-1728. Hu Y J, Wu J, Yang G, et al. Effects of different microplastics on soil properties and Cd availability and fraction in paddy soil[J]. Journal of Agro-Environment Science, 2023, 42(8): 1721-1728. |
[28] | Yu H, Hou J H, Dang Q L, et al. Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels[J]. Journal of Hazardous Materials, 2020, 395. DOI:10.1016/j.jhazmat.2020.122690 |
[29] | Lian J P, Wu J N, Zeb A, et al. Do polystyrene nanoplastics affect the toxicity of cadmium to wheat (Triticum aestivum L.)?[J]. Environmental Pollution, 2020, 263. DOI:10.1016/j.envpol.2020.114498 |
[30] | Jullien A, Mathieu A, Allirand J M, et al. Characterization of the interactions between architecture and source⁃sink relationships in winter oilseed rape (Brassica napus) using the GreenLab model[J]. Annals of Botany, 2011, 107(5): 765-779. |
[31] | Li R J, Tu C, Li L Z, et al. Visual tracking of label-free microplastics in wheat seedlings and their effects on crop growth and physiology[J]. Journal of Hazardous Materials, 2023, 456. DOI:10.1016/j.jhazmat.2023.131675 |
[32] | Zong X Y, Zhang J J, Zhu J W, et al. Effects of polystyrene microplastic on uptake and toxicity of copper and cadmium in hydroponic wheat seedlings (Triticum aestivum L.)[J]. Ecotoxicology and Environmental Safety, 2021, 217. DOI:10.1016/j.ecoenv.2021.112217 |
[33] |
胡秉芬, 黄华梨, 季元祖, 等. 分光光度法测定叶绿素含量的提取液的适宜浓度[J]. 草业科学, 2018, 35(8): 1965-1974. Hu B F, Huang H L, Ji Y Z, et al. Evaluation of the optimum concentration of chlorophyll extract for determination of chlorophyll content by spectrophotometry[J]. Pratacultural Science, 2018, 35(8): 1965-1974. |
[34] | Paoletti F, Aldinucci D, Mocali A, et al. A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts[J]. Analytical Biochemistry, 1986, 154(2): 536-541. |
[35] | Chance B, Maehly A C. [136] Assay of catalases and peroxidases[J]. Methods in Enzymology, 1955, 2: 764-775. |
[36] | 鲍士旦. 土壤农化分析[M]. ((第三版)). 北京: 中国农业出版社, 2000. |
[37] | Hu B, Liang D L, Liu J J, et al. Transformation of heavy metal fractions on soil urease and nitrate reductase activities in copper and selenium co-contaminated soil[J]. Ecotoxicology and Environmental Safety, 2014, 110: 41-48. |
[38] | Dick W A, Cheng L, Wang P. Soil acid and alkaline phosphatase activity as pH adjustment indicators[J]. Soil Biology and Biochemistry, 2000, 32(13): 1915-1919. |
[39] | Zhang N, He X D, Gao Y B, et al. Pedogenic carbonate and soil dehydrogenase activity in response to soil organic matter in Artemisia ordosica community[J]. Pedosphere, 2010, 20(2): 229-235. |
[40] | Li L T, Chang L Y, Ji Y R, et al. Quantification and dynamic monitoring of nitrogen utilization efficiency in summer maize with hyperspectral technique considering a non-uniform vertical distribution at whole growth stage[J]. Field Crops Research, 2022, 281. DOI:10.1016/j.fcr.2022.108490 |
[41] | Lin D, Li G Z, Zhu Y D, et al. Predicting copper content in chicory leaves using hyperspectral data with continuous wavelet transforms and partial least squares[J]. Computers and Electronics in Agriculture, 2021, 187. DOI:10.1016/j.compag.2021.106293 |
[42] | Wang J L, Liu W T, Wang X, et al. Assessing stress responses in potherb mustard (Brassica juncea var. multiceps) exposed to a synergy of microplastics and cadmium: Insights from physiology, oxidative damage, and metabolomics[J]. Science of the Total Environment, 2024, 907. DOI:10.1016/j.scitotenv.2023.167920 |
[43] |
张哿, 邹亚丹, 徐擎擎, 等. 微塑料与水中污染物的联合作用研究进展[J]. 海洋湖沼通报, 2019(2): 59-69. Zhang G, Zou Y D, Xu Q Q, et al. Proceedings of joint effect of microplastics and pollutants in water[J]. Transactions of Oceanology and Limnology, 2019(2): 59-69. |
[44] | Belimov A A, Safronova V I, Tsyganov V E, et al. Genetic variability in tolerance to cadmium and accumulation of heavy metals in pea (Pisum sativum L.)[J]. Euphytica, 2003, 131(1): 25-35. |
[45] |
陈欣, 郭薇, 李济之, 等. 土壤微塑料影响植物生长的因素与机制研究进展[J]. 农业环境科学学报, 2024, 43(3): 488-495. Chen X, Guo W, Li J Z, et al. Research progress on the influencing factors and mechanisms of soil microplastics on plant growth[J]. Journal of Agro-Environment Science, 2024, 43(3): 488-495. |
[46] | Urbina M A, Correa F, Aburto F, et al. Adsorption of polyethylene microbeads and physiological effects on hydroponic maize[J]. Science of the Total Environment, 2020, 741. DOI:10.1016/j.scitotenv.2020.140216 |
[47] | Meng F R, Yang X M, Riksen M, et al. Response of common bean (Phaseolus vulgaris L.) growth to soil contaminated with microplastics[J]. Science of the Total Environment, 2021, 755. DOI:10.1016/j.scitotenv.2020.142516 |
[48] | Colzi I, Renna L, Bianchi E, et al. Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L[J]. Journal of Hazardous Materials, 2022, 423. DOI:10.1016/j.jhazmat.2021.127238 |
[49] | Ren X W, Tang J C, Wang L, et al. Microplastics in soil-plant system: Effects of nano/microplastics on plant photosynthesis, rhizosphere microbes and soil properties in soil with different residues[J]. Plant and Soil, 2021, 462(1-2): 561-576. |
[50] |
顾馨悦, 徐修媛, 咸泽禹, 等. 老化聚氯乙烯微塑料与镉对小麦的联合毒性[J]. 环境化学, 2021, 40(9): 2633-2639. Gu X Y, Xu X Y, Xian Z Y, et al. Joint toxicity of aged polyvinyl chloride microplastics and cadmium to the wheat plant[J]. Journal of Environmental Chemistry, 2021, 40(9): 2633-2639. |
[51] |
郭冰林, 丰晨晨, 陈悦, 等. 聚苯乙烯微塑料对小白菜生长、生理生化及冠层温度特性的影响[J]. 环境科学, 2023, 44(9): 5080-5091. Guo B L, Feng C C, Chen Y, et al. Effects of polystyrene microplastics on growth, physiology, biochemistry, and canopy temperature characteristics of Chinese cabbage pakchoi (Brassica chinensis L.)[J]. Environmental Science, 2023, 44(9): 5080-5091. DOI:10.13227/j.hjkx.202209260 |
[52] | Sagardoy R, Vázquez S, Florez-Sarasa I D, et al. Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc[J]. New Phytologist, 2010, 187(1): 145-158. |
[53] | Brunel-Muguet S, d'Hooghe P, Bataillé M P, et al. Heat stress during seed filling interferes with sulfur restriction on grain composition and seed germination in oilseed rape (Brassica napus L.)[J]. Frontiers in Plant Science, 2015, 6. DOI:10.3389/fpls.2015.00213 |
[54] | Wei X P, Pan X Y, Zhao C M, et al. Response of three dominant shrubs to soil water and groundwater along the oasis-desert ecotone in Northwest China[J]. Russian Journal of Ecology, 2008, 39(7): 475-482. |
[55] | Li L T, Guo B L, Feng C C, et al. Growth, physiological, and temperature characteristics in Chinese cabbage pakchoi as affected by Cd-stressed conditions and identifying its main controlling factors using PLS model[J]. BMC Plant Biology, 2022, 22(1). DOI:10.1186/s12870-022-03966-2 |
[56] | Li S, Lu S, Wang J, et al. Responses of physiological, morphological and anatomical traits to abiotic stress in woody plants[J]. Forests, 2023, 14(9). DOI:10.3390/f14091784 |
[57] | Abbasi S, Moore F, Keshavarzi B. PET-microplastics as a vector for polycyclic aromatic hydrocarbons in a simulated plant rhizosphere zone[J]. Environmental Technology & Innovation, 2021, 21. DOI:10.1016/j.eti.2021.101370 |
[58] |
宁瑞艳, 刘娜, 程红艳, 等. 微塑料和镉及其复合对超富集植物生长和富集镉的影响[J]. 环境科学学报, 2022, 42(6): 415-425. Ning R Y, Liu N, Cheng H Y, et al. Effects of microplastics, cadmium and their combination on the growth and cadmium accumulation of hyperaccumulators[J]. Acta Scientiae Circumstantiae, 2022, 42(6): 415-425. |
[59] | Ge J H, Li H, Liu P, et al. Review of the toxic effect of microplastics on terrestrial and aquatic plants[J]. Science of the Total Environment, 2021, 791. DOI:10.1016/j.scitotenv.2021.148333 |
[60] | Jin X F, Yang X E, Islam E, et al. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance[J]. Journal of Hazardous Materials, 2008, 156(1-3): 387-397. |
[61] | Xiao H Y, Liu Y J, Yu H X, et al. Combined toxicity influence of polypropylene microplastics and di-2-ethylhexyl phthalate on physiological-biochemical characteristics of cucumber (Cucumis sativus L.)[J]. Plant Physiology and Biochemistry, 2023, 201. DOI:10.1016/j.plaphy.2023.107811 |
[62] |
张秀娟, 范玟, 杨乐, 等. 镉胁迫对3种草坪草生理特性及叶片超微结构的影响[J]. 草地学报, 2023, 31(9): 2663-2670. Zhang X J, Fan W, Yang L, et al. Effects of cadmium stress on physiological activities and leaf ultrastructures of three turfgrass species[J]. Acta Agrestia Sinica, 2023, 31(9): 2663-2670. |
[63] | Lou Y H, Zhao P, Wang D L, et al. Germination, physiological responses and gene expression of tall fescue (Festuca arundinacea Schreb.) growing under Pb and Cd[J]. PLoS One, 2017, 12(1). DOI:10.1371/journal.pone.0169495 |
[64] |
宗海英, 刘君, 郭晓红, 等. 聚乙烯微塑料对花生幼苗镉吸收及生理特征的影响[J]. 农业环境科学学报, 2022, 41(7): 1400-1407. Zong H Y, Liu J, Guo X H, et al. Effects of polyethylene microplastics on cadmium absorption and physiological characteristics of peanut seedling[J]. Journal of Agro-Environment Science, 2022, 41(7): 1400-1407. |
[65] | Yu H W, Qi W X, Cao X F, et al. Microplastic residues in wetland ecosystems: Do they truly threaten the plant-microbe-soil system?[J]. Environment International, 2021, 156. DOI:10.1016/j.envint.2021.106708 |
[66] |
梁榕, 何娇, 孙飞虎, 等. 聚乙烯微塑料对土壤养分和酶活性的影响[J]. 环境科学, 2024, 45(6): 3679-3687. Liang R, He J, Sun F H, et al. Effects of polyethylene microplastics on soil nutrients and enzyme activities[J]. Environmental Science, 2024, 45(6): 3679-3687. DOI:10.13227/j.hjkx.202306183 |
[67] | Ya H B, Xing Y, Zhang T, et al. LDPE microplastics affect soil microbial community and form a unique plastisphere on microplastics[J]. Applied Soil Ecology, 2022, 180. DOI:10.1016/j.apsoil.2022.104623 |
[68] |
牛佳瑞, 邹勇军, 简敏菲, 等. 聚苯乙烯微塑料联合镉污染对土壤理化性质和生菜(Lactuca sativa)生理生态的影响[J]. 环境科学, 2024, 45(1): 470-479. Niu J R, Zou Y J, Jian M F, et al. Effects of polystyrene microplastics combined with cadmium contamination on soil physicochemical properties and physiological ecology of Lactuca sativa [J]. Environmental Science, 2024, 45(1): 470-479. |
[69] |
王舒淇, 任梦丽, 李鑫丰, 等. 地膜微塑料对农田土壤酶活性和细菌群落的影响[J]. 中北大学学报(自然科学版), 2023, 44(4): 437-446. Wang S Q, Ren M L, Li X F, et al. The effect of mulch microplastics on soil enzyme activity and bacterial community in farmland[J]. Journal of North University of China (Natural Science Edition), 2023, 44(4): 437-446. |
[70] | Yi M L, Zhou S H, Zhang L L, et al. The effects of three different microplastics on enzyme activities and microbial communities in soil[J]. Water Environment Research, 2021, 93(1): 24-32. |
[71] | Wang G S, Gao Q, Yang Y F, et al. Soil enzymes as indicators of soil function: A step toward greater realism in microbial ecological modeling[J]. Global Change Biology, 2022, 28(5): 1935-1950. |
[72] |
阳祝庆, 杨敏, 黄道友, 等. 聚苯乙烯微塑料对连续种植小白菜生长及品质的影响[J]. 环境科学, 2024, 45(11): 6645-6653. Yang Z Q, Yang M, Huang D Y, et al. Effects of polyethylene microplastics on growth and quality of Brassica campestris L. in a three-season consecutive cultivation[J]. Environmental Science, 2024, 45(11): 6645-6653. |
[73] | Fei Y F, Huang S Y, Zhang H B, et al. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil[J]. Science of the Total Environment, 2020, 707. DOI:10.1016/j.scitotenv.2019.135634 |
[74] | de Souza Machado A A, Lau C W, Till J, et al. Impacts of microplastics on the soil biophysical environment[J]. Environmental Science & Technology, 2018, 52(17): 9656-9665. |
[75] |
刘沙沙, 秦建桥, 吴贤格. 微塑料和菲对土壤化学性质、酶活性及微生物群落的影响[J]. 环境科学, 2024, 45(1): 496-507. Liu S S, Qin J Q, Wu X G. Effect of microplastics and phenanthrene on soil chemical properties, enzymatic activities, and microbial communities[J]. Environmental Science, 2024, 45(1): 496-507. |
[76] | Fida T T, Breugelmans P, Lavigne R, et al. Exposure to solute stress affects genome-wide expression but not the polycyclic aromatic hydrocarbon-degrading activity of Sphingomonas sp. strain LH128 in biofilms[J]. Applied and Environmental Microbiology, 2012, 78(23): 8311-8320. |