环境科学  2024, Vol. 45 Issue (12): 7286-7294   PDF    
不同电荷聚苯乙烯纳米塑料对污水生物脱氮性能影响
李晓华 , 段建鲁 , 祝凡平 , 袁宪正     
山东大学环境科学与工程学院, 山东省水污染控制与资源再利用重点实验室, 青岛 266237
摘要: 纳米塑料广泛分布于环境中并可在生物体内积累, 其对污水生物处理过程的负面作用受到人们的广泛关注. 研究合成了不同电荷的聚苯乙烯纳米塑料, 并在序批式活性污泥反应器中分析了短期暴露对生物脱氮性能的影响. 结果表明, 带正电荷和负电荷的纳米塑料均抑制活性污泥的脱氮效率以及硝化和反硝化相关基因的表达, 进而不同程度地抑制了硝化和反硝化过程, 且这种抑制作用随浓度的增加而增强. 研究利用模式反硝化细菌Pseudomonas stutzeriP. stutzeri)进一步评价了不同电荷纳米塑料影响反硝化效率的分子机制. 结果表明带正电荷和负电荷的纳米塑料均影响了P. stutzeri生物反硝化的效率, 主要包括促进NO3-向NO2-的转化和显著加速N2O的产生. 同时, 负电荷纳米塑料会抑制P. stutzeri的生长, 破坏菌体细胞膜, 但反硝化相关功能基因表达情况并无变化, 纳米塑料可能影响了Nir和Nos的酶活性, 从而影响生物处理效率. 研究结果可为纳米塑料的生物安全性评价提供一定的参考, 为污水处理厂的稳定运行提供一定的支持.
关键词: 纳米塑料(NPs)      表面电荷      废水处理      氮去除      施氏假单胞菌(Pseudomonas stutzeri     
Effect of Differentially Charged Polystyrene Nanoplastics on the Performance of Biological Denitrification in Wastewater Treatment
LI Xiao-hua , DUAN Jian-lu , ZHU Fan-ping , YUAN Xian-zheng     
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
Abstract: Nanoplastics are widely distributed in the environment and can accumulate in organisms. Increasing attention has been paid to the toxic effects of nanoplastics in wastewater biological treatment processes. In this study, polystyrene nanoplastics with different charges were synthesized and used in sequencing batch activated sludge reactors for short-term nanoplastic exposure experiments. Both positively and negatively charged nanoplastics inhibited the nitrogen removal efficiency and gene expressions of nitrification and denitrification-related genes of activated sludge. The inhibiting effect on nitrification of both nanoplastics was enhanced with increasing concentration. The study further evaluated the molecular mechanisms by which differently charged nanoplastics affect denitrification efficiency using the model denitrifying bacterium Pseudomonas stutzeri (P. stutzeri). The results showed that both positively and negatively charged nanoplastics affected the efficiency of biological denitrification by P. stutzeri, mainly including the promotion of NO3- to NO2- conversion and the significant acceleration of N2O production. Meanwhile, negatively charged nanoplastics inhibited the growth of P. stutzeri and disrupted the cell membrane of the bacterium; however, no change was observed in the expression of denitrification-related functional genes and the nanoplastics might have affected the enzymatic activities of Nir and Nos, which in turn affected the bioprocessing efficiency. This study can provide a certain reference for the evaluation of the biosafety of nanoplastics and provide a certain support for the stable operation of wastewater treatment plants.
Key words: nanoplastics(NPs)      surface charge      wastewater treatment      nitrogen removal      Pseudomonas stutzeri     

塑料制品已被广泛应用于各行各业, 其产生的污染已经成为环境领域的焦点问题[1 ~ 4].据统计, 全球每年排放480万~1 270万t塑料垃圾到水环境中, 通常情况下90%左右的塑料会进入污水处理设施, 污水处理厂被认为是塑料的源和汇[5 ~ 9].塑料在水体中经过氧化和机械磨损等方式形成微塑料颗粒甚至是纳塑料颗粒, 目前研究主要集中在污水中微塑料来源解析[10, 11]、迁移规律分析[12, 13]和去除方法等方面[14, 15].最近的研究指出, 粒径更小的纳米塑料(NPs)会引发新的环境问题[16 ~ 18], 其小尺寸和较大的比表面积及其吸附的污染物会对水环境中的生物构成威胁[19], 因此加强纳米塑料对污水处理过程的研究变得尤为重要[20 ~ 23].

迄今为止, 大量的研究表明微/纳塑料能够影响污水处理性能, 能够引发活性污泥的活性、功能基因和微生物群落结构等发生改变[24 ~ 28].例如, 聚苯乙烯纳米塑料会降低污泥中微生物活性[29]和群落丰度[30 ~ 32].生物脱氮是污水处理的主要功能之一, 微/纳塑料对其生物脱氮的作用仍值得关注.有研究表明纳米塑料会对活性污泥的反硝化作用产生负面效果, 进而导致硝酸盐积累[33], 并且不同丰度的纳米塑料对硝化反硝化过程以及酶活性的效果并不相同[34 ~ 40], 进而影响生物脱氮效率.纳米塑料的表面电荷是影响其团聚和在生物体中积累的重要参数[41], 为了全面了解纳米塑料对生物处理系统的影响, 还需要进一步研究不同电荷的纳米塑料对生物脱氮的作用机制.

本研究合成了不同电荷的聚苯乙烯纳米塑料, 通过SBR反应器活性污泥系统短期纳米塑料暴露实验发现, 纳米塑料会抑制活性污泥的脱氮效率, 且会抑制硝化和反硝化过程中相关酶基因的表达, 进而抑制硝化和反硝化过程.通过模式反硝化细菌施氏假单胞菌Pseudomonas stutzeriP. stutzeri)的暴露实验研究发现正负电荷纳米塑料均影响了P. stutzeri生物反硝化的效率, 主要包括促进NO3-向NO2-的转化和显著加速N2O的产生.其中, 负电荷纳米塑料会抑制P. stutzeri的生长, 破坏菌体细胞膜, 但反硝化相关功能基因表达情况并无变化, 纳米塑料可能影响了Nir和Nos的酶活性, 从而影响生物处理效率.本研究丰富了纳米塑料影响下的污水处理微生物行为, 对污水处理厂的稳定运行提供了一定的数据支持.

1 材料与方法 1.1 主要试剂和材料

活性污泥取自山东大学青岛校区污水处理厂曝气池, 在连续曝气4 h和沉淀30 min后, 去除上清液, 沉淀为活性污泥.施氏假单胞菌P. stutzeri(ATCC 17588)购自中国微生物菌种保藏中心(CGMCC, 北京, 中国).

采用微型乳液聚合法在实验室合成了两种聚苯乙烯纳米塑料[41], 即使用C12H25SO4Na作为乳化剂, C8H8为单体, K2S2O8作为引发剂制备PS—SO3H;使用C12H27NH2·HCl为乳化剂, C8H8为单体, C8H20Cl2N6为引发剂制备PS—NH2, 将上述试剂依次倒入三口瓶中, 并在80℃, 300 r·min-1, 氮气环境下逐步反应, 分别制备PS—SO3H和PS—NH2.使用透射电子显微镜(TEM, Thermo Fisher Scientific, USA)评估纳米塑料的形态、尺寸及聚集状态, 通过动态光散射粒径分析仪(DLS, Malvern, UK)测量纳米塑料的粒径分布和Zeta电位.

1.2 序批式反应器(SBR)模拟实验

本研究建立3个实验室规模(2 L)的SBR, 并在室温下每天运行两个循环周期.每个循环包括0.5 h的进水阶段、10 h的反应阶段、2 h的沉淀阶段和0.5 h的出水阶段.模拟废水的成分:128 mg·L-1 C6H12O6, 15.3 mg·L-1 NH4Cl, 5 mg·L-1 KH2PO4.反应器连续运行7 d, 每周期内对进水和出水进行取样, 并检测NH4+-N和NO3--N的浓度变化.

1.3 活性污泥系统短期暴露实验

将50 mL污泥和50 mL模拟废水分别加入到250 mL广口瓶中.PS—SO3H纳米塑料丰度设置为10 mg·L-1和50 mg·L-1, PS—NH2纳米塑料丰度设置为2.5 mg·L-1和8 mg·L-1.通过NH4+-N、NO2--N及NO3--N的丰度变化确定3个主要速率, 即活性污泥的比氨氧化速率(SAOR)、比亚硝化速率(SNOR)和比反硝化速率(SNRR).其中, NH4+-N、NO2--N和MLSS的测量均采用标准方法测定[42], NO3--N的浓度采用离子色谱(Thermo Fisher Scientific, USA)检测.各速率测定实验条件如表 1所示, 每组反应结束时均需测定MLSS, 分别用单位时间内单位质量的污泥中NH4+-N的氧化量、NO2--N的氧化量及NO3--N的还原量表示SAOR、SNOR及SNRR(以N/MLSS计), 单位均为mg·(mg·h)-1.SAOR和SNOR的溶液进行氧气曝气, 使得溶液溶解氧过饱和, 并在实验结束后测试溶解氧.SNRR的溶液进行氮气曝气, 使得溶液达到缺氧状态.

表 1 活性污泥短期暴露实验条件1) Table 1 Experimental conditions for short-term exposure of activated sludge

1.4 施氏假单胞菌的培养和纳米塑料暴露实验

细菌接种于反硝化培养基中培养并测量吸光度值(D)、细胞活性氧(ROS)、乳酸脱氢酶(LDH)和丙二醛(MDA).反硝化培养基含有:3.0 g·L-1 KH2PO4, 5.704 g·L-1 Na2HPO4, 1.785 g·L-1 NaNO3, 1.177 g·L-1 NH4Cl, 0.5 g·L-1 C6H5Na3O7·2H2O, 0.1 g·L-1 MgSO4·7H2O及10 g·L-1 C6H12O6[43].两种纳米塑料分别设置3种丰度(PS—SO3H:10、20和50 mg·L-1;PS—NH2:2.5、5和8 mg·L-1).用多功能酶标仪(Thermo Fisher Scientific, USA)检测细胞活性氧含量[44], 用乳酸脱氢酶细胞毒性检测试剂盒测定细胞中乳酸脱氢酶的含量[45], 用丙二醛检测试剂盒测量P. stutzeri的丙二醛的含量, 并使用多功能酶标仪进行量化, 分别测定样品在490 nm和532 nm波长下的吸光度.

将对数期的细菌在4 000 r·min-1条件下离心10 min, 用PBS清洗2次并稀释至108 CFU·mL-1.细菌接种在250 mL玻璃血清瓶中, 初始D600为0.05, 加入纳米塑料后使用橡胶塞和铝盖密封以防止产生的气体泄漏, 并置于恒温摇床中(150 r·min-1, 30 ℃).每隔4 h取样, 注射器抽取液体并测量其中NO3--N和NO2--N的含量.暴露24 h后, 用气相色谱(Agilent, USA)测定N2O的含量.

1.5 基因表达分析

用柱式细菌总RNA抽提纯化试剂盒提取活性污泥和P. stutzeri总RNA.用于qPCR的引物(amoAnxrAnarGnapAnirKnirScnorBqnorBnosZ)是根据以往的研究设计的[46], 列于表 2中.

表 2 qPCR所用引物 Table 2 Primers for qPCR used in this study

1.6 统计分析

除非另有说明, 所有的实验均进行至少5次独立重复.结果以平均值±标准误差表示, 采用双尾t检验来评价其显著性, 当P < 0.05时, 认为差异显著, *表示P < 0.05, **表示P < 0.01, ***表示P < 0.001.

2 结果与讨论 2.1 纳米塑料暴露抑制脱氮效率

本研究合成了两种由不同官能团(—SO3H和—NH2)修饰的纳米塑料, 如图1(a)~1(d)所示, PS—SO3H在水中的平均粒径为(43.82 ± 11.2)nm, PS—NH2的平均粒径为(37.84 ± 24.3)nm, 如图 1(e)所示, 两种纳米塑料分别携带负电荷和正电荷, PS—SO3H和PS—NH2在去离子水中的Zeta电位分别为-16.3 mV和16.1 mV.

(a)PS—SO3H的TEM图像;(b)PS—NH2的TEM图像;(c)PS—SO3H粒径分布;(d)PS—NH2粒径分布;(e)PS—SO3H和PS—NH2的Zeta电位 图 1 纳米塑料形态、尺寸及Zeta电位 Fig. 1 Nanoplastics morphology, size, and Zeta potential

本实验装置如图 2所示, 在运行60 h后, SBR反应器NH4+-N浓度变化如图 3(a)所示, 纳米塑料低丰度处理组NH4+-N去除率均保持在95%左右, 说明低丰度暴露对NH4+-N去除率没有显著影响.而PS—NH2高丰度处理组的去除率降至23.56%, 说明高丰度正电荷纳米塑料显著抑制SBR脱氮效率. SBR中NO3--N浓度变化如图 3(b)所示, 经纳米塑料处理的浓度均显著低于对照组, 说明纳米塑料会抑制NH4+-N到NO3--N的硝化过程, 且随着暴露浓度增加, 两种纳米塑料对硝化过程的抑制作用均显著增强. 比氨氧化速率(SAOR)和比亚硝酸盐氧化速率(SNOR)可以表征微生物处理NH4+-N和NO2--N的能力.如图 3(c)所示, 纳米塑料对活性污泥SAOR产生明显抑制用.SNOR的变化如图 3(d)所示, 低浓度的正负电荷纳米塑料暴露与对照组相比分别降低了90.20%和86.93%, 而高丰度的正负电荷纳米塑料暴露和对照无显著变化, 结果表明低丰度正负电荷纳米塑料会显著抑制亚硝酸盐氧化.为了表征反应器系统的反硝化能力测量了比硝酸盐还原速率(SNRR).如图 3(e)所示, 负电荷纳米塑料暴露后SNRR并无明显变化;但PS—NH2处理组SNRR分别降低了88.37%和87.21%, 结果表明正电荷纳米塑料显著抑制活性污泥的反硝化过程.

图 2 SBR反应器模拟实验示意 Fig. 2 Schematic of SBR reactor simulation experiment

(a)SBR出水NH4+-N浓度变化, (b)SBR出水NO3--N浓度变化;虚线为进水浓度;(c)活性污泥短期暴露下SAOR;(d)活性污泥短期暴露下SNOR;(e)活性污泥短期暴露下SNRR;1. 空白对照, 2. PS—SO3H 10 mg·L-1, 3. PS—SO3H 50 mg·L-1, 4. PS—NH2 2.5 mg·L-1, 5. PS—NH2 8 mg·L-1;*表示P < 0.05, **表示P < 0.01, ***表示P < 0.001 图 3 活性污泥短期暴露实验 Fig. 3 Short-term exposure experiment of activated sludge

2.2 纳米塑料短期暴露对活性污泥系统氮代谢相关基因的影响

为进一步分析纳米塑料对上述速率的影响, 本研究选取活性污泥中的氮代谢相关代表性基因进行qPCR分析.在硝化过程中, amoA基因用于编码氨单氧酶[47], 亚硝酸盐通过亚硝酸盐氧化酶(NXR)催化氧化成硝酸盐, nxrA是NXR的关键功能标记基因(图 4).如图5(a)5(b)所示, 50 mg·L-1 PS—SO3H处理组的amoA基因和nxrA基因相对丰度低于对照组, 分别降低了37.43%和69.08%, 证明高丰度负电荷纳米塑料对氨氧化和亚硝酸盐氧化过程有明显抑制作用.在反硝化过程中, 和硝酸盐还原有关的酶基因为narGnapA, 和亚硝酸盐还原有关的酶基因为nirKnirS, 和一氧化氮还原有关的酶基因为qnorBnosZ,图5(c)~5(h)所示, 8 mg·L-1 PS—NH2处理组的nirKnirS基因相对丰度低于对照组, 分别降低了73.13%和84.20%, 说明纳米塑料暴露后会显著抑制nirKnirS的表达, 纳米塑料会显著抑制NO2-还原成NO.

图 4 氮代谢流程 Fig. 4 Nitrogen metabolism flow

1. 空白对照, 2. PS—SO3H 10 mg·L-1, 3. PS—SO3H 50 mg·L-1, 4. PS—NH2 2.5 mg·L-1, 5. PS—NH2 8 mg·L-1;*表示P < 0.05 图 5 活性污泥功能基因的相对丰度 Fig. 5 Relative abundance of functional genes in activated sludge

在硝化过程中, 高丰度负电荷纳米塑料会显著抑制硝化过程的各阶段, 包括氨氧化细菌催化氨氧化生成羟胺, 亚硝酸盐催化氧化成硝酸盐;纳米塑料会抑制反硝化过程, 尤其是NO2-还原成NO的过程.

2.3 纳米塑料暴露促进P. stutzeri表观反硝化速率

P. stutzeri在环境中含量丰富, 常被用于研究硝化和反硝化作用[45].本实验首先评估了纳米塑料对P. stutzeri生长的影响, 如图 6所示, 本研究发现50 mg·L-1 PS—SO3H处理组细菌在10 h后出现明显凋亡, 24 h时D600值为0.167, 相较于对照组降低了71.51%, 而正电荷纳米塑料暴露下D600并无明显降低.本研究利用亚硝酸盐氮和硝酸盐氮的浓度变化来研究正、负电荷纳米塑料暴露对P. stutzeri反硝化过程的影响.如表 3所示, 正、负纳米塑料处理组的NO3--N还原速率均高于对照组, 说明纳米塑料短期暴露对P. stutzeri反硝化第一步具有明显的促进作用.

图 6 纳米塑料短期暴露下P. stutzeri的生长曲线 Fig. 6 Growth curves of P. stutzeri under short-term exposure to nanoplastics

表 3 P. stutzeri纳米塑料短期暴露NO3- -N还原速率 Table 3 NO3--N reduction rate of P. stutzeri with short-term exposure of nanoplastics

2.4 纳米塑料短期暴露下的氧化应激

亚硝酸盐被还原为N2O和NO, 如图 7(a)所示, 和空白对照相比, 正、负电荷纳米塑料暴露下的N2O含量均显著增加.N2O是一种有毒气体, 会对人体呼吸系统、心血管系统和神经系统造成危害[48 ~ 50].采用ROS含量反映纳米塑料引起的氧化应激程度, 如图 7(b)所示, 纳米塑料处理后细胞内ROS含量没有明显变化, 说明纳米塑料并不会造成P. stutzeri细胞的氧化应激作用.乳酸脱氢酶会在细胞受损伤时释放到细胞外, 其胞外含量可以反映细胞膜的损伤程度.如图 7(c)所示, PS—SO3H处理组乳酸脱氢酶含量比空白对照组低, 表明负电荷纳米塑料并不会破坏细胞膜完整性;PS—NH2处理组乳酸脱氢酶含量比空白对照组高, 表明正电荷纳米塑料短期暴露会破坏P. stutzeri的细胞膜完整性.潜在的脂质过氧化反应是通过检测P. stutzeri经纳米塑料短期暴露后的丙二醛产量来评估的.如图 7(d)所示, 和空白对照相比, 正、负电荷纳米塑料均会促进丙二醛的生成.负电荷纳米塑料会破坏细胞膜完整性, 正负电荷纳米塑料均会显著促进膜脂质过氧化, 促进N2O产生.

1. 空白对照, 2. PS—SO3H 10 mg·L-1, 3. PS—SO3H 20 mg·L-1, 4. PS—SO3H 50 mg·L-1, 5. PS—NH2 2.5 mg·L-1, 6. PS—NH2 5 mg·L-1, 7. PS—NH2 8 mg·L-1;**表示P < 0.01 图 7 纳米塑料短期暴露下P. stutzeri的N2O、ROS、乳酸脱氢酶和丙二醛含量 Fig. 7 N2O, ROS, LDH, and MDA content in P. stutzeri under short-term exposure to nanoplastics

本研究测定了P. stutzeri在反硝化过程中相关功能基因的表达情况, napA功能基因参与NO3-还原为NO2-的反应, 亚硝酸盐还原酶(Nir)反硝化过程中主要催化NO2-还原为NO和N2O, 由nirS基因编码.一氧化二氮还原酶(Nos)是由nosZ基因编码的, 用于催化从N2O到N2的转化.一氧化氮还原酶的催化亚单位由cnorB基因编码.如图 8所示, 反硝化相关功能基因表达情况并无变化, 纳米塑料可能影响了Nir和Nos的酶活性, 进而影响NO2-进一步还原转化和N2O还原为N2.

1. 空白对照, 2. PS—SO3H 10 mg·L-1, 3. PS—SO3H 20 mg·L-1, 4. PS—SO3H 50 mg·L-1, 5. PS—NH2 2.5 mg·L-1, 6. PS—NH2 5 mg·L-1, 7. PS—NH2 8 mg·L-1. 图 8 P. stutzeri系统中反硝化功能基因的相对丰度 Fig. 8 Relative abundance of denitrification functional genes in the P. stutzeri system

3 结论

(1)在SBR反应器处理模拟废水时, 正负电荷纳米塑料暴露会抑制活性污泥的脱氮效率, 其中负电荷纳米塑料主要抑制amoA基因和nxrA基因表达, 进而抑制硝化过程, 正电荷纳米塑料主要抑制nirKnirS基因表达, 进而抑制反硝化过程.

(2)负电荷纳米塑料会抑制P. stutzeri的生长, 破坏菌体细胞膜, 但反硝化相关功能基因表达情况并无变化, 正负电荷纳米塑料可能影响了Nir和Nos的酶活性, 进而促进P. stutzeri将NO3-转化为NO2-, 并显著促进N2O的产生.

参考文献
[1] 包亚博, 王成尘, 彭吾光, 等. 微塑料的人体富集及毒性机制研究进展[J]. 环境科学, 2024, 45(2): 1173-1184.
Bao Y B, Wang C C, Peng W G, et al. Human accumulation and toxic effects of microplastics: a critical review[J]. Environmental Science, 2024, 45(2): 1173-1184.
[2] 马敏东, 赵洋尘, 朱龙, 等. 人体微塑料污染特征及健康风险研究进展[J]. 环境科学, 2024, 45(1): 459-469.
Ma M D, Zhao Y C, Zhu L, et al. Research progress on characteristics of human microplastic pollution and health risks[J]. Environmental Science, 2024, 45(1): 459-469.
[3] 刘微, 李宇欣, 荣飒爽, 等. 土壤中微塑料对陆生植物的毒性及其降解机制研究进展[J]. 环境科学, 2023, 44(11): 6267-6278.
Liu W, Li Y X, Rong S S, et al. Research progress on toxicity of microplastics in soil to terrestrial plants and their degradation mechanism[J]. Environmental Science, 2023, 44(11): 6267-6278.
[4] Ha J, Yeo M K. The environmental effects of microplastics on aquatic ecosystems[J]. Molecular & Cellular Toxicology, 2018, 14(4): 353-359.
[5] Issac M N, Kandasubramanian B. Effect of microplastics in water and aquatic systems[J]. Environmental Science and Pollution Research International, 2021, 28(16): 19544-19562. DOI:10.1007/s11356-021-13184-2
[6] Koelmans A A, Redondo-Hasselerharm P E, Nor N H M, et al. Risk assessment of microplastic particles[J]. Nature Reviews Materials, 2022, 7(2): 138-152. DOI:10.1038/s41578-021-00411-y
[7] Behera S, Das S. Environmental impacts of microplastic and role of plastisphere microbes in the biodegradation and upcycling of microplastic[J]. Chemosphere (Oxford), 2023, 334. DOI:10.1016/j.chemosphere.2023.138928
[8] Briffa S M. Looking at the bigger picture—considering the hurdles in the struggle against nanoplastic pollution[J]. Nanomaterials (Basel), 2021, 11(10). DOI:10.3390/nano11102536
[9] 谢晴帆, 俞楠, 张妮, 等. 微塑料诱导下污泥造粒潜能变化及微生物富集特征[J]. 环境科学, 2023, 44(7): 3997-4005.
Xie Q F, Yu N, Zhang N, et al. Change in granulation potential and microbial enrichment characteristics of sludge induced by microplastics[J]. Environmental Science, 2023, 44(7): 3997-4005.
[10] Hayany B E, Rumpel C, Hafidi M, et al. Occurrence, analysis of microplastics in sewage sludge and their fate during composting: a literature review[J]. Journal of Environmental Management, 2022, 317. DOI:10.1016/j.jenvman.2022.115364
[11] Osman A I, Hosny M, Eltaweil A S, et al. Microplastic sources, formation, toxicity and remediation: a review[J]. Environmental Chemistry Letters, 2023, 21(4): 2129-2169. DOI:10.1007/s10311-023-01593-3
[12] Bhatt P, Pathak V M, Bagheri A R, et al. Microplastic contaminants in the aqueous environment, fate, toxicity consequences, and remediation strategies[J]. Environmental Research, 2021, 200. DOI:10.1016/j.envres.2021.111762
[13] Wang C H, Zhao J, Xing B S. Environmental source, fate, and toxicity of microplastics[J]. Journal of Hazardous Materials, 2021, 407. DOI:10.1016/j.jhazmat.2020.124357
[14] Anand U, Dey S, Bontempi E, et al. Biotechnological methods to remove microplastics: a review[J]. Environmental Chemistry Letters, 2023, 21(3): 1787-1810. DOI:10.1007/s10311-022-01552-4
[15] Du H, Xie Y Q, Wang J. Microplastic degradation methods and corresponding degradation mechanism: Research status and future perspectives[J]. Journal of Hazardous Materials, 2021, 418. DOI:10.1016/j.jhazmat.2021.126377
[16] Atugoda T, Piyumali H, Wijesekara H, et al. Nanoplastic occurrence, transformation and toxicity: a review[J]. Environmental Chemistry Letters, 2023, 21(1): 363-381. DOI:10.1007/s10311-022-01479-w
[17] 李盼, 杨玉菲, 薛振, 等. 微纳米塑料对陆生哺乳动物毒性效应的研究进展[J]. 生态毒理学报, 2023, 18(6): 168-176.
Li P, Yang Y F, Xue Z, et al. Research progress of toxic effects of micro-nano plastics on terrestrial mammals[J]. Asian Journal of Ecotoxicology, 2023, 18(6): 168-176.
[18] Shen M C, Zhang Y X, Zhu Y, et al. Recent advances in toxicological research of nanoplastics in the environment: a review[J]. Environmental Pollution, 2019, 252: 511-521. DOI:10.1016/j.envpol.2019.05.102
[19] 郑伟康, 刘振中, 项晓方. 水中微/纳塑料电化学检测及去除的研究进展[J]. 环境科学, 2024, 45(2): 1210-1221.
Zheng W K, Liu Z Z, Xiang X F. Research progress in electrochemical detection and removal of micro/nano plastics in water[J]. Environmental Science, 2024, 45(2): 1210-1221.
[20] Blancho F, Davranche M, Hadri H E, et al. Nanoplastics identification in complex environmental matrices: strategies for polystyrene and polypropylene[J]. Environmental Science & Technology, 2021, 55(13): 8753-8759.
[21] Devi M K, Karmegam N, Manikandan S, et al. Removal of nanoplastics in water treatment processes: A review[J]. Science of the Total Environment, 2022, 845. DOI:10.1016/j.scitotenv.2022.157168
[22] Singh S, Naik T S S K, Anil A G, et al. Micro (nano) plastics in wastewater: a critical review on toxicity risk assessment, behaviour, environmental impact and challenges[J]. Chemosphere (Oxford), 2022, 290. DOI:10.1016/j.chemosphere.2021.133169
[23] Estahbanati M R K, Kiendrebeogo M, Mostafazadeh A K, et al. Treatment processes for microplastics and nanoplastics in waters: state-of-the-art review[J]. Marine Pollution Bulletin, 2021, 168. DOI:10.1016/j.marpolbul.2021.112374
[24] Song K, Xue Y P, Li L, et al. Impact and microbial mechanism of continuous nanoplastics exposure on the urban wastewater treatment process[J]. Water Research (Oxford), 2022, 223. DOI:10.1016/j.watres.2022.119017
[25] Tang S J, Qian J, Wang P F, et al. Exposure to nanoplastic induces cell damage and nitrogen inhibition of activated sludge: evidence from bacterial individuals and groups[J]. Environmental Pollution, 2022, 306. DOI:10.1016/j.envpol.2022.119471
[26] Alvim C B, Ferrer-Polonio E, Bes-Piá M A, et al. Effect of polystyrene nanoplastics on the activated sludge process performance and biomass characteristics. A laboratory study with a sequencing batch reactor[J]. Journal of Environmental Management, 2023, 329. DOI:10.1016/j.jenvman.2022.117131
[27] 陈佼, 唐艺, 黄琴, 等. 外源微塑料输入对SBR系统污水处理性能的影响[J]. 成都工业学院学报, 2023, 26(5): 1-7.
Chen J, Tang Y, Huang Q, et al. Influence of exogenous micro-plastics input on sewage treatment performance of SBR systems[J]. Journal of Chengdu Technological University, 2023, 26(5): 1-7.
[28] Seeley M E, Song B, Passie R, et al. Microplastics affect sedimentary microbial communities and nitrogen cycling[J]. Nature Communications, 2020, 11(1). DOI:10.1038/s41467-020-16235-3
[29] Wei W, Hao Q, Chen Z J, et al. Polystyrene nanoplastics reshape the anaerobic granular sludge for recovering methane from wastewater[J]. Water Research (Oxford), 2020, 182. DOI:10.1016/j.watres.2020.116041
[30] Wang C, Wei W, Chen Z J, et al. Polystyrene microplastics and nanoplastics distinctively affect anaerobic sludge treatment for hydrogen and methane production[J]. Science of the Total Environment, 2022, 850. DOI:10.1016/j.scitotenv.2022.158085
[31] Fu S F, Ding J N, Zhang Y, et al. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system[J]. Science of the Total Environment, 2018, 625: 64-70. DOI:10.1016/j.scitotenv.2017.12.158
[32] Wang Y, Ji X M, Jin R C. How anammox responds to the emerging contaminants: Status and mechanisms[J]. Journal of Environmental Management, 2021, 293. DOI:10.1016/j.jenvman.2021.112906
[33] Wang H, Qiu C, Bian S C, et al. The effects of microplastics and nanoplastics on nitrogen removal, extracellular polymeric substances and microbial community in sequencing batch reactor[J]. Bioresource Technology, 2023, 379. DOI:10.1016/j.biortech.2023.129001
[34] 吕宇华. 微塑料短期暴露下的厌氧氨氧化菌响应[D]. 大连: 大连交通大学, 2023.
Lv Y H. Anammox bacteria response to short-term exposure to microplastics[D]. Dalian: Dalian Jiaotong University, 2023.
[35] Li L, Song K, Yeerken S, et al. Effect evaluation of microplastics on activated sludge nitrification and denitrification[J]. Science of the Total Environment, 2020, 707. DOI:10.1016/j.scitotenv.2019.135953
[36] Atuanya E I, Udochukwu U, Dave-Omoregie A O. Bioavailability and toxicity of plastic contaminants to soil and soil bacteria[J]. Microbiology Research Journal International, 2016, 13(6): 1-8.
[37] Caruso G, Peda C, Cappello S, et al. Effects of microplastics on trophic parameters, abundance and metabolic activities of seawater and fish gut bacteria in mesocosm conditions[J]. Environmental Science and Pollution Research International, 2018, 25(30): 30067-30083. DOI:10.1007/s11356-018-2926-x
[38] Judy J D, Williams M, Gregg A, et al. Microplastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota[J]. Environmental Pollution, 2019, 252: 522-531. DOI:10.1016/j.envpol.2019.05.027
[39] 孙洪伟, 陈翠忠, 吴长峰, 等. 温度对SBR生物脱氮效能及胞外聚合物的影响[J]. 环境科学, 2017, 38(11): 4648-4655.
Sun H W, Chen C Z, Wu C F, et al. Effect of temperature on nitrogen removal performance and the extracellular polymeric substance (EPS) in a sequencing batch reactor (SBR)[J]. Environmental Science, 2017, 38(11): 4648-4655.
[40] Zhou C S, Wu J W, Ma W L, et al. Responses of nitrogen removal under microplastics versus nanoplastics stress in SBR: Toxicity, microbial community and functional genes[J]. Journal of Hazardous Materials, 2022, 432. DOI:10.1016/j.jhazmat.2022.128715
[41] Sun X D, Yuan X Z, Jia Y B, et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana[J]. Nature Nanotechnology, 2020, 15(9): 755-760. DOI:10.1038/s41565-020-0707-4
[42] 国家环境保护总局. 水和废水监测分析方法[M]. (第四版). 北京: 中国环境科学出版社, 2002.
[43] 伍玲丽. 纳米银对Pseudomonas stutzeri毒性及土壤反硝化作用的影响[D]. 合肥: 安徽农业大学, 2020.
Wu L L. Effects of silver nanoparticles on the toxicity of Pseudomonas stutzeri and soil denitrification[D]. Hefei: Anhui Agricultural University, 2020.
[44] Feng L J, Sun X D, Zhu F P, et al. Nanoplastics promote microcystin synthesis and release from cyanobacterial Microcystis aeruginosa [J]. Environmental Science & Technology, 2020, 54(6): 3386-3394.
[45] Wu L L, Zhu G S, Zhang X X, et al. Silver nanoparticles inhibit denitrification by altering the viability and metabolic activity of Pseudomonas stutzeri [J]. Science of the Total Environment, 2020, 706. DOI:10.1016/j.scitotenv.2019.135711
[46] 陈亚松. 综合污水处理厂深度脱氮的优化运行与微生态机理研究[D]. 南京: 南京大学, 2019.
Chen Y S. Operation optimization and microecological mechanism for further enhancing nitrogen removal in integrated wastewater treatment plant[D]. Nanjing: Nanjing University, 2019.
[47] Yang X Y, He Q, Guo F C, et al. Nanoplastics disturb nitrogen removal in constructed wetlands: responses of microbes and macrophytes[J]. Environmental Science & Technology, 2020, 54(21): 14007-14016.
[48] 袁传军. 不可一笑置之的笑气——一氧化二氮[J]. 化学通报, 2023, 86(2): 244-248.
Yuan C J. Nitrous oxide: laughing gas should not be laughed off[J]. Chemistry, 2023, 86(2): 244-248.
[49] 郝晓地, 杨振理, 于文波, 等. 污水处理过程N2O排放: 过程机制与控制策略[J]. 环境科学, 2023, 44(2): 1164-1173.
Hao X D, Yang Z L, Yu W B, et al. N2O emission from the processes of wastewater treatment: mechanisms and control strategies[J]. Environmental Science, 2023, 44(2): 1164-1173.
[50] 陈标华, 田梦, 徐瑞年. 化工生产中温室气体N2O排放与工业化减排技术[J]. 环境工程, 2023, 41(10): 82-90.
Chen B H, Tian M, Xu R N. Greenhouse gas N2O emissions in chemical production and industrial abatement technologies[J]. Environmental Engineering, 2023, 41(10): 82-90.