环境科学  2024, Vol. 45 Issue (10): 6104-6111   PDF    
瓶装水中微塑料与邻苯二甲酸酯的含量及健康风险
梁潇戈, 郭睿瑶, 苏梦飞, 杨雪晶, 姚波, 崔建升     
河北科技大学环境科学与工程学院, 石家庄 050018
摘要: 为研究瓶装水中微塑料(MPs)和邻苯二甲酸酯(PAEs)的含量及健康风险.采用玫瑰孟加拉红染色法-立体显微镜对MPs进行定量分析, 使用气相色谱串联三重四极杆质谱(GC-MS/MS)对7种PAEs进行定性及定量检测, 对MPs日摄入量进行了估计, 并运用健康风险评价模型对PAEs的致癌风险和非致癌风险进行了评价.结果表明, 21种瓶装水中MPs丰度为48 ~216 n·L-1(中位数为88 n·L-1);MPs形状大部分(72.1%)呈纤维状, 碎片状仅占27.9%;小尺寸(10~50 μm)MPs的平均占比为33.9%, 大尺寸MPs(> 500 μm)的平均占比为4.3%;大部分MPs为蓝色. 21种瓶装水中ρ(∑PAEs)为1.15~2.47 μg·L-1(平均值为1.62 μg·L-1), 其中邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)的检出率为100%, 邻苯二甲酸丁酯(BBP)和邻苯二甲酸二正辛酯(DNOP)检出率较低.DBP、DEHP和DEP浓度均低于我国饮用水标准限值. 60℃ 10 d迁移条件下ρ(∑PAEs)为0.61~2.04 μg·L-1(平均值为1.33 μg·L-1), 其中迁移出的DBP和DEHP含量均在允许范围内.7种PAEs在瓶身、瓶盖中均被检出, 瓶身中DEHP的平均添加量最高, 而瓶盖中DBP最高.估计人类不同年龄段通过饮用瓶装水的MPs摄入量(EDI)为:成人2.87 n·(kg·d)-1、儿童3.87 n·(kg·d)-1和婴儿5.85 n·(kg·d)-1.健康风险评价结果显示, 21种瓶装水样品及迁移实验条件下DEHP的致癌风险都小于最大可接受风险水平(1×10-6), 且PAEs的非致癌风险指数(HIs)均小于1, 表明不会对人体产生非致癌风险, 但婴儿、儿童的风险值高于成人.
关键词: 瓶装水      微塑料(MPs)      邻苯二甲酸酯(PAEs)      迁移      健康风险     
Content and Health Risks of Microplastics and Phthalate Esters in Bottled Water
LIANG Xiao-ge , GUO Rui-yao , SU Meng-fei , YANG Xue-jing , YAO Bo , CUI Jian-sheng     
School of Environmental Science and Engineering, Hebei University of Science and Tecnology, Shijiazhuang 050018, China
Abstract: To study the content and health risks of microplastics (MPs) and phthalate esters (PAEs) in bottled water, a quantitative analysis of MPs was conducted by using Rose Bengal staining and stereomicroscopy. Seven PAEs were quantified by using gas chromatography-triple quadrupole tandem mass spectrometry (GC-MS/MS). The daily intake of MPs was estimated and the carcinogenic and non-carcinogenic risks of PAEs were evaluated through a health risk assessment model. The results showed that the abundance of MPs in 21 bottled waters ranged from 48 n·L-1 to 216 n·L-1 (with the median abundance of 88 n·L-1). The majority (72.1%) of MPs were fibrous in shape, and fragments accounted for only 27.9%. The average proportion of small-sized (10-50 μm) MPs was 33.9%, and that of large-sized MPs (> 500 μm) was 4.3%. Most MPs were blue. The ∑PAEs in bottled water was 1.15-2.47 μg·L-1 (average 1.62 μg·L-1). PAEs detected with high frequencies (100%) included dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), di-n-butyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP), while the detection frequencies of butylbenzyl phthalate (BBP) and di-n-octyl phthalate (DNOP) were relatively low. The concentrations of DBP, DEHP, and DEP were all below the standard limits for drinking water in China. The ∑PAEs in the migration experiments was 0.61-2.04 μg·L-1 (average 1.33 μg·L-1). The migration amounts of DBP and DEHP were also within the allowable range under the condition of 60℃ for 10 days. Seven PAEs were detected in both the bottles and caps, and the average content of DEHP in bottles was the highest, while DBP had the highest content in caps. The estimated intake of MPs (EDI) by drinking bottled water in different age groups of humans was 2.87 n·(kg·d)-1 for adults, 3.87 n·(kg·d)-1 for children, and 5.85 n·(kg·d)-1 for infants. The carcinogenic risks of DEHP in 21 bottled water samples and the migration test were less than the maximum acceptable risk level (1×10-6), and the non-carcinogenic risk indices (HIs) of PAEs were all less than 1, indicating no non-carcinogenic risk to humans; however, the risk value of infants and children was higher than that of adults and should not be ignored.
Key words: bottled water      microplastics(MPs)      phthalate esters(PAEs)      migrate      health risks     

微塑料(microplastics, MPs)被定义为塑料材料的副产物, 其尺寸分布范围介于1 μm~5 mm[1].MPs广泛存在于环境和海洋动物中, 并可进入食物链对包括人类在内的高营养水平生物构成威胁[2, 3].摄入、吸入和皮肤接触是人类接触MPs的主要途径[4].目前, 已有研究报道了人体肺组织和胎盘中可检出MPs[5, 6].Zhang等[7]在人体粪便中检出多种MPs, 并发现包装水和饮料的摄入量与粪便中的MPs丰度间存在一定的相关性.饮用瓶装水已成为MPs进入人体的直接途径[8].

聚对苯二甲酸乙二醇酯(polyethylene terephthalate, PET)热塑性塑料由于其不透水、不透湿和不透细菌的高性能, 被广泛用于瓶装水等各种食品和饮料包装[9, 10].为了改善聚合物的性能, 通常需要在聚合物中添加多种塑料添加剂, 如增塑剂、阻燃剂和抗氧化剂等[11, 12].其中, 添加最广泛和用量最大的为邻苯二甲酸酯(phthalate esters, PAEs)[13].PAEs被广泛用作增塑剂, 以提高塑料产品的灵活性[14]、耐久性和易加工性[15].塑料老化过程中PAEs易从塑料载体上迁移至环境或生物体内[16]. PAEs对生态和人类健康的影响主要与干扰生物内分泌系统有关.作为内分泌干扰物[17], 大多数PAEs可对发育、代谢、神经、免疫和生殖产生影响.为此, 美国环保署已经将邻苯二甲酸二甲酯(dimethyl phthalate, DMP)、邻苯二甲酸二乙酯(diethyl phthalate, DEP)、邻苯二甲酸二丁酯(di-n-butyl phthalate, DBP)、邻苯二甲酸丁酯(butylbenzyl phthalate, BBP)、邻苯二甲酸二(2-乙基己基)酯[di(2-ethylhexyl)phthalate, DEHP]和邻苯二甲酸二辛酯(di-n-octyl phthalate, DNOP)列为优先环境污染物[18].此外, DEHP已被国际癌症研究机构认定为可能的人类致癌物(2B组)[19].

PET材质中的PAEs不与塑料聚合物基体发生化学结合, 易从塑料包装中浸出至水中[20].同时, 紫外光照射、热、机械和化学磨损可导致聚合物中的化学键断裂, 从而使MPs从塑料上释放[9].目前, 仅有少数研究报道了瓶装水中MPs或PAEs的浓度, 而关于瓶装水中MPs与PAEs复合污染问题的研究几乎空白.为此, 本研究选取21种瓶装水作为研究对象, 分析其中MPs及PAEs的含量, 并检验其包装材质在60℃ 10 d极限实验条件下PAEs的迁移情况, 同时估算人类通过饮用瓶装水的MPs摄入量, 并评价PAEs的人体健康风险.

1 材料与方法 1.1 试剂与仪器

主要试剂:7种PAEs混合标准溶液包括DMP、DEP、DIBP、DBP、BBP、DEHP和DNOP(1 000 mg·L-1, 安谱, 中国);乙酸乙酯(HPLC级, Merck, 德国)、甲醇(HPLC级, J.T Barker, 美国)和正己烷(HPLC级, J.T Barker, 美国);高纯氮气(99.99%);高纯氦气(99.99%);玫瑰孟加拉红生物染色剂(95%, 阿拉丁, 中国);玻璃纤维滤膜(47 mm×0.7 μm, Whatman, 英国);有机相滤膜(13 mm×0.22 μm, 安谱, 中国).

主要仪器:气相色谱串联三重四极杆质谱仪(GC-MS TQ8040, 岛津, 日本);SH-Rxi-5Sil MS气相色谱柱(30 m×0.25 mm, 0.25 μm, 岛津, 日本);固相萃取仪(Supelco, 美国);C18 固相萃取柱(500 mg, Waters, 美国);氮吹仪(Organomation, 美国)、烘箱(上海一恒, 中国)、超声机(新芝, 中国)、平行浓缩仪(BUCHI Syncore, 瑞士)、超纯水机(Milli-Q IQ7000, Merck, 德国)和立体显微镜(Nikon, 日本).

1.2 样品采集与制备

购买21种品牌的瓶装水作为研究对象, 所选瓶装水几乎涵盖石家庄市商超中所有在售瓶装水品牌.根据水源将其分为包装饮用水(9种)和天然矿泉水(12种), 分别标注为PD1~PD9和NM1~NM12, 共21个包装瓶, 瓶身均为PET材质, 瓶盖均为HDPE材质.样品到达实验室后4℃避光保存, 于24 h内完成前处理.

为研究瓶装水中PAEs浓度是否符合《食品安全食品接触材料和产品添加剂使用国家标准》(GB 9685-2016)[21]要求, 根据《食品接触材料及制品迁移试验通则》(GB 31604.1-2015)[22], 采用特定迁移升温加速实验模拟最严苛的储存条件, 即每个品牌的包装瓶中重新装入超纯水置于60℃的恒温培养箱中10 d后测定PAEs含量.

1.3 样品前处理

MPs前处理[23, 24]:在通风橱中打开样品瓶, 每100 mL样品注入1 mL含有玫瑰孟加拉红生物染色剂(染色剂已过玻璃纤维滤膜, 工作浓度为0.2 mg·mL-1)的溶液, 盖上瓶盖静置30 min.然后用玻璃纤维滤膜对瓶装水进行真空过滤.滤膜保存在有盖的玻璃培养皿中, 60℃烘箱干燥2 h后待测.

水体样品前处理[25]:C18固相萃取柱依次用6.0 mL乙酸乙酯、6.0 mL甲醇和10.0 mL超纯水活化, 然后将1 L水样以3 mL·min-1流速进行富集, 样品富集完成后, 真空干燥, 除多余水分后用15 mL乙酸乙酯洗脱, 收集洗脱液, 用高纯氮气缓慢吹至小于1 mL, 转移至进样小瓶, 用乙酸乙酯定容至1 mL待测.

固体样品前处理:瓶身或瓶盖剪碎至单个碎片直径≤0.2 cm, 混合均匀, 准确称取0.5 g于锥形瓶中, 加入20 mL正己烷, 超声提取60 min后过滤, 残渣再用20 mL正己烷重复提取1次, 合并滤液用平行浓缩仪浓缩, 浓缩至1 mL, 过0.45 μm有机相滤膜待测.

1.4 仪器分析

MPs:采用立体显微镜对MPs进行定量和定性分析, 通过视觉检查记录MPs的数量及其大小、形状和颜色.

PAEs:采用GC-MS/MS对目标化合物进行定性及定量分析, 进样口温度为250℃;进样方式为不分流进样;载气为氦气, 恒线速度为37 cm·s-1;升温程序为:初始柱温90℃保持1 min, 以15℃·min-1升至210℃保持2 min后以5℃·min-1升至250℃保持5 min, 最后以25℃·min-1升至300℃保持4 min;接口温度为280℃, 离子源(EI)温度为230℃, 采用多反应监测(MRM)模式进行分析.

1.5 质量保证与质量控制

为避免实验室背景污染, 整个过程在通风橱进行, 穿着棉质实验服、佩戴丁腈手套.使用去离子水冲洗3次玻璃器皿和工具.为确保滤纸不受污染, 通过光学显微镜观察, 并在每次过滤前捕获图像.此外, 去离子水的实验空白与实际样品并行分析, 以确认样品处理过程中可能发生的任何额外污染.

本研究中PAEs采用方法空白、空白加标和外标法进行质量控制.每10个样品设置一个空白样品进行空白校正;7种PAEs的加标回收率为65%~128%;各目标化合物在0.1~1 000 μg·L-1浓度范围内标准曲线相关系数大于0.995;方法检出限和定量限分别为0.01~5 ng·L-1和0.01~10 ng·L-1.

1.6 健康风险评价

MPs健康风险评价用以下公式计算瓶装水中MPs的估计日摄入量:

(1)

PAEs健康风险评价研究采用美国环保署(USEPA)推荐的水环境健康风险评价模型, 分别评估了通过饮用水途径暴露的DEHP致癌风险和∑PAEs非致癌风险.通过饮用水摄入的日均PAEs剂量(CDI)可以通过公式(2)计算:

(2)

通过饮用水途径暴露的DEHP致癌风险(R)通过公式(3)和公式(4)计算:

(3)
(4)

PAEs非致癌风险采用危险指数(HI)进行评估, 通过公式(5)计算:

(5)

HI小于1表示没有健康风险.

将人群分为3个年龄组, 分别为成人(> 18岁)、儿童(3~18岁)和婴儿(0~3岁)[26], 以上公式中参数取值详见表 1.

表 1 公式中各参数含义、参考取值及其单位 Table 1 Meanings, reference values, and units of each parameter in the formula

2 结果与讨论 2.1 瓶装水MPs丰度

使用立体显微镜分析了瓶装水样品中MPs的数量, 检出情况如图 1所示. 21个样品中, 均有MPs检出, MPs丰度为48~216 n·L-1, 丰度中位数为88 n·L-1.包装饮用水(丰度为48~152 n·L-1, 丰度中位数为96 n·L-1)与天然矿泉水(48~216 n·L-1, 丰度中位数为80 n·L-1)之间无显著差异, 但较大尺寸MPs(300~500 μm、500~1 000 μm)在包装饮用水(66.7%、55.6%)中的检出率高于天然矿泉水(45.5%、27.3%).

圆环上的数值表示丰度, 单位为n·L-1;线条颜色表示不同样品, 线条宽度表示占比大小 图 1 瓶装水MPs丰度 Fig. 1 Abundance of MPs in bottled water

72.1%的MPs呈纤维状, 而碎片状只占27.9%, 其中少量MPs为薄膜状, 由于视觉观察的主观性, 本研究将薄膜状MPs归类为碎片状.这一结果与Zhou等[27]和Kankanige等[28]的研究结论一致, 即纤维状是瓶装水中占优势的MPs.检出的MPs中, 大部分为蓝色, 其次是透明、黑色、黄色.其中, 检出频率最高的为蓝色纤维状MPs, 在21瓶水样中均有检出.本研究中典型MPs形态和颜色如图 2所示.

(a)和(c)蓝色纤维状, (b)黑色碎片状, (d)透明纤维状 图 2 瓶装水中典型MPs形态和颜色 Fig. 2 Typical forms and colors of MPs in bottled water

检出的MPs直径范围为10.64~837.98 μm, 中位数68.81 μm.按粒径将MPs分为5组(10~50、50~100、100~300、300~500和 > 500 μm), 则瓶装水中10~50 μm MPs的平均占比为(33.9 ± 23.0)%, 大尺寸MPs(> 500 μm)的平均占比为(4.3 ± 5.8)%.这一结果与Li等[26]对7个一次性塑料瓶和3个玻璃瓶进行的MPs调查一致, 即10~50 μm MPs平均占比最高.同样, Makhdoumi等[23]研究发现存在于矿泉水中的MPs, 6.5~100 μm的占比高达95%.总之, 目标瓶装水被较小尺寸的聚合物颗粒严重污染, 而越小尺寸的MPs对人体的危害相对越大[29].

瓶装水中MPs可能来自水源、生产及包装.Winkler等[30]发现包装产生的MPs主要来自于打开和关闭瓶盖的过程, 而挤压瓶身不会造成MPs丰度显著增加. Li等[26]在玻璃瓶装水中检出了MPs[(87.94 ± 46.38)n·L-1], 该研究揭示出水源和生产过程均是瓶装水中MPs的潜在来源.

2.2 瓶装水PAEs浓度

瓶装水中7种PAEs均检出, 结果如图 3所示.21种瓶装水中ρ(∑PAEs)为1.15~2.47 μg·L-1, 其中包装饮用水和天然矿泉水的浓度平均值分别为1.53 μg·L-1和1.69 μg·L-1. DMP、DEP、DIBP、DBP和DEHP检出率为100%, 其中DBP浓度最高, 为(0.72 ± 0.19)μg·L-1, 其次为DIBP[(0.65 ± 0.14)μg·L-1]、DMP[(0.15 ± 0.04)μg·L-1]、DEHP[(0.06 ± 0.03)μg·L-1]和DEP[(0.04 ± 0.02)μg·L-1)]. BBP(0.04~0.69 ng·L-1, 47.6%)和DNOP(0.51~0.79 ng·L-1, 19.1%)检出浓度和频率较低. DBP、DEHP和DEP的浓度均远低于《生活饮用水卫生标准》(GB 5749-2022)的限值(三者分别为3、8和0.3 mg·L-1).

图 3 瓶装水中PAEs浓度 Fig. 3 Concentration of PAEs in bottled water

本研究检测出的PAEs种类多于大部分国家及地区报道种类, 但少于越南, 越南11种瓶装水中共检测出10种PAEs, ρ(∑PAEs)为1.79~10.7 μg·L-1, 其中DBP和DIBP为浓度最大的两种PAEs, 该结果与本研究的一致[31].相比之下, 伊朗瓶装水中共检测出5种PAEs, ρ(∑PAEs)为(0.96 ± 0.10)μg·L-1, 种类及浓度均低于本研究[14];而天津检测的瓶装水中3种PAEs总浓度为(1.96 ± 0.16)μg·L-1, 其中DEHP为主要PAE, BBP浓度高于DBP, 与本研究的差异较大[32].

从PAEs组成来看, DBP和DIBP是造成瓶装水中PAEs浓度差异的主要原因, 且不同厂家的包装瓶对DBP和DIBP的贡献能力差异较大.一方面, 不同厂家PET瓶中PAEs的添加量和浸出能力存在差异[32], 另一方面, 瓶装水虽均是在保质期内测定, 由于存放时间不同也导致了浸出浓度不同.

本研究发现MPs与PAEs在瓶装水中共存, 造成复合污染.但瓶装水中MPs与PAEs之间未发现统计学上的相关性.而垃圾渗滤液、城市径流、污水处理厂以及海水中的MPs和PAEs呈正相关[33~36], 且瓶装水中MPs和PAEs间的相关性尚未见报道.瓶装水中MPs及PAEs的主要来源均为水源、生产及包装, 生产及包装过程中通过与塑料材质接触可将MPs及PAEs引入瓶装水, 由于MPs(化学结合)及PAEs(范德华力或氢键)与塑料聚合物的结合方式不同, PAEs易从塑料材质浸出至水中[37, 38], 而MPs的释放则需通过一定的能量使塑料材质化学键断裂, 这可能是造成瓶装水中未发现两者相关性的主要原因.

2.3 PAEs迁移浓度

60℃ 10 d处理后, 21种瓶装水中7种PAEs均被检出, DMP、DEP、DIBP、DBP和DEHP检出率为100%, BBP检出率为66.7%, DNOP检出率小于5%.ρ(∑PAEs)为0.61~2.04 μg·L-1, DBP迁移浓度均最高[(0.76 ± 0.27)μg·L-1], 其次为DIBP[(0.35 ± 0.12)μg·L-1], 且66.7%的瓶装水中∑PAEs浓度低于原始水样(图 4).

图 4 瓶装水PAEs迁移浓度 Fig. 4 Concentration of PAEs migration in bottled water

与原始水样相比, BBP的检出率与浓度均有增加, 浓度平均值由0.11 ng·L-1升至1.53 ng·L-1, 说明高温可促进BBP迁移释放.已有研究表明, 高温不仅会加速塑料中PAEs渗入瓶装水, 还会使重金属含量超标以及微生物量增加, 对人体健康造成影响[39].同样, Gerassimidou等[40]认为, 温度升高、储存时间延长和紫外线照射会增加PAEs的迁移.此外, 高温可促进被丢弃的一次性瓶装水包装瓶中PAEs向水环境迁移, 进而可对环境造成的一定负担, 危害水生生物健康, 长时间会出现生物积累现象, 传向更高级食物链.因此, 废弃的一次性瓶装水包装瓶应当进行合理处置[41].此外, 19.0%的原始水样检测到DNOP, 而对应品牌在迁移实验中均无DNOP检出, 说明DNOP可能来自于水源、过滤生产等过程.

根据《食品接触材料及制品用添加剂使用标准》(GB 9685-2016), 只有DBP和DEHP可被用于食品接触材料及制品, 同时规定DEHP和DBP的特定迁移限量(SML)分别为1.5 mg·kg-1和0.3 mg·kg-1.本研究测得DBP[(756.22 ± 274.42)ng·kg-1]和DEHP[(76.12 ± 59.83)ng·kg-1]的SML均远低于国标限值.然而, 迁移实验中仍检测出大量DMP、DEP、DIBP以及少量DNOP、BBP.

2.4 瓶身和瓶盖中PAEs含量

瓶身和瓶盖中7种PAEs均被检出, DMP、DEP、DIBP、DBP和DEHP检出率均为100%, ω(∑PAEs)分别为0.49~3.13 μg·g-1和2.10~7.58 μg·g-1. DBP在瓶身中检出率均小于30%, 而在瓶盖中的检出率大于70%;76.2%的瓶身中DEHP的贡献率最大, DBP次之. 76.2%的瓶盖中DBP的贡献率最大, 近50%的瓶盖中DEHP贡献率居前2位(图 5).

(a)瓶身, (b)瓶盖 图 5 瓶身和瓶盖中PAEs质量分数 Fig. 5 Mass fraction of PAEs in bottle body and bottle cap

瓶身、瓶盖中DEHP含量较高, 而原始水样及迁移实验中测得的DEHP含量占总PAEs的比例均较低, 说明DEHP不易从瓶装水包装塑料中迁移释放.已有研究证明塑料中有机物的释放速率与分子大小有关, DEHP分子量较大故迁移速率较分子量小的PAEs慢, 且DEHP较强的疏水性也可能阻止其从塑料中迁移到水体中[14, 42].

根据《食品接触材料及制品用添加剂使用标准》(GB 9685-2016), 瓶身、瓶盖中DEHP和DBP的含量(均小于0.001%)均远低于标准限值(5%).其余6种未被允许添加的PAEs在本研究中均被检出, 有可能是由于PET包装生产过程中PAEs的不规范使用, 也可能是在PET被使用过程中杂质和反应副产物或添加剂的降解所致[40].

2.5 MPs摄入量及PAEs健康风险 2.5.1 MPs摄入量估计

根据不同品牌瓶装水中MPs的平均丰度, 以及MPs摄入量[成人2.87 n·(kg·d)-1、儿童3.87 n·(kg·d)-1和婴儿5.85 n·(kg·d)-1], 可以粗略估计, 随着瓶装水摄入量的增加, 从婴儿到成人的MPs摄取量也在增加;相反, 由于婴儿的单位体重摄水量较高, 其可能通过饮用瓶装水暴露于更高的MPs负荷.但影响EDI的参数很多, 包括瓶材的消费行为和质量.因此, 需要进一步地研究来确定饮用水中MPs的每日允许摄入量.

2.5.2 PAEs致癌风险、非致癌风险评价

对DEHP可能引起的致癌风险(R)和∑PAEs引起的非致癌风险(HIs)进行评估, 结果如图 6所示.原始水样及迁移实验中DEHP的致癌风险均低于最大可接受风险水平(即1×10-6), 表明瓶装水中的DEHP不会构成严重的安全隐患.同时, HIs远小于1, 说明通过饮用瓶装水摄入的PAEs对人体的非致癌性健康风险可以忽略不计.对于成人, 原始水样中PAEs平均致癌风险为2.77×10-8、非致癌风险为4.18×10-4, 而在迁移实验中PAEs平均致癌风险为3.55×10-8、非致癌风险为4.66×10-4.与原始水样相比, 迁移实验中PAEs致癌风险、非致癌风险均有所增加.主要原因是DEHP等PAEs在高温下更容易从塑料包装迁移到水中[43].

图 6 瓶装水中PAEs致癌风险和非致癌风险 Fig. 6 Carcinogenic risks and non-carcinogenic risks of PAEs in bottled water

值得注意的是, 同一条件下, PAEs对婴儿和儿童的风险高于成人, 其中, 婴儿时期的R和HIs约为成人时期的2倍.对于儿童尤其是婴儿, 比成年人更容易受到这些化学物质的影响, 可能造成早熟、多动症等危害[44].

本研究中瓶装水中PAEs的迁移实验是短期进行的, 很难完全反映保质期1 a以上以及各种储存温度条件下的储存情况.因此, 人们应当避免饮用在高温下储存的瓶装水, 例如在炎热天气下暴露的汽车中储存的瓶装水.此外, 瓶装水在常温下长期储存也会增加人体健康风险.即使在低剂量的长期慢性暴露下, 最终也会导致相当大的健康风险[45].

3 结论

(1)21种瓶装水中MPs丰度介于48~216 n·L-1;MPs大部分呈纤维状;小尺寸(10~50 μm)MPs污染较为严重;大部分MPs为蓝色.

(2)21种瓶装水中DMP、DEP、DIBP、DBP和DEHP均被检出, BBP和DNOP少量检出, ρ(∑PAEs)为1.15~2.47 μg·L-1(平均值为1.62 μg·L-1), 且DBP、DEHP和DEP的浓度均远低于饮用水标准限值.

(3)迁移实验测得DBP和DEHP的SML均远低于食品接触材料限值, 其余未被允许添加的PAEs也被大量检出, 如DMP、DEP和DIBP.

(4)婴儿和儿童的MPs摄入量高于成人, PAEs致癌风险小于最大可接受水平, 不会对人体产生非致癌风险, 但婴儿和儿童的风险值高于成人, 需引起重视.

参考文献
[1] Koelmans A A, Nor N H M, Hermsen E, et al. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality[J]. Water Research, 2019, 155: 410-422. DOI:10.1016/j.watres.2019.02.054
[2] Corami F, Rosso B, Sfriso A A, et al. Additives, plasticizers, small microplastics (< 100 μm), and other microlitter components in the gastrointestinal tract of commercial teleost fish: Method of extraction, purification, quantification, and characterization using Micro-FTIR[J]. Marine Pollution Bulletin, 2022, 177. DOI:10.1016/j.marpolbul.2022.113477
[3] Schirinzi G F, Pérez-Pomeda I, Sanchís J, et al. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells[J]. Environmental Research, 2017, 159: 579-587. DOI:10.1016/j.envres.2017.08.043
[4] Muhib I, Uddin K, Rahman M, et al. Occurrence of microplastics in tap and bottled water, and food packaging: A narrative review on current knowledge[J]. Science of the Total Environment, 2023, 865. DOI:10.1016/j.scitotenv.2022.161274
[5] Prata J C. Airborne microplastics: Consequences to human health?[J]. Environmental Pollution, 2018, 234: 115-126. DOI:10.1016/j.envpol.2017.11.043
[6] Liu S J, Guo J L, Liu X Y, et al. Detection of various microplastics in placentas, meconium, infant feces, breastmilk and infant formula: A pilot prospective study[J]. Science of the Total Environment, 2023, 854. DOI:10.1016/j.scitotenv.2022.158699
[7] Zhang N, Li Y B, He H R, et al. You are what you eat: Microplastics in the feces of young men living in Beijing[J]. Science of the Total Environment, 2021, 767. DOI:10.1016/j.scitotenv.2020.144345
[8] Praveena S M, Laohaprapanon S. Quality assessment for methodological aspects of microplastics analysis in bottled water -A critical review[J]. Food Control, 2021, 130. DOI:10.1016/j.foodcont.2021.108285
[9] Huang Y H, Wong K K, Li W, et al. Characteristics of nano-plastics in bottled drinking water[J]. Journal of Hazardous Materials, 2022, 424. DOI:10.1016/j.jhazmat.2021.127404
[10] Arfaeinia L, Dobaradaran S, Nasrzadeh F, et al. Phthalate acid esters (PAEs) in highly acidic juice packaged in polyethylene terephthalate (PET) container: Occurrence, migration and estrogenic activity-associated risk assessment[J]. Microchemical Journal, 2020, 155. DOI:10.1016/j.microc.2020.104719
[11] Hammer J, Kraak M H S, Parsons J R. Plastics in the marine environment: the dark side of a modern gift[J]. Reviews of Environmental Contamination and Toxicology, 2012, 220: 1-44.
[12] Do A T N, Ha Y, Kwon J H. Leaching of microplastic-associated additives in aquatic environments: A critical review[J]. Environmental Pollution, 2022, 305. DOI:10.1016/j.envpol.2022.119258
[13] Gao H, Zhu B B, Tao X Y, et al. Temporal variability of cumulative risk assessment on phthalates in Chinese pregnant women: repeated measurement analysis[J]. Environmental Science & Technology, 2018, 52(11): 6585-6591.
[14] Abtahi M, Dobaradaran S, Torabbeigi M, et al. Health risk of phthalates in water environment: Occurrence in water resources, bottled water, and tap water, and burden of disease from exposure through drinking water in tehran, Iran[J]. Environmental Research, 2019, 173: 469-479. DOI:10.1016/j.envres.2019.03.071
[15] Zhang B T, Gao Y M, Lin C Y, et al. Spatial distribution of phthalate acid esters in sediments of the Laizhou Bay and its relationship with anthropogenic activities and geochemical variables[J]. Science of the Total Environment, 2020, 722. DOI:10.1016/j.scitotenv.2020.137912
[16] Paluselli A, Fauvelle V, Galgani F, et al. Phthalate release from plastic fragments and degradation in seawater[J]. Environmental Science & Technology, 2019, 53(1): 166-175.
[17] 弥启欣, 国晓春, 卢少勇, 等. 千岛湖水体中邻苯二甲酸酯(PAEs)的分布特征及健康风险评价[J]. 环境科学, 2022, 43(4): 1966-1975.
Mi Q X, Guo X C, Lu S Y, et al. Distribution characteristics and ecological and health risk assessment of phthalic acid esters in surface water of Qiandao lake, China[J]. Environmental Science, 2022, 43(4): 1966-1975.
[18] Deblonde T, Cossu-Leguille C, Hartemann P. Emerging pollutants in wastewater: A review of the literature[J]. International Journal of Hygiene and Environmental Health, 2011, 214(6): 442-448. DOI:10.1016/j.ijheh.2011.08.002
[19] Chen X P, Xu S S, Tan T F, et al. Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures[J]. International Journal of Environmental Research and Public Health, 2014, 11(3): 3156-3168. DOI:10.3390/ijerph110303156
[20] Ajay K, Behera D, Bhattacharya S, et al. Distribution and characteristics of microplastics and phthalate esters from a freshwater lake system in Lesser Himalayas[J]. Chemosphere, 2021, 283. DOI:10.1016/j.chemosphere.2021.131132
[21] GB 9685-2016, 食品安全国家标准食品接触材料及制品用添加剂使用标准[S].
[22] GB 31604.1-2015, 食品安全国家标准食品接触材料及制品迁移试验通则[S].
[23] Makhdoumi P, Amin A A, Karimi H, et al. Occurrence of microplastic particles in the most popular Iranian bottled mineral water brands and an assessment of human exposure[J]. Journal of Water Process Engineering, 2021, 39. DOI:10.1016/j.jwpe.2020.101708
[24] Ziajahromi S, Neale P A, Rintoul L, et al. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics[J]. Water Research, 2017, 112: 93-99. DOI:10.1016/j.watres.2017.01.042
[25] Li R L, Liang J, Gong Z B, et al. Occurrence, spatial distribution, historical trend and ecological risk of phthalate esters in the Jiulong River, Southeast China[J]. Science of the Total Environment, 2017, 580: 388-397. DOI:10.1016/j.scitotenv.2016.11.190
[26] Li H, Zhu L, Ma M D, et al. Occurrence of microplastics in commercially sold bottled water[J]. Science of the Total Environment, 2023, 867. DOI:10.1016/j.scitotenv.2023.161553
[27] Zhou X J, Wang J, Li H Y, et al. Microplastic pollution of bottled water in China[J]. Journal of Water Process Engineering, 2021, 40. DOI:10.1016/j.jwpe.2020.101884
[28] Kankanige D, Babel S. Smaller-sized micro-plastics (MPs) contamination in single-use PET-bottled water in Thailand[J]. Science of the Total Environment, 2020, 717. DOI:10.1016/j.scitotenv.2020.137232
[29] Wu B, Wu X M, Liu S, et al. Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells[J]. Chemosphere, 2019, 221: 333-341. DOI:10.1016/j.chemosphere.2019.01.056
[30] Winkler A, Santo N, Ortenzi M A, et al. Does mechanical stress cause microplastic release from plastic water bottles?[J]. Water Research, 2019, 166. DOI:10.1016/j.watres.2019.115082
[31] Le T M, Nguyen H M N, Nguyen V K, et al. Profiles of phthalic acid esters (PAEs) in bottled water, tap water, lake water, and wastewater samples collected from Hanoi, Vietnam[J]. Science of the Total Environment, 2021, 788. DOI:10.1016/j.scitotenv.2021.147831
[32] Wang C C, Huang P P, Qiu C S, et al. Occurrence, migration and health risk of phthalates in tap water, barreled water and bottled water in Tianjin, China[J]. Journal of Hazardous Materials, 2021, 408. DOI:10.1016/j.jhazmat.2020.124891
[33] Mohammadi A, Malakootian M, Dobaradaran S, et al. Occurrence, seasonal distribution, and ecological risk assessment of microplastics and phthalate esters in leachates of a landfill site located near the marine environment: Bushehr port, Iran as a case[J]. Science of the Total Environment, 2022, 842. DOI:10.1016/j.scitotenv.2022.156838
[34] Hajiouni S, Mohammadi A, Ramavandi B, et al. Occurrence of microplastics and phthalate esters in urban runoff: A focus on the Persian Gulf coastline[J]. Science of the Total Environment, 2022, 806. DOI:10.1016/j.scitotenv.2021.150559
[35] Wang R M, Ji M, Zhai H Y, et al. Occurrence of phthalate esters and microplastics in urban secondary effluents, receiving water bodies and reclaimed water treatment processes[J]. Science of the Total Environment, 2020, 737. DOI:10.1016/j.scitotenv.2020.140219
[36] Liu Y D, Li Z Z, Jalón-Rojas I, et al. Assessing the potential risk and relationship between microplastics and phthalates in surface seawater of a heavily human-impacted metropolitan bay in northern China[J]. Ecotoxicology and Environmental Safety, 2020, 204. DOI:10.1016/j.ecoenv.2020.111067
[37] Luo H W, Liu C Y, He D Q, et al. Effects of aging on environmental behavior of plastic additives: Migration, leaching, and ecotoxicity[J]. Science of the Total Environment, 2022, 849. DOI:10.1016/j.scitotenv.2022.157951
[38] 陈玉玉, 张光全, 张杨, 等. 甘肃省农业土壤邻苯二甲酸酯累积特征及来源分析[J]. 环境科学, 2022, 43(10): 4622-4629.
Chen Y Y, Zhang G Q, Zhang Y, et al. Accumulation characteristics and sources of PAEs in agricultural soils in Gansu Province[J]. Environmental Science, 2022, 43(10): 4622-4629.
[39] Umoafia N, Joseph A, Edet U, et al. Deterioration of the quality of packaged potable water (bottled water) exposed to sunlight for a prolonged period: An implication for public health[J]. Food and Chemical Toxicology, 2023, 175. DOI:10.1016/j.fct.2023.113728
[40] Gerassimidou S, Lanska P, Hahladakis J N, et al. Unpacking the complexity of the PET drink bottles value chain: A chemicals perspective[J]. Journal of Hazardous Materials, 2022, 430. DOI:10.1016/j.jhazmat.2022.128410
[41] He M J, Lu J F, Wang J, et al. Phthalate esters in biota, air and water in an agricultural area of western China, with emphasis on bioaccumulation and human exposure[J]. Science of the Total Environment, 2020, 698. DOI:10.1016/j.scitotenv.2019.134264
[42] Cao Y R, Lin H J, Zhang K, et al. Microplastics: A major source of phthalate esters in aquatic environments[J]. Journal of Hazardous Materials, 2022, 432. DOI:10.1016/j.jhazmat.2022.128731
[43] 朱冰清, 胡冠九, 纪轩禹, 等. 江苏省自来水中邻苯二甲酸酯的污染特征及风险评估[J]. 环境化学, 2023, 42(8): 2586-2593.
Zhu B Q, Hu G J, Ji X Y, et al. Pollution characteristics and health risk assessment of phthalate esters in tap water from Jiangsu Province[J]. Environmental Chemistry, 2023, 42(8): 2586-2593.
[44] Ercan O, Tarcin G. Overview on Endocrine disruptors in food and their effects on infant's health[J]. Global Pediatrics, 2022, 2. DOI:10.1016/j.gpeds.2022.100019
[45] Li Z K, Chang F Y, Shi P, et al. Occurrence and potential human health risks of semi-volatile organic compounds in drinking water from cities along the Chinese coastland of the Yellow Sea[J]. Chemosphere, 2018, 206: 655-662. DOI:10.1016/j.chemosphere.2018.05.064