环境科学  2024, Vol. 45 Issue (7): 4241-4250   PDF    
毛乌素沙地樟子松人工林根内真菌群落结构与功能时间动态特征
任悦1, 高广磊1,2,3,4,5, 丁国栋1,3,4,5, 张英1,3,4,5, 赵珮杉1     
1. 北京林业大学水土保持学院, 北京 100083;
2. 林木资源高效生产全国重点实验室, 北京 100083;
3. 宁夏盐池毛乌素沙地生态系统国家定位观测研究站, 盐池 751500;
4. 林业生态工程教育部工程研究中心, 北京 100083;
5. 水土保持国家林业和草原局重点实验室, 北京 100083
摘要: 为揭示毛乌素沙地樟子松人工林根内真菌群落结构和功能时间动态特征, 以毛乌素沙地不同林龄(23、33和44 a)樟子松人工林为研究对象, 采用高通量测序技术, 比较分析不同月份(4~9月)樟子松人工林根内真菌群落组成及其对环境因子的响应. 结果表明:①樟子松根内真菌群落分布存在明显的季节性, 月份对樟子松根内真菌多样性指数影响显著(P < 0.05), 在5月和7月较高;樟子松根内真菌多样性指数随林龄的增大而逐渐减小, 林龄对其的影响不显著. ②毛乌素沙地樟子松根内真菌优势菌门为子囊菌门(Ascomycota);不同营养型真菌相对丰度随月份变化, 优势类群为腐生-共生营养型真菌、未定义腐生菌和外生菌根真菌;5月、7月和9月的指示外生菌根真菌分别为囊蘑属(Melanoleuca)、缘腺革菌属(Amphinema)和口蘑属(Tricholoma). ③毛乌素沙地樟子松根内真菌群落分布受年均相对湿度、年均降水量、土壤孔隙度、土壤铵态氮、年均日照时数、年均温和土壤含水量的显著影响(P < 0.05), 指示菌种主要受土壤有机碳含量、孔隙度、年均降水量和年均空气湿度的影响. 气候和土壤性质等环境因子的变化塑造了毛乌素沙地樟子松人工林根内真菌群落结构和功能的时间动态特征, 而林龄的贡献较小. 研究结果可为樟子松人工林可持续经营管理提供理论依据.
关键词: 樟子松      根内真菌      生态功能      环境因子      林龄     
Temporal Variations in Community Structure and Function of Root-associated Fungi Associated with Pinus sylvestris var. mongholica Plantations in the Mu Us Sandy Land
REN Yue1 , GAO Guang-lei1,2,3,4,5 , DING Guo-dong1,3,4,5 , ZHANG Ying1,3,4,5 , ZHAO Pei-shan1     
1. School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China;
2. State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China;
3. Yanchi Ecology Research Station of the Mu Us Desert, Yanchi 751500, China;
4. Engineering Research Center of Forestry Ecological Engineering, Ministry of Education, Beijing 100083, China;
5. Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing 100083, China
Abstract: To illuminate the temporal variations in the structure and functional groups of the root-associated fungal community associated with Mongolian pine Pinus sylvestris var. mongholica plantations in the Mu Us Sandy Land, P. sylvestris var. mongholica plantations with different stand ages (23, 33, and 44 a) were targeted. The community compositions and main drivers of root-associated fungi at different months and stand ages were identified using the Illumina high-throughput sequencing method. The results indicated that: ① There was a distinct temporal distribution in the root-associated fungal community, the sampling month had a significant effect on the diversity of root-associated fungi (P < 0.05), and the values were higher in May and July. The stand age had no significant effect on the diversity of root-associated fungi (P > 0.05) and decreased gradually with increasing stand age. ② The dominant phylum of the root-associated fungal community was Ascomycota. The relative abundance of fungal function groups was different within each month and stand age, and the dominant groups were saprotroph-symbiotroph, undefined saprotroph, and ectomycorrhizal fungi. The indicator genera of ectomycorrhizal fungi in May, July, and September were Melanoleuca, Amphinema, and Tricholoma, respectively. ③ The temporal distribution of the root-associated fungal community was significantly affected by annual relative humidity, annual precipitation, soil porosity, ammonia nitrogen, annual sunshine duration, annual temperature, and soil water content (P < 0.05). Soil organic carbon content, soil porosity, annual precipitation, and annual relative humidity were the main factors that significantly affected the indicator genus of the root-associated fungal community. Our results demonstrated that the temporal distribution of the root-associated fungal community was shaped by climate and soil properties, whereas stand age contributed less. This improved information will provide a theoretical basis for the sustainable management of P. sylvestris var mongholica plantations.
Key words: Pinus sylvestris var. mongholica      root-associated fungi      ecology function      environmental factor      stand age     

根内真菌(root-associated fungi)作为生物地球化学循环的主要参与者, 直接参与植物养分循环和物质代谢等一系列关键生态过程[1, 2], 在生态系统功能上发挥着重要的作用[3, 4]. 共生真菌能够提高植物抗逆和抗病能力, 增加土壤稳定性[5, 6];腐生真菌能够促进矿化过程, 改变土壤养分有效性并间接影响植物生长[7];病原真菌则能够诱发植物疾病并抑制其生长[8]. 此外, 根内真菌的营养策略十分灵活, 可通过转变功能在变化的环境中生存[9]. 因此, 根内真菌与植物的生长发育及其适应性存在紧密联系[10].

根内真菌具有功能多样性和遗传多样性, 其组成和结构受一系列空间和时间变量的调节[11, 12]. 气候条件是土壤真菌群落变化的关键驱动因素, 影响土壤真菌的定殖与发育[13];土壤性质很大程度上决定了根内真菌群落演替[14, 15]. 虽然环境因素在很大程度上解释了土壤真菌群落异质性, 但寄主林龄也是驱动根际微生物群落丰富度和组成变化的重要因素[16, 17]. 随着林分发展, 寄主植物通过凋落物的输入、根际化感物质的分泌、土壤水分和养分的消耗来改变土壤性质, 进而改变了土壤微生物的竞争能力[18, 19]. 此外, 寄主植物通过季节性光和产物分配和根系碳水化合物有效性影响真菌的活性[20]. 根内真菌群落还可通过改变根周围的环境条件, 以改善寄主植物对必需营养元素的吸收, 特别是生长在酸性和营养贫瘠土壤上的树木[21]. 因此, 研究根内真菌群落与环境之间的相互作用对林木生长和健康至关重要.

樟子松(Pinus sylvestris var. mongholica)具有较高的适应性和抗逆性, 是我国北方风沙区重要的防风固沙造林树种, 在荒漠化地区的覆盖面积已高达7.0×105 hm2[22]. 樟子松依赖于与根内真菌形成的共生关系来维持正常生命活动, 根内真菌与其生长和健康密切相关[23]. 在半干旱森林生态系统中, 降水和温度随季节的变化而波动, 导致根内真菌群落结构和功能群组成产生变化[24]. 现阶段, 不同引种区不同林龄樟子松根内真菌群落组成已有广泛报道[6, 9, 12], 但仍缺少对樟子松根内真菌时间动态分布及其生态功能的了解. 鉴于此, 本文以毛乌素沙地樟子松人工林为研究对象, 进行高通量测序和真菌功能群分析, 通过揭示樟子松根内真菌群落结构和功能群组成的时间动态特征及其主要影响因素, 以期为气候变化下樟子松人工林可持续经营管理提供理论依据和技术支撑.

1 材料与方法 1.1 研究区概况

研究区位于毛乌素沙地东南部的陕西省榆林市红石峡沙地植物园(38°20′08″~ 38°20′12″N, 109°42′08″~109°43′57″E), 海拔1 157 m. 属温带半干旱大陆性季风气候, 干燥多风, 年均日照时数2 717 h, 年均温约为9.4 ℃, 年均降水量约为480 mm, 年均蒸发量约为1 578 mm, > 10 ℃积温3 150 ℃, 无霜期143 d. 全年最高温出现在7月, 多年均温约为23.8 ℃. 降水量年际变化率大, 多集中在7月和8月, 占全年总降水量的50%以上. 土壤类型以易遭受侵蚀的风沙土为主, 养分含量低, 结构松散. 优势人工林、草主要为樟子松、黑沙蒿(Artemisia ordosica)、花棒(Hedysarum scoparium)和鬼针草(Bidens pilosa L.)等.

1.2 样品采集与处理

样品采集于2019年4~9月樟子松生长期, 生长期内每月采集一次样品. 选取地形地貌特征一致、人类活动干扰较少的中龄(23 a)、近熟(33a)和成熟(44 a)樟子松林为研究对象. 在不同林龄样地内分别布设3个20 m×20 m的样方, 对样方内所有樟子松活木进行每木检尺(表 1). 在每个样方中随机选取间距大于10 m、长势均一的3株健康标准木为采样对象, 在清除林木基部半径1~2 m内的枯枝落叶和杂草等地表覆盖物后, 小心挖至树干根部末级, 采集直径小于2 mm的细根样品和0~20 cm深度的土壤样品. 将同一林龄样方内的3个样品进行充分混合, 因此6个月共获得54个土根尖/土壤样品(3个林龄×3个混合样品×6次采样). 细根样品保存于-4 ℃便携式保温箱, 带回实验室后转移至-80 ℃冰箱用于后续真菌分子鉴定. 土壤样品分为两份, 一份保存于-80 ℃用于测定土壤酶活性和有效态养分, 一份风干过筛后用于测定土壤理化性质.

表 1 樟子松人工林研究样地基本概况1) Table 1 Basic characteristics of the sample areas in Pinus sylvestris var. mongholica plantations

1.3 根内真菌分子鉴定和功能群划分

使用Soil DNA Kit(Omega Bio-tek, Norcross, GA, U.S.)试剂盒提取菌根根尖样品DNA, 使用1%琼脂糖凝胶电泳检测和分光光度法(260 nm/280 nm光密度比)对提取的DNA进行定量的质量检测. 利用真菌引物ITS1F(5′-CTTGGTCATTTAGAGGAAGTAA-3′)和ITS2(5′-TGCGTTCTTCATCGATGC-3′)对r DNA ITS区段的PCR扩增. 对混合PCR产物进行2%琼脂糖凝胶电泳检测后, 使用AxyPrepDNA凝胶回收试剂盒(AXYGEN公司)进行纯化, 合格的PCR扩增产物即可使用于Illumina MiSeq平台进行高通量测序, 以上工作由北京奥维森生物科技有限公司协助完成.

使用Usearch(V8.0.151)软件按照97%相似性水平对有效序列进行可操作分类单元(operational taxon unit, OTU)聚类[25]. 采用美国国立生物技术信息中心(NCBI)网站的局部相似性查询系统(BLAST, https://www.ncbi.nlm.nih.gov/)中的UNITE数据库, 对OTU序列进行比对分析以获取物种注释信息. 以样品中最少的真菌序列数量进行抽平, 保证所有采样数据的均匀性.

利用FUNGuild(V1.0)软件进行功能群划分, 保留置信度为“很可能”(probable)和“极可能”(highly probable)的OTU及其类别[26]. 将具有复合功能群(guild)的群落归类为“其他病理营养型”、“其他腐生营养型”和“其他共生营养型”, 将具有复合营养型(trophic mode)归类为“其他营养型”.

1.4 气象数据获取与土壤理化性质测定

气象数据从中国气象数据服务中心(China Meteorological Data Service Center, CMDC, http://data.cma.cn/en)获取, 包括年均温(annual temperature, Ta)年均降水量(annual precipitation, Pa)、年均日照时数(annual sunshine duration, SDa)和年均相对湿度(annual relative humidity, RHa)等.

土壤含水量(soil water content, SWC)采用烘干法测定, 孔隙度(soil porosity, SP)采用环刀称重法测定, pH值采用PHS-3E分析仪测定(土水比=1∶1.5). 土壤有机质(soil organic carbon, SOC)采用重铬酸钾氧化稀释热法测定, 全氮(total nitrogen, TN)和全磷(total phosphorus, TP)含量消煮后使用Smartchem 450全自动化学分析仪测定, 分别采用靛酚蓝比色法和钼锑钪比色法. 土壤速效磷(available phosphorus, AP)和铵态氮(ammonia nitrogen, AN)经过浸提后使用Auto Analyzer 3连续流动分析仪测定, 分别采用碳酸氢钠法和碱解扩散法.

1.5 数据处理与分析

采用SPSS 20.0进行数据处理与分析, 数据表示为均值±标准差;运用单因素方差分析(one-way ANOVA)检验数据差异显著性, Duncan法进行多重比较, 斯皮尔曼相关性(Spearman's rank correlation)检验相关关系. 采用R 4.0.5进行根内真菌群落Chao1和Shannon多样性指数计算、upsetplot图绘制、非度量多维标度分析法(non-metric multidimensional scaling, NMDS)及相似性分析(analysis of similarities, ANOSIM)、指示菌种鉴定(indicator species analysis)和冗余分析(redundancy analysis, RDA). 采用OriginPro 2018绘制箱型图和相对丰度堆积图.

2 结果与分析 2.1 樟子松人工林土壤理化性质

毛乌素沙地樟子松林土壤含水量、孔隙度、pH和有机碳含量在不同月份间存在极显著差异(P < 0.01, 表 2). 土壤含水量在5月和7月较高, 土壤孔隙度和全氮含量在7月较高, 土壤全磷含量在8月较高. 樟子松人工林土壤理化性质在不同林龄间无显著差异(P≥0.05). 随着林龄的增加, 不同月份土壤孔隙度和有机质含量逐渐增加. 毛乌素沙地樟子松人工林土壤总体上呈弱碱性.

表 2 樟子松人工林土壤理化性质1) Table 2 Soil properties of Pinus sylvestris var. mongholica plantations

2.2 樟子松人工林根内真菌群落多样性

从樟子松人工林根尖样品共获得真菌有效序列7 055 612条, 剔除非真菌OTU后, 被划分为2 828个OTU. 不同月份根内真菌OTU数量则表现为5月、7月和9月高于4月、8月和6月[图 1(a)]. 5月和7月特有OTU数量分别为523和200个, 它们与其他月份的共OTU数量也较多. 随着林龄的增加, 根内真菌OTU数量呈逐渐减少的趋势, 近熟林与其它龄组共有的OTU数量较多[图 1(b)].

(a)不同月份樟子松人工林OTU数量, (b)不同林龄樟子松人工林OTU数量;MUh:毛乌素沙地樟子松中龄林, MUn:毛乌素沙地樟子松近熟林, MUm:毛乌素沙地樟子松成熟林, 下同 图 1 樟子松人工林根内真菌OTU数量 Fig. 1 OTU numbers of root-associated fungi in Pinus sylvestris var. mongholica plantations

樟子松根内真菌Chao1指数和Shannon指数在不同月份间均存在极显著差异(P < 0.01), 5月和7月根内真菌多样性指数显著高于其他月(图 2). 樟子松人工林根内真菌群落组成在不同月份间存在显著差异(P < 0.05), 但4月与6月和8月的群落组成较为相似(图 3). 根内真菌多样性和群落组成在不同林龄间均无显著差异(P > 0.05, 图 2图 3), 樟子松中龄林根内真菌多样性显著高于近熟林和成熟林(P < 0.05, 图 2).

(a)不同月份樟子松人工林根内真菌Chao1指数, (b)不同林龄樟子松人工林根内真菌Chao1指数, (c)不同月份樟子松人工林根内真菌Shannon指数, (d)不同林龄樟子松人工林根内真菌Shannon指数;*表示P < 0.05, **表示P < 0.01;不同小写字母表示不同月份间差异显著(P < 0.05) 图 2 樟子松人工林根内真菌多样性指数 Fig. 2 Diversity index of root-associated fungi in Pinus sylvestris var. mongholica plantations

图 3 樟子松人工林根内真菌群落非度量多维尺度排序及相似性分析 Fig. 3 NMDS and ANOSIM of root-associated fungal community composition in Pinus sylvestris var. mongholica plantations

2.3 樟子松人工林根内真菌群落组成和指示菌种

毛乌素樟子松人工林根内真菌隶属于11门、42纲、114目、241科和487属. 从门水平上看[图 4(a)], 子囊菌门(Ascomycota)为樟子松林根内真菌群落的优势菌门, 其在所有样地中的相对丰度均值为66.51%;其次为担子菌门(Basidiomycota)和壶菌门(Chytridiomycota). 子囊菌门的相对丰度在不同月份和林龄间均不存在显著差异. 从功能群水平上看[图 4(b)], 腐生-共生营养型占优势, 其相对丰度均值分别为31.37%;其次为病理-腐生营养型和病理-腐生-共生营养型. 共生营养型中外生菌根真菌占优势, 其相对丰度均值为7.33%. 不同功能群真菌的相对丰度随月份表现出明显的变化, 在不同林龄间分布较为均匀. 腐生营养型真菌相对丰度在7月最低, 在成熟林阶段最高.

(a)樟子松人工林根内真菌门水平相对丰度, (b)樟子松人工林根内真菌功能群相对丰度 图 4 樟子松人工林根内真菌群落组成 Fig. 4 Community composition of root-associated fungi in Pinus sylvestris var. mongholica plantations

不同月份樟子松人工林指示菌种分别为3、4、2、4、10和7个, 多数为复合营养型真菌(表 3). 其中, 具有共生功能的真菌属14个, 主要为外生菌根真菌, 且在每个月中均有分布. 5月、7月和9月的指示外生菌根真菌分别为囊蘑属(Melanoleuca)、缘腺革菌属(Amphinema)和口蘑属(Tricholoma). 7月和9月出现了植物病原菌青霉属(Penicillium)和白粉菌霉属(Erysiphe).

表 3 樟子松人工林根内真菌指示菌属及其功能群划分1) Table 3 Indicator genera and functional group of root-associated fungi in Pinus sylvestris var. mongholica plantations

2.4 樟子松外生菌根真菌群落环境影响因子

毛乌素沙地樟子松人工林根内真菌Chao1指数与土壤含水量极显著正相关(P < 0.01, 表 4), Shannon指数与年均日照时数、年均降水量和年均空气湿度呈极显著正相关(P < 0.01), 与土壤pH极显著负相关(P < 0.01). 病理营养型真菌相对丰度与土壤含水量极显著正相关(P < 0.01);腐生营养型真菌相对丰度与土壤有机碳显著负相关(P < 0.05), 与年均降水量和年均空气湿度极显著负相关(P < 0.01);共生营养型真菌相对丰度与环境因素间无显著关系(P≥0.05).

表 4 樟子松人工林根内真菌多样性指数和营养型相对丰度与环境因子的相关关系1) Table 4 Indicator genera and functional group of root-associated fungi in Pinus sylvestris var. mongholica plantations

樟子松人工林根内真菌群落主要受年均相对湿度、年均降水量、土壤孔隙度、土壤铵态氮、年均日照时数、年均温和土壤含水量的影响[图 5(a)]. 指示菌种与环境因子的相关性如图 5(b), 土壤有机碳、孔隙度、年均降水量和年均相对湿度对硬皮马勃属(Scleroderma)、口蘑属、茸盖伞属(Mallocybe)和长毛盘菌属(Trichophaea)显著正相关(P < 0.05), 与异茎点霉属(Paraphoma)显著负相关(P < 0.05). 土壤含水量与篮状菌属(Talaromyces)、隐球酵母属(Cryptococcus)和青霉属显著正相关(P < 0.05), 与线黑粉酵母属(Filobasidium)和鬼伞属(Coprinellus)显著负相关(P < 0.05). 土壤pH与异茎点霉属显著正相关(P < 0.05), 与口蘑属和缘腺革菌属显著负相关(P < 0.05).

(a)樟子松人工林根内真菌群落与环境因子的冗余分析, (b)樟子松人工林指示菌种与环境因子间的相关性 图 5 环境因子对樟子松人工林根内真菌群落的影响 Fig. 5 Effects of environmental factors on root-associated fungi in Pinus sylvestris var. mongholica plantations

3 讨论 3.1 樟子松人工林根内真菌群落动态变化特征及其对环境因子的响应

毛乌素沙地樟子松人工林根内真菌多样性和群落组成表现出明显的时间动态分布, 季节对塑造根内真菌群落动态变化具有重要的贡献. 生长阶段是植物遵循季节变化的基本过程, 能够影响共生真菌的定殖[27]. 随着季节变化, 土壤小气候和理化性质随之发生改变, 因此土壤真菌群落的生长阶段差异归因于植物在不同物候期的不同生长模式[28]. 此外, 北方森林生长季节短、冬季休眠时间长, 从寄主树木根系到真菌的碳分配波动改变了真菌的组装模式[29]. 林龄对确定根内真菌群落组成的贡献较小, 这与以往的研究结果一致[5]. 本研究中, 樟子松根内真菌多样性随着林龄的增加而逐渐减少, 这是因为成熟阶段的树木根系木质部栓塞化程度较高, 导致真菌较难侵染[30]. 因此, 寄主特性在确定根内真菌群落组成上也发挥着一定作用.

在荒漠森林生态系统中, 气候对植物地上生物量和地下微生物群落有显著的影响[31]. 温度和降水是真菌群落季节动态的主要限制条件, 通过影响蒸散蒸发、土壤湿度和有机质分解过程间接影响土壤真菌活性[32]. 半干旱区的季节性降水强烈影响着真菌的丰富度和多样性, 高降水量表征高真菌多样性, 因此夏季和秋季根内真菌丰富度较高[33]. 年均日照时数作为太阳辐射的表征指标, 直接影响土壤温度和植物光合作用等代谢过程[34]. 相关性分析结果也表明, 温度、降水和年均日照时数对根内真菌丰富度存在显著的正向影响, 因此7月根内真菌群落多度和丰富度均较高.

土壤性质是驱动根内真菌群落时空变化的重要因子, 与林木衰老、碳输入和微生物活性有关[35]. 此外, 凋落物分解引起的土壤养分状况和pH值的变化间接影响了森林土壤微生物群落组成及其功能[36]. 在森林生态系统中, 土壤真菌积极参与养分循环过程, 土壤养分在根内真菌功能群组成上发挥着重要的作用. 毛乌素沙地樟子松林下土壤养分含量较低, 根内真菌对土壤有机碳的变化更敏感. 因此, 土壤有机碳显著影响根内真菌丰富度, 且与多数根内真菌指示属呈正相关关系. 土壤pH是驱动土壤真菌群落多样性和组成变化的主要环境因子, 与真菌多样性呈负相关关系[37]. 本研究中, 土壤pH与根内真菌Shannon多样性指数以及口蘑属、缘腺革菌属等外生菌根真菌指示菌属呈显著负相关, 表明真菌更适宜在较酸的土壤环境中生存.

3.2 樟子松人工林根内真菌生态功能特征

大多数真菌功能类群都对特定土壤条件表现出明显的偏好[38]. 毛乌素沙地樟子松人工林根内真菌的优势类群为子囊菌门和担子菌门, 它们被认为是土壤真菌的主要分解者, 能分解木质素和纤维素等难降解的复杂有机物[39, 40]. 担子菌门真菌能够利用更多难分解的碳, 对低养分环境的适应能力也较强[41]. 子囊菌门真菌能够承受更多的环境压力、利用更多的资源, 从而产生更广泛的营养策略, 增强其在恶劣环境中的优势[42]. 子囊菌门在不同季节和生长阶段均占主导地位, 这可能与分解过程中凋落物质量的变化有关, 表明子囊菌门真菌是樟子松林养分循环和能量流动的关键驱动力.

环境变化对生态系统功能造成影响, 干旱和高温通过减缓凋落物的分解和改变外生菌根真菌群落结构, 从而影响生态系统养分循环过程[43]. 根内真菌的定殖能够调节植物的营养策略、根系结构及其对非生物胁迫的耐受性, 增强植物的适应性[44]. 外生菌根真菌作为根内真菌群落的一个关键组成部分, 在植物-土壤系统养分交流与调控中起到积极的作用[45]. 囊蘑属、缘腺革菌属和口蘑属是毛乌素沙地樟子松根内真菌指示菌种, 同时也是樟子松人工林和天然林的常见外生菌根真菌属[30, 33]. 缘腺革菌属在幼林阶段和低氮环境中占优势, 且极易受到土壤扰动的影响[46]. 口蘑属真菌具有较强的环境竞争能力, 通过抑制电解质渗透提高植物对干旱胁迫的耐受能力[47];且口蘑属真菌能够产生抑制病原菌侵染的抗生素, 有助于樟子松的健康生长[48]. 腐生真菌在不同季节和生长阶段均具有较强的竞争能力. 腐生真菌不仅可以分解有机质, 还能够抑制病原菌的生长, 如蓝状菌属真菌对尖孢镰刀菌(Fusarium oxysporum)有拮抗作用[12]. 樟子松成熟林阶段腐生真菌较高的相对丰度可归因于更多的凋落物输入与有机质积累, 秋季落叶期外生菌根真菌较高的丰度则归因于寄主植物较低的光合作用. 因此, 根内真菌功能群组成变化在很大程度上决定了樟子松人工林生长健康与否.

气候因子对塑造樟子松根内真菌群落组成的贡献大于土壤因子, 强调了相比于土壤细菌, 土壤真菌更易受气候变化影响这一事实[21]. 此外, 与其它真菌功能群相比, 外生菌根真菌受环境因子的影响较小. 樟子松是典型的外生菌根真菌依赖型树种, 能够招募特定的真菌类群. 同时, 菌根真菌与寄主植物形成的利益共同体建立了稳定的植物-土壤反馈关系[19]. 对于整个外生菌根真菌群落而言, 土壤环境对根内真菌群落多样性和组成的影响并不显著[4]. 因此, 樟子松可为外生菌根真菌提供一个较为稳定的环境, 从而使得外生菌根真菌对环境变化产生较强的抵抗力.

4 结论

(1)毛乌素沙地樟子松人工林根内真菌群落多样性和功能群组成存在明显的时间动态特征, 季节对塑造根内真菌群落时间动态变化的贡献大于林龄.

(2)毛乌素沙地樟子松人工林根内真菌优势类群为子囊菌门, 主要功能群为腐生-共生营养型真菌、未定义腐生菌和外生菌根真菌.

(3)毛乌素沙地樟子松人工林根内真菌多样性和群落动态分布受年均降水量和年均温等气象因子的显著影响, 而土壤理化性质的影响较小. 其中, 腐生营养型真菌较易受到环境因素的影响, 外生菌根真菌受环境因素的影响较小, 其群落分布较为稳定.

参考文献
[1] Barnes C J, van der Gast C J, Burns C A, et al. Temporally variable geographical distance effects contribute to the assembly of root-associated fungal communities[J]. Frontiers in Microbiology, 2016, 7. DOI:10.3389/fmicb.2016.00195
[2] Maciá-Vicente J G, Nam B, Thines M. Root filtering, rather than host identity or age, determines the composition of root-associated fungi and oomycetes in three naturally co-occurring Brassicaceae[J]. Soil Biology and Biochemistry, 2020, 146. DOI:10.1016/j.soilbio.2020.107806
[3] Baldrian P. Forest microbiome: diversity, complexity and dynamics[J]. FEMS Microbiology Reviews, 2017, 41(2): 109-130.
[4] Liu Y R, Delgado-Baquerizo M, Trivedi P, et al. Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change[J]. Soil Biology and Biochemistry, 2017, 107: 208-217. DOI:10.1016/j.soilbio.2016.12.003
[5] Van Der Heijden M G A, Bardgett R D, Van Straalen N M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters, 2008, 11(3): 296-310. DOI:10.1111/j.1461-0248.2007.01139.x
[6] Ren Y, Guo M S, Ding G D, et al. Ectomycorrhizal fungi associated with Pinus sylvestris var. mongolica were altered by soil environments with aging plantation in a semi-arid desert[J]. Frontiers in Environmental Science, 2022, 10. DOI:10.3389/fenvs.2022.858452
[7] Zhao P S, Gao G L, Ren Y, et al. Intra-annual variation of root-associated fungi of Pinus sylvestris var. mongolica: the role of climate and implications for host phenology[J]. Applied Soil Ecology, 2022, 176. DOI:10.1016/j.apsoil.2022.104480
[8] Carrión V J, Perez-Jaramillo J, Cordovez V, et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome[J]. Science, 2019, 366(6465): 606-612. DOI:10.1126/science.aaw9285
[9] Zhao P S, Gao G L, Ding G D, et al. Biogeography and ecological functions of root-associated and soil fungi of Pinus sylvestris var. mongolica across different afforestation areas in desertified northern China[J]. Land Degradation & Development, 2023, 34(2): 313-326.
[10] Trivedi P, Leach J E, Tringe S G, et al. Plant-microbiome interactions: from community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18(11): 607-621. DOI:10.1038/s41579-020-0412-1
[11] Alzarhani A K, Clark D R, Underwood G J C, et al. Are drivers of root-associated fungal community structure context specific?[J]. The ISME Journal, 2019, 13(5): 1330-1344. DOI:10.1038/s41396-019-0350-y
[12] 柳叶, 任悦, 高广磊, 等. 毛乌素沙地樟子松人工林根内真菌网络动态特征及其对气候因子的响应[J]. 北京大学学报(自然科学版), 2023, 59(3): 467-477.
Liu Y, Ren Y, Gao G L, et al. Network features of root-associated fungi of Pinus sylvestris var. mongolica plantations and response to climate factors in the Mu Us Desert[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2023, 59(3): 467-477.
[13] Truong C, Gabbarini L A, Corrales A, et al. Ectomycorrhizal fungi and soil enzymes exhibit contrasting patterns along elevation gradients in southern Patagonia[J]. New Phytologist, 2019, 222(4): 1936-1950. DOI:10.1111/nph.15714
[14] Adamo I, Castaño C, Bonet J A, et al. Soil physico-chemical properties have a greater effect on soil fungi than host species in Mediterranean pure and mixed pine forests[J]. Soil Biology and Biochemistry, 2021, 160. DOI:10.1016/j.soilbio.2021.108320
[15] 孙倩, 吴宏亮, 陈阜, 等. 不同轮作模式下作物根际土壤养分及真菌群落组成特征[J]. 环境科学, 2020, 41(10): 4682-4689.
Sun Q, Wu H L, Chen F, et al. Characteristics of soil nutrients and fungal community composition in crop rhizosphere under different rotation patterns[J]. Environmental Science, 2020, 41(10): 4682-4689.
[16] Wang Z H, Jiang Y, Deane D C, et al. Effects of host phylogeny, habitat and spatial proximity on host specificity and diversity of pathogenic and mycorrhizal fungi in a subtropical forest[J]. New Phytologist, 2019, 223(1): 462-474. DOI:10.1111/nph.15786
[17] Unuk T, Martinović T, Finžgar D, et al. Root-associated fungal communities from two phenologically contrasting silver fir (Abies alba Mill.) groups of trees[J]. Frontiers in Plant Science, 2019, 10. DOI:10.3389/fpls.2019.00214
[18] Kyaschenko J, Clemmensen K E, Hagenbo A, et al. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands[J]. The ISME Journal, 2017, 11(4): 863-874. DOI:10.1038/ismej.2016.184
[19] Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology[J]. Science, 2020, 367(6480). DOI:10.1126/science.aba122
[20] Voříšková J, Brabcová V, Cajthaml T, et al. Seasonal dynamics of fungal communities in a temperate oak forest soil[J]. New Phytologist, 2014, 201(1): 269-278. DOI:10.1111/nph.12481
[21] Sawada K, Inagaki Y, Sugihara S, et al. Impacts of conversion from natural forest to cedar plantation on the structure and diversity of root-associated and soil microbial communities[J]. Applied Soil Ecology, 2021, 167. DOI:10.1016/j.apsoil.2021.104027
[22] Deng J F, Yao J Q, Zheng X, et al. Transpiration and canopy stomatal conductance dynamics of Mongolian pine plantations in semiarid deserts, northern China[J]. Agricultural Water Management, 2021, 249. DOI:10.1016/j.agwat.2021.106806
[23] 赵珮杉, 郭米山, 高广磊, 等. 半干旱-亚湿润干旱沙区樟子松根内真菌群落结构和功能时空动态特征[J]. 环境科学, 2023, 44(1): 502-511.
Zhao P S, Guo M S, Gao G L, et al. Temporal and spatial variations in root-associated fungi associated with Pinus sylvestris var. mongolica in the semi-arid and dry sub-humid desertified regions of northern China[J]. Environmental Science, 2023, 44(1): 502-511.
[24] Liu X, Zhao P S, Gao G L, et al. Growing season stage determines the stability of root symbiotic and pathogenic fungi associated with Pinus sylvestris var. mongolica in a semi-arid desert[J]. Applied Soil Ecology, 2023, 190. DOI:10.1016/j.apsoil.2023.104993
[25] Chen S F, Zhou Y Q, Chen Y R, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890.
[26] Nguyen N H, Song Z W, Bates S T, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild[J]. Fungal Ecology, 2016, 20: 241-248.
[27] Rayment J T, Jones S, French K. Seasonal patterns of fungal colonisation in Australian native plants of different ages[J]. Symbiosis, 2020, 80(2): 169-182.
[28] Hupperts S F, Karst J, Pritsch K, et al. Host phenology and potential saprotrophism of ectomycorrhizal fungi in the boreal forest[J]. Functional Ecology, 2017, 31(1): 116-126.
[29] Lloyd J, Taylor J A. On the temperature dependence of soil respiration[J]. Functional Ecology, 1994, 8(3): 315-323.
[30] Guo M S, Gao G L, Ding G D, et al. Drivers of ectomycorrhizal fungal community structure associated with Pinus sylvestris var. mongolica differ at regional vs. local spatial scales in northern China[J]. Forests, 2020, 11(3). DOI:10.3390/f11030323
[31] Wang H H, Chu H L, Dou Q, et al. Seasonal changes in Pinus tabuliformis root-associated fungal microbiota drive N and P cycling in terrestrial ecosystem[J]. Frontiers in Microbiology, 2021, 11. DOI:10.3389/fmicb.2020.526898
[32] Lladó S, López-Mondéjar R, Baldrian P. Drivers of microbial community structure in forest soils[J]. Applied Microbiology and Biotechnology, 2018, 102(10): 4331-4338.
[33] 任悦, 高广磊, 丁国栋, 等. 不同生长期樟子松林外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309.
Ren Y, Gao G L, Ding G D, et al. Community composition and driving factors of the ectomycorrhizal fungi in root associated with Pinus sylvestris var. mongolica plantation at different growth periods[J]. Chinese Journal of Plant Ecology, 2023, 47(9): 1298-1309.
[34] Zhang H, Yin Q, Nakajima T, et al. Influence of changes in solar radiation on changes of surface temperature in China[J]. Acta Meteorologica Sinica, 2013, 27(1): 87-97.
[35] Rudgers J A, Fox S, Porras-Alfaro A, et al. Biogeography of root-associated fungi in foundation grasses of North American plains[J]. Journal of Biogeography, 2022, 49(1): 22-37.
[36] Boeraeve M, Honnay O, Jacquemyn H. Effects of host species, environmental filtering and forest age on community assembly of ectomycorrhizal fungi in fragmented forests[J]. Fungal Ecology, 2018, 36: 89-98.
[37] 王楠, 潘小承, 王传宽, 等. 模拟酸雨对毛竹阔叶林过渡带土壤真菌结构及其多样性的影响[J]. 环境科学, 2020, 41(5): 2476-2484.
Wang N, Pan X C, Wang C K, et al. Effects of simulated acid rain on soil fungi diversity in the transition zone of Moso bamboo and broadleaf forest[J]. Environmental Science, 2020, 41(5): 2476-2484.
[38] Vannette R L, Leopold D R, Fukami T. Forest area and connectivity influence root-associated fungal communities in a fragmented landscape[J]. Ecology, 2016, 97(9): 2374-2383.
[39] 隋心, 张荣涛, 许楠, 等. 三江平原不同退化阶段小叶章湿地土壤真菌群落结构组成变化[J]. 环境科学, 2016, 37(9): 3598-3605.
Sui X, Zhang R T, Xu N, et al. Fungal community structure of different degeneration Deyeuxia angustifolia wetlands in Sanjiang Plain[J]. Environmental Science, 2016, 37(9): 3598-3605.
[40] Tang Y S, Wang L, Jia J W, et al. Response of soil microbial community in Jiuduansha wetland to different successional stages and its implications for soil microbial respiration and carbon turnover[J]. Soil Biology and Biochemistry, 2011, 43(3): 638-646.
[41] Beimforde C, Feldberg K, Nylinder S, et al. Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data[J]. Molecular Phylogenetics and Evolution, 2014, 78: 386-398.
[42] Egidi E, Delgado-Baquerizo M, Plett J M, et al. A few Ascomycota taxa dominate soil fungal communities worldwide[J]. Nature Communications, 2019, 10(1). DOI:10.1038/s41467-019-10373-z
[43] Abuzinadah R A, Finlay R D, Read D J. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants: Ⅱ. Utilization of protein by mycorrhizal plants of Pinus contorta [J]. New Phytologist, 1986, 103(3): 495-506.
[44] Abrego N, Roslin T, Huotari T, et al. Accounting for environmental variation in co-occurrence modelling reveals the importance of positive interactions in root-associated fungal communities[J]. Molecular Ecology, 2020, 29(14): 2736-2746.
[45] Koide R T, Fernandez C, Malcolm G. Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function[J]. New Phytologist, 2014, 201(2): 433-439.
[46] 王家源, 殷小琳, 任悦, 等. 毛乌素沙地樟子松外生菌根真菌多样性特征[J]. 微生物学通报, 2020, 47(11): 3856-3867.
Wang J Y, Yin X L, Ren Y, et al. Diversity characteristics of ectomycorrhizal fungi associated with Pinus sylvestris var. mongolica in the Mu Us sandy land[J]. Microbiology China, 2020, 47(11): 3856-3867.
[47] Abdulsalam O, Wagner K, Wirth S, et al. Phytohormones and volatile organic compounds, like geosmin, in the ectomycorrhiza of Tricholoma vaccinum and Norway spruce (Picea abies)[J]. Mycorrhiza, 2021, 31(2): 173-188.
[48] Halifu S, Deng X, Song X S, et al. Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings[J]. Forests, 2019, 10(9). DOI:10.3390/f10090758