2. 城市生活污水资源化利用技术国家地方联合工程实验室, 苏州 215009;
3. 苏州太湖中法环境技术有限公司, 苏州 215155
2. National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China;
3. Suzhou Taihu Sino French Environmental Technology Co., Ltd., Suzhou 215155, China
部分亚硝化-厌氧氨氧化(partial nitritation-ANAMMOX, PN/A)颗粒污泥是一种新型自养生物脱氮技术, 其主要利用好氧氨氧化菌(AOB)和厌氧氨氧化菌(AMX)在颗粒内外层的协同共生, 将进水中氨氮(NH4+-N)大部分转化为氮气并生成少量硝酸盐, 反应式如式(1)和式(2)所示[1, 2]:
PN反应:
![]() |
(1) |
ANAMMOX反应:
![]() |
(2) |
与传统活性污泥法相比, PN/A颗粒污泥具有脱氮效能高、曝气耗氧量低、不依赖外部碳源和剩余污泥产量少等优势[3, 4], 已广泛用于垃圾渗滤液[5]、污泥消化液[6]和低C/N污废水[7]处理领域. 例如, 采用序批次方式运行的荷兰Nereda®工艺已经在全球建成了50多座工程化设施, 日处理能力达到数万至数十万吨不等, 出水总氮浓度可达到8 mg·L-1以下[8]. 在国内, 河北省某市政污水处理厂利用PN/A颗粒污泥技术, 成功对处理规模为2.5万m3·d-1的原AAO系统进行了改造升级, 并实现了稳定运行[9, 10]. 与序批次反应器相比, 连续流反应器具有操作运行简单、池容利用率高和便于现有工艺改造等优势, 因而成为目前的研究热点.
通常认为, 接种污泥性质、反应器运行模式和操作条件是影响好氧颗粒污泥反应器启动的关键因素[10 ~ 12]. 众多实验性和模型研究结果表明, 与絮状污泥相比, 接种颗粒污泥能够更有效地截留功能菌, 促进形成生态位分化, 从而大幅压缩连续流反应器的启动时长[13 ~ 15]. 前期研究发现, 通过接种PN颗粒污泥, 并采用高进水氨氮负荷、高水力选择压和限制性曝气策略, 可以在150 d内成功启动连续流PN/A颗粒污泥反应器[16]. PN/A污泥较长的培养周期主要受制于AMX缓慢的倍增时间(5 ~ 11 d)和严苛的生长条件[3, 4]. 相比之下, PN颗粒污泥可以通过接种活性污泥在30 d内实现批量化培养[17 ~ 19], AOB的大量富集也为AMX创造了适宜的缺氧环境和充足的亚硝态氮(NO2--N)供给[20, 21]. 因此, PN颗粒污泥可以视为培养PN/A污泥的优良前驱体, 目前将其用于连续流反应器的快速启动仍鲜见报道.
在本研究中, 按照不同比例将PN与PN/A颗粒污泥混合接种至完全混合流反应器(CSTR)中, 通过设置高氨氮负荷和高水力选择压条件, 尝试启动全自养脱氮颗粒污泥反应器. 通过建立反应器脱氮效能、颗粒污泥活性与微生物群落结构之间的关联性, 系统阐述了接种污泥中脱氮功能菌群的重构与自适应机制, 并提出了一种快速启动连续流PN/A反应器的可行策略.
1 材料与方法 1.1 反应器与接种污泥本试验采用3个结构相同的CSTR反应器(R1、R2和R3), 结构如图 1所示. 反应器的反应区有效容积为1.5 L, 两侧设有气升内回流区, 底部装有微孔曝气装置, 提供运行时需的溶解氧和水力剪切力, 运行温度通过水浴箱控制在(30 ± 2)℃.
![]() |
图 1 接种污泥外观和CSTR反应器装置 Fig. 1 Appearance of inoculated sludge and diagram of CSTR reactor |
接种采用的PN/A颗粒污泥取自实验室规模的全自养脱氮反应器[19], 颗粒呈红棕色, 平均粒径为(1.5 ± 0.2)mm, 污泥沉降指数(SVI5)约26 mL·g-1, 比总氮去除速率(sNRR, 以VSS计)约为0.2 g·(g·d)-1. 接种采用的PN颗粒污泥取自进水低C/N(2∶1)的序批式反应器[16], 颜色呈棕黄色, 平均粒径为(0.8 ± 0.3)mm, SVI5约52 mL·g-1, 亚硝化积计速率(以VSS计)可达到0.3 g·(g·d)-1.
1.2 反应器运行方法反应器启动时, 按照质量比3∶1、1∶1和1∶3将PN/A与PN颗粒污泥混合接种至R1、R2和R3中, 初始污泥浓度(MLVSS)控制在5.97 g·L-1, 如图 1所示. 反应器进水采用人工配置的高氨氮模拟废水, 分别以碳酸氢钠和氯化铵作为碳氮源, 进水水质组成为:750 mg·L-1 NaHCO3、200 mg·L-1 NH4+-N、44 mg·L-1 KH2PO4、20 mg·L-1 MgSO4·7H2O、0.15 mg·L-1 FeCl3·6H2O和1.0 mg·L-1的微量元素[12], pH控制在8.0 ± 0.1.
反应器运行主要分为两个阶段:在第Ⅰ阶段(1 ~ 49 d), 进水氮负荷(NLR)约为2.4 kg·(m3·d)-1, 水力停留时间(HRT)为2 h, 控制曝气通量在0.7 ~ 0.9 L·(m2·min)-1, 反应区DO浓度1.6~1.9 mg·L-1. 在第Ⅱ阶段(50~95 d), 保持进水NH4+-N浓度不变, 缩短HRT至1.5 h, NLR提高至3.2 kg·(m3·d)-1, 将曝气通量调至1.1 L·(m2·min)-1, DO浓度为1.8 ~ 2.1 mg·L-1. 反应器运行期间不排泥, 平均泥龄约为45 d.
1.3 分析方法NH4+-N、NO3--N、NO2--N、TN和MLVSS浓度分别采用纳氏试剂光度法、紫外分光光度法、N-(1-萘基)-乙二胺光度法、过硫酸钾氧化-紫外分光光度法和标准重量法测定. SVI5值采用国家规定的标准方法测定.
使用带高清摄像头的光学显微镜观察污泥形态. 粒径分布采用筛分法测算. 定期从反应器中取出污泥样品, 经生理盐水反复清洗后, 依次通过孔径1.60、1.25、0.80、0.50和0.20 mm的分样筛, 并计算各粒径区间样品所占的质量分数.
f值是判断PN/A反应的重要计量学指标, 计算见式(3):
![]() |
(3) |
式中, Δc(NO3--N)和Δc(NH4+-N)分别为反应器进出水中NO3--N和NH4+-N浓度差的绝对值, mg·L-1;由式(1)和式(2)可知, f的理论值为0.11.
1.4 微生物高通量测序分析采集接种污泥(PN0和PNA0)和第95 d不用反应器中的污泥样品(R1、R2和R3), 利用1%琼脂糖凝胶电泳检测抽提的基因组DNA, 选择16S rRNA中338F(5′-ACTCCTACGGGAGGCAGCA-3′)和806R(5′-GGACTACHVGGGTWTCTAAT-3′)为细菌特征引物, 使用20 μL混合反应体系, 在ABI GeneAmp® 9700型PCR扩增仪上完成目标片段扩增. 随后, 基于Illumina MiSeq PE300平台, 对PCR扩增产物进行高通量测序, 并进行细菌分类学等相关分析[22]. 27个样本的基因序列平均长度为441 bp, 以97%的相似性截取对操作单元(OTU)进行聚类. 每个16S rRNA基因序列的分类通过USEARCH7-uparse算法与silva128/16s_bacteria数据库进行分析, 分类置信度为0.7. 基于观察到的OTU, 使用Uparse软件计算OTU丰富度(ACE指数)和α多样性指数(Shannon指数), 并进行(PCA)主成分坐标分析. 在门和属水平上, 比较不同样品菌群结构的差异性, 并且对颗粒污泥主要功能菌种相对丰度进行分析.
2 结果与讨论 2.1 反应器的脱氮性能3个连续流反应器的启动运行情况如图 2所示. 在第1 ~ 10 d, 控制曝气通量在0.7 L·(m2·min)-1, R1出水中ρ(NO2--N)逐步从9.02 mg·L-1降至5.81 mg·L-1, NH4+-N和TN去除率分别升至63.1%和54.4%, 颗粒污泥表现出较高的自养脱氮性能, 并产生少量NO3--N. 与之相比, 更高的PN污泥接种比使得R2和R3呈现明显的亚硝化特征[23], 出水中NO2--N浓度都经历了一个“先升后降”的波动过程. 运行至第10 d, R2和R3的NH4+-N去除率分别为52.0%和53.5%, 但TN去除率仍低于40%. 在第10 ~ 49 d, 反应器单位曝气通量调高至0.9 L·(m2·min)-1, R1、R2和R3出水中的ρ(NO2--N)分别降至3.8、3.8和13.2 mg·L-1, TN去除率逐步提高至80.7%、79.3%和74.5%.
![]() |
Inf表示进水, Eff表示出水 图 2 反应器启动期间, NH4+-N、NO2--N、NO3--N浓度和TN去除率变化 Fig. 2 Changes in NH4+-N, NO2--N, and NO3--N concentration, and TN removal rate during reactor startup |
在第50 d, 通过缩短HRT和调高曝气量, 增大反应器NLR和溶解氧供给(水力剪切), 以强化颗粒污泥的脱氮性能. R1和R2在经历冲击后, TN去除率在第70 d后趋于稳定, 分别达到(82.4 ± 2)%和(80.7 ± 2)%. R3出水中ρ(NH4+-N)、ρ(NO3--N)和ρ(NO2--N)浓度在第80 d后趋于稳定, 均值分别为17.0、2.3和21.0 mg·L-1, TN去除率达到(79 ± 2)%. 需要注意的是, 本研究在CSTR出水中保留了充足的剩余ρ(NH4+-N)(> 12.9 mg·L-1), 保证AOB和AMX对NOB的生长竞争优势[24]. 在第95 d, R1 ~ R3的TN去除负荷达到2.6 ~ 2.7 kg·(m3·d)-1, f值约为0.10 ± 0.02, 接近PN/A反应的理论值[20]. 这表明3个连续流PN/A颗粒污泥反应器已成功启动. 颗粒污泥反应器脱氮性能与已有研究报道结果的对比如表 1所示.
![]() |
表 1 PN/A反应器的脱氮性能比较 Table 1 Comparison of nitrogen removal performance of PN/A reactors |
2.2 粒径分布与污泥活性变化
在启动初始阶段, R1中污泥的平均粒径和比总氮去除率(以VSS计)分别为1.13 mm和0.15 g·(g·d)-1, 远大于R2和R3的对应值(图 3). 当运行至第50 d, 3个反应器中污泥量和sNRR均有所增长, 其中, R2的ρ(MLVSS)最大, 达到6.78 g·L-1, SVI5值保持在21 ~ 33 mL·g-1的水平. 同期, R3中粒径0.5 ~ 0.8 mm的污泥占比由最初的51%大幅下降至24%, 并出现了粒径 > 1.6 mm的颗粒污泥(约10%), 污泥平均粒径较接种污泥增大了约17.6%, 增幅高于R2的9.4%和R1的3.5%. 这意味着接种污泥在高水力剪切的作用下发生了颗粒破碎、表面剥落、小颗粒聚集和生长过程, 颗粒粒径的增大将有利于促进微生物生境的分化, 提高物种及其功能的多样性[10, 25]. Zhu等[26]通过综合分析颗粒内部传质、功能菌富集和污泥沉降性等因素, 认为处理低浓度废水时, 好氧颗粒污泥的最佳粒径范围在0.5 ~ 0.9 mm. 在本研究中, 粒径在0.5 ~ 1.25 mm的颗粒污泥始终占据主导地位.
![]() |
图 3 运行期间, R1、R2和R3中MLVSS浓度、粒径分布和sNRR值的变化 Fig. 3 Changes in MLVSS, particle size, and sNRR of R1, R2, and R3 during operation |
在第Ⅱ阶段, 随着NLR提高至3.2 kg·(m3·d)-1, 反应器内污泥量和sNRR进一步增长. 在第95 d, R1 ~ R3中ρ(MLVSS)分别达到7.3、7.8和7.2 g·L-1, sNRR分别较接种污泥提高了约2.4、3.9和9.5倍. 从形态上看, 3个反应器中污泥的平均粒径在1.22 ~ 1.27 mm, 粒径分布总体服从正态分布. 颗粒呈现PN/A污泥所特有的棕红色, 表层较内核更为松散, 有利于氮素、溶解氧和氮气的双向传质[27].
2.3 污泥菌群结构对比分析采用高通量测序技术对不同污泥样品中的菌群结构进行了分析. 尽管PN0与PNA0存在功能性差异, 但R1 ~ R3中颗粒污泥在相同条件下培养95 d后获得了类似的菌群结构, 如图 4所示. 在OTU水平上, R1 ~ R3中颗粒污泥的微生物丰度(Ace指数)和生物多样性(Shannon指数)均明显高于接种污泥, 拥有与PNA0和PN0相同的OTU数量分别为236个(占比为49.7%~53.6%)和143个(占比为30.1%~32.5%). 这表明功能菌群在反应器启动期间发生了重构和演化, 以适应高NLR、高水力剪切和高水力选择压的运行条件[19].
![]() |
红色箭头起点为接种污泥, 终点为成熟污泥 图 4 不同污泥样品的微生物群落Venn图和PCA分析 Fig. 4 Venn diagram and PCA analysis of microbial community in different sludge samples |
如图 5(a)所示, R1 ~ R3中颗粒污泥中相对丰度前5的菌门分别为浮霉菌门(Planctomycetes)(23.0% ~ 28.8%)、变形菌门(Proteobacteria)(26.2% ~ 40.0%)、绿弯菌门(Chloroflexi)(10.3% ~ 16.3%)、拟杆菌门(Bacteroidetes)(10.9% ~ 16.7%)和绿菌门(Chlorobi)(3.1%~4.3%). 与Proteobacteria(50.5%)和Bacteroidetes(30.0%)占主导的PN0相比, R1 ~ R3污泥的菌群结构与PNA0具有更高的相似度. 作为PN/A反应的核心功能菌, 隶属于Planctomycetes菌门的Candidatus Kuenenia属是PNA0中主要的AMX菌属(30.78%). 同时, 接种PN0颗粒污泥为反应器提供了充足的AOB菌种(Nitrosomonas属), 有利于AMX在颗粒污泥中的富集[28]. 如图 5(b)所示, Nitrosomonas和Candidatus Kuenenia在R1 ~ R3污泥中的相对丰度分别达到了1.5% ~ 2.4%和23.6% ~ 37.6%. 另外, R1 ~ R3污泥中还检出了少量r型-AMX菌属(Candidatus Brocadia, 0.3% ~ 0.5%), 这可能与反应器启动初期的亚硝累积过程有关[图 2(b)]. 与Candidatus Kuenenia属[亚硝酸盐(Ks)为0.2 ~ 3 μmol·L-1, 比生长速率(μ)为0.06 ~ 0.08 d-1]相比, Candidatus Brocadia在高基质浓度(如NO2--N)条件下的生长速率更快[亚硝酸盐Ks =(34 ± 21)μmol·L-1, μ = 0.10 d -1], 并具备更强的小分子有机酸代谢能力[乙酸转化速率(以protein计)约为(0.31 ± 0.03)μmol·(g·min)-1][19, 29]. 值得注意的是, R1 ~ R3污泥中并未检出亚硝酸盐氧化菌(NOB), 这说明维持剩余NH4+-N浓度有效抑制了NOB在颗粒污泥中的生长, 有利于维持连续流反应器的稳定运行[30, 31].
![]() |
图 5 不同污泥样品中门和属级别的细菌群落结构分布 Fig. 5 Microbial community diversity at phylum level and genus level in different sludge samples |
尽管R1 ~ R3反应器进水中不含有机碳, 但Chloroflexi、Bacteroidetes和Chlorobi等异养菌门在PN/A颗粒污泥中的生长仍是普遍现象, 可形成复杂的种间代谢基质(如碳氮源、氨基酸和维生素等)传递和利用网络[10, 32, 33], 例如, 隶属于Chloroflexi门的norank_f_Anaerolineaceae在R1 ~ R3污泥中的相对丰度达到了4.8% ~ 10.4%, 其主要通过水解细胞残体(SMP)和胞外聚合物质(EPS)获取生长基质, 对维持颗粒污泥的稳定发挥了重要作用[20, 34, 35]. 同时, Denitratisoma和norank-f-PHOS-HE36等反硝化菌(HDB)的检出表明, 厌氧氨氧化反应并不是颗粒污泥中唯一的生物脱氮路径[36, 37]. 通常认为, 污泥水解提供的内源有机碳不足以驱动完全反硝化过程(NO3-→NO2-→N2O→N2), 这使得HDB优先将NO3--N还原为AMX生长所需的NO2--N, 实现部分反硝化功能[14, 38]. 此外, 有研究者基于宏基因和宏转录测序分析提出, Chlorobi与AMX存在密切的共生关系, 一方面, AMX向Chlorobi提供其无法合成的基质, 如醋酸盐、b族维生素和EPS(氨基酸、肽), 另一方面, Chlorobi可以从AMX处获得次级代谢产物和氨基酸等[34, 39, 40].
2.4 混合接种的工程应用潜力在本研究中, 按照不同质量比混合接种PN/A和PN颗粒污泥, 成功启动了连续流自养生物脱氮工艺, TN去除负荷达到2.6 kg·(m3·d)-1以上, 远高于传统活性污泥法的水平. 在此期间, PN颗粒污泥不仅为反应器提供了充足的AOB菌种和AMX生长所需的限制性基质(NO2--N), 还可以通过颗粒间碰撞获得AMX菌种, 并逐步形成稳定的PN/A颗粒结构, 如图 6所示. 在CSTR反应器中, 单个PN/A颗粒污泥都可被视为一个微型的污水处理单元, AOB集中分布于颗粒表面0~150 μm的外层, 而AMX则占据表层以下300 ~ 700 μm的内核区域[9, 10, 31]. 在水力剪切的作用下, 颗粒之间的碰撞、摩擦或表层剥离都可能破坏AOB和AMX的分层结构[41 ~ 43]. 作为培养PN/A颗粒污泥的前驱体, PN颗粒污泥表面存在稳定的溶氧梯度, 并能够为AMX生长提供充足的NH4+-N和NO2--N供给, 经过新的污泥颗粒化过程, 就可以形成泥龄更短、活性更高的微生物聚集体[44, 45].
![]() |
图 6 混合接种PN与PN/A颗粒污泥启动连续流自养生物脱氮反应器的过程模型 Fig. 6 Process modeling of a continuous flow PN/A granular sludge reactor initiated by mixed inoculation of PN and PN/A granular sludge |
有研究表明, 采用高水力选择压的生化反应器, 如大高径比(H/D为8 ~ 12)的序批式反应器和短HRT[19]、高污泥截留的连续流反应器[17], 能够在7 ~ 21 d内同步实现活性污泥的亚硝化和颗粒化. 与PN/A污泥相比, PN颗粒污泥的批量化培养难度明显更低[25]. 在工程化应用中, 将PN颗粒污泥与PN/A污泥混合接种是快速启动连续流反应器的有效方法, 具有很强的实用性.
3 结论(1)当NLR为2.4 kg·(m3·d)-1时, R1和R2连续运行至第49 d, TN去除率均可达到80%以上, 而R3表现出更明显的亚硝化特性. 通过同步提高NLR和曝气强度, R1、R2和R3在运行至第95 d时, TN去除负荷达到2.6 kg·(m3·d)-1以上, f值接近理论值0.11. 连续流PN/A颗粒污泥反应器成功启动.
(2)在反应器启动期间, 颗粒污泥浓度和脱氮活性均持续提高. 运行至第95 d, R1 ~ R3中污泥的ρ(MLVSS)、平均粒径和sNRR值(以VSS计)分别达到了7.1 ~ 7.8 g·L-1、1.22 ~ 1.27 mm和0.35 ~ 0.39 g·(g·d)-1. 尽管R3中颗粒污泥的平均粒径和脱氮活性增幅最大, 但PN/A与PN颗粒污泥的接种比并未显著影响反应器在稳定状态下的脱氮性能.
(3)高通量测序结果表明, R1 ~ R3中颗粒污泥的微生物丰度和多样性指数均明显高于接种污泥. 在颗粒污泥中, AOB(Nitrosomonas属)和AMX(Candidatus Kuenenia和Brocadia属)是驱动PN/A自养脱氮的核心菌群, 同时, Chloroflexi、Bacteroidetes和Chlorobi等异养菌的协同生长也为增强颗粒功能结构的稳定性发挥了重要作用. 启动期间, PN颗粒污泥充当了培养PN/A污泥的前驱体, 因此, 混合接种策略对快速启动连续流自养脱氮工艺具有较高的工程指导意义.
[1] | Han X Y, Zhang S J, Yang S H, et al. Full-scale partial nitritation/anammox (PN/A) process for treating sludge dewatering liquor from anaerobic digestion after thermal hydrolysis[J]. Bioresource Technology, 2020, 297. DOI:10.1016/j.biortech.2019.122380 |
[2] | Wang S P, Li J Y, Wang D, et al. Start-up of single-stage partial nitritation-anammox micro-granules system: performance and microbial community dynamics[J]. Environmental Research, 2020, 186. DOI:10.1016/j.envres.2020.109581 |
[3] | Qiu S K, Hu Y S, Liu R, et al. Start up of partial nitritation-anammox process using intermittently aerated sequencing batch reactor: performance and microbial community dynamics[J]. Science of the Total Environment, 2019, 647: 1188-1198. DOI:10.1016/j.scitotenv.2018.08.098 |
[4] |
李剑宇, 王少坡, 邱春生, 等. PN/A技术应用于城市污水主流处理的挑战与实践[J]. 水处理技术, 2020, 46(11): 24-30. Li J Y, Wang S P, Qiu C S, et al. Challenge and practice of PN/A technology applied to mainstream treatment of municipal wastewater[J]. Technology of Water Treatment, 2020, 46(11): 24-30. |
[5] | Zhang J B, Zhou J, Han Y, et al. Start-up and bacterial communities of single-stage nitrogen removal using anammox and partial nitritation (SNAP) for treatment of high strength ammonia wastewater[J]. Bioresource Technology, 2014, 169: 652-657. DOI:10.1016/j.biortech.2014.07.042 |
[6] | Qiao S, Yamamoto T, Misaka M, et al. High-rate nitrogen removal from livestock manure digester liquor by combined partial nitritation-anammox process[J]. Biodegradation, 2010, 21(1): 11-20. DOI:10.1007/s10532-009-9277-8 |
[7] |
高远, 程军, 张亮, 等. 高氨氮PN/A脱氮工艺: 亚硝态氮抑制后的恢复策略[J]. 环境工程, 2019, 37(1): 35-40. Gao Y, Cheng J, Zhang L, et al. High-strength ammonoium PN/A nitrogen removal process: recovery strategy after inhibition of nitrite nitrogen[J]. Environmental Engineering, 2019, 37(1): 35-40. |
[8] |
吴志明, 陈学春, 赵欣, 等. Nereda®好氧颗粒污泥工艺配置及运行性能[J]. 中国给水排水, 2023, 39(14): 10-18. Wu Z M, Chen X C, Zhao X, et al. Process configuration and operational performance of Nereda® aerobic granular sludge technology[J]. China Water & Wastewater, 2023, 39(14): 10-18. |
[9] |
余诚, 张凯渊, 王凯军, 等. 连续流好氧颗粒污泥技术升级现有污水处理工程[J]. 中国给水排水, 2023, 39(13): 1-8. Yu C, Zhang K Y, Wang K J, et al. Continuous flow aerobic granular sludge process upgrading a full-scale urban wastewater treatment plant[J]. China Water & Wastewater, 2023, 39(13): 1-8. |
[10] | Kosgey K, Chandran K, Gokal J, et al. Critical analysis of biomass retention strategies in mainstream and sidestream ANAMMOX-mediated nitrogen removal systems[J]. Environmental Science & Technology, 2021, 55(1): 9-24. |
[11] | Wang T, Liu Y M, Guo J B, et al. Rapid start up anammox process through a new strategy with inoculating perchlorate reduction sludge and a small amount of anammox sludge[J]. Biochemical Engineering Journal, 2020, 164. DOI:10.1016/j.bej.2020.107784 |
[12] | Deore R, Kumar R, Waqqas Mirza M, et al. Selecting suitable seed sludge for anammox enrichment: Role of influent characteristics and reactor operational conditions[J]. Bioresource Technology, 2022, 347. DOI:10.1016/j.biortech.2022.126719 |
[13] | Cai F R, Lei L R, Li Y M. Rapid start-up of single-stage nitrogen removal using anammox and partial nitritation (SNAP) process in a sequencing batch biofilm reactor (SBBR) inoculated with conventional activated sludge[J]. International Biodeterioration & Biodegradation, 2020, 147. DOI:10.1016/j.ibiod.2019.104877 |
[14] | Gong S Y, Qin Y J, Zheng S H, et al. The rapid start-up of CANON process through adding partial nitration sludge to ANAMMOX system[J]. Journal of Environmental Management, 2023, 338. DOI:10.1016/j.jenvman.2023.117821 |
[15] | van Dijk E J H, Haaksman V A, van Loosdrecht M C M, et al. On the mechanisms for aerobic granulation- model based evaluation[J]. Water Research, 2022, 216. DOI:10.1016/j.watres.2022.118365 |
[16] | Qian F Y, Wang J F, Shen Y L, et al. Achieving high performance completely autotrophic nitrogen removal in a continuous granular sludge reactor[J]. Biochemical Engineering Journal, 2017, 118: 97-104. DOI:10.1016/j.bej.2016.11.017 |
[17] |
李冬, 毛中新, 李明润, 等. 序批式与连续流交替运行的短程硝化启动研究[J]. 中国环境科学, 2023, 43(7): 3438-3446. Li D, Mao Z X, Li M R, et al. Partial nitrification start-up study running alternately between sequential batch and continuous flow[J]. China Environmental Science, 2023, 43(7): 3438-3446. DOI:10.3969/j.issn.1000-6923.2023.07.018 |
[18] |
刘文如, 宋家俊, 王建芳, 等. 硝化微颗粒污泥快速培养及其亚硝化功能快速实现[J]. 环境科学, 2020, 41(1): 353-359. Liu W R, Song J J, Wang J F, et al. Rapid achievement of nitrifying micro-granular sludge and its nitritation function[J]. Environmental Science, 2020, 41(1): 353-359. |
[19] | Qian F Y, Gebreyesus A T, Wang J F, et al. Single-stage autotrophic nitrogen removal process at high loading rate: granular reactor performance, kinetics, and microbial characterization[J]. Applied Microbiology and Biotechnology, 2018, 102(5): 2379-2389. DOI:10.1007/s00253-018-8768-0 |
[20] | Lin L, Luo Z B, Ishida K, et al. Fast formation of anammox granules using a nitrification-denitrification sludge and transformation of microbial community[J]. Water Research, 2022, 221. DOI:10.1016/j.watres.2022.118751 |
[21] | Zhao J J, Dong X F, Su H, et al. Rapid start-up of PN/A process and efficient enrichment of functional bacteria: a novel aerobic-biofilm/anaerobic-granular nitrogen removal system (OANRS)[J]. Bioresource Technology, 2023, 380. DOI:10.1016/j.biortech.2023.128944 |
[22] | Qu Z L, Liu B, Ma Y, et al. Differences in bacterial community structure and potential functions among Eucalyptus plantations with different ages and species of trees[J]. Applied Soil Ecology, 2020, 149. DOI:10.1016/j.apsoil.2020.103515 |
[23] | Liu W R, Song J J, Wang J F, et al. Achieving robust nitritation in a modified continuous-flow reactor: from micro-granule cultivation to nitrite-oxidizing bacteria elimination[J]. Journal of Environmental Sciences, 2023, 124: 117-129. DOI:10.1016/j.jes.2021.11.006 |
[24] | Pérez J, Lotti T, Kleerebezem R, et al. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: a model-based study[J]. Water Research, 2014, 66: 208-218. DOI:10.1016/j.watres.2014.08.028 |
[25] | Lackner S, Gilbert E M, Vlaeminck S E, et al. Full-scale partial nitritation/anammox experiences-an application survey[J]. Water Research, 2014, 55: 292-303. DOI:10.1016/j.watres.2014.02.032 |
[26] | Zhu G B, Wang S Y, Ma B, et al. Anammox granular sludge in low-ammonium sewage treatment: not bigger size driving better performance[J]. Water Research, 2018, 142: 147-158. DOI:10.1016/j.watres.2018.05.048 |
[27] | Qian F Y, Zhang L, Liu F, et al. Size characterization of red cores in partial nitritation/anammox granular sludge: Nitrogen removal activity and bacterial structure indication[J]. Journal of Environmental Chemical Engineering, 2022, 10(1). DOI:10.1016/j.jece.2021.106924 |
[28] | Miao Y Y, Zhang J H, Peng Y Z, et al. An improved start-up strategy for mainstream anammox process through inoculating ordinary nitrification sludge and a small amount of anammox sludge[J]. Journal of Hazardous Materials, 2020, 384. DOI:10.1016/j.jhazmat.2019.121325 |
[29] | Oshiki M, Satoh H, Okabe S. Ecology and physiology of anaerobic ammonium oxidizing bacteria[J]. Environmental Microbiology, 2016, 18(9): 2784-2796. DOI:10.1111/1462-2920.13134 |
[30] | Ma B, Bao P, Wei Y, et al. Suppressing nitrite-oxidizing bacteria growth to achieve nitrogen removal from domestic wastewater via anammox using intermittent aeration with low dissolved oxygen[J]. Scientific Reports, 2015, 5(1). DOI:10.1038/srep13048 |
[31] | Wang Z Y, Zheng M, Duan H R, et al. A 20-Year journey of partial nitritation and anammox (PN/A): from sidestream toward mainstream[J]. Environmental Science & Technology, 2022, 56(12): 7522-7531. |
[32] | Zhang Q, Zheng J L, Zhao L Z, et al. Succession of microbial communities reveals the inevitability of anammox core in the development of anammox processes[J]. Bioresource Technology, 2023, 371. DOI:10.1016/j.biortech.2023.128645 |
[33] | Zhao Y P, Liu S F, Jiang B, et al. Genome-centered metagenomics analysis reveals the symbiotic organisms possessing ability to cross-feed with anammox bacteria in anammox consortia[J]. Environmental Science & Technology, 2018, 52(19): 11285-11296. |
[34] | Ran X C, Zhou M D, Wang T, et al. Multidisciplinary characterization of nitrogen-removal granular sludge: a review of advances and technologies[J]. Water Research, 2022, 214. DOI:10.1016/j.watres.2022.118214 |
[35] | Jiang M T, Ji S H, Wu R X, et al. Exploiting refractory organic matter for advanced nitrogen removal from mature landfill leachate via anammox in an expanded granular sludge bed reactor[J]. Bioresource Technology, 2023, 371. DOI:10.1016/j.biortech.2023.128594 |
[36] | Wang X, Wang T, Yuan L Z, et al. One-step start-up and subsequent operation of CANON process in a fixed-bed reactor by inoculating mixture of partial nitrification and Anammox sludge[J]. Chemosphere, 2021, 275. DOI:10.1016/j.chemosphere.2021.130075 |
[37] | Xu D D, Fan J H, Pan C, et al. Dimension effect of anammox granule: potential vs performance[J]. Science of the Total Environment, 2021, 795. DOI:10.1016/j.scitotenv.2021.148681 |
[38] | Yan F, Wang S Q, Huang Z H, et al. Microbial ecological responses of partial nitritation/anammox granular sludge to real water matrices and its potential application[J]. Environmental Research, 2023, 226. DOI:10.1016/j.envres.2023.115701 |
[39] | Ji X M, Zheng C, Wang Y L, et al. Decoding the interspecies interaction in anammox process with inorganic feeding through metagenomic and metatranscriptomic analysis[J]. Journal of Cleaner Production, 2021, 288. DOI:10.1016/j.jclepro.2020.125691 |
[40] | Wang L S, Gu W C, Liu Y C, et al. Challenges, solutions and prospects of mainstream anammox-based process for municipal wastewater treatment[J]. Science of the Total Environment, 2022, 820. DOI:10.1016/j.scitotenv.2022.153351 |
[41] | Adav S S, Lee D J, Show K Y, et al. Aerobic granular sludge: recent advances[J]. Biotechnology Advances, 2008, 26(5): 411-423. DOI:10.1016/j.biotechadv.2008.05.002 |
[42] | Ma H Y, Zhang Y F, Xue Y, et al. Efficient phosphorus recovery by enhanced hydroxyapatite formation in a high loading anammox expanded bed reactor at 15℃[J]. Chemical Engineering Journal, 2021, 425. DOI:10.1016/j.cej.2021.130636 |
[43] | Liu W R, Wang J F, Shen Y L, et al. Response of nitritation granules to anaerobically pre-treated municipal wastewater at low temperatures in a continuous-flow reactor[J]. Chemosphere, 2022, 294. DOI:10.1016/j.chemosphere.2022.133831 |
[44] | Ji Y T, Liu J Y, Wang C, et al. Stability improvement of aerobic granular sludge (AGS) based on Gibbs free energy change (∆G) of sludge-water interface[J]. Water Research, 2023, 240. DOI:10.1016/j.watres.2023.120059 |
[45] | Wang Q, Zhao Y X, Chen Z H, et al. Nitrate bioreduction under Cr(Ⅵ) stress: crossroads of denitrification and dissimilatory nitrate reduction to ammonium[J]. Environmental Science & Technology, 2023, 57(29): 10662-10672. |