环境科学  2024, Vol. 45 Issue (1): 335-342   PDF    
不同土地利用方式对岩溶区土壤有机碳组分稳定性的影响
陈坚淇, 贾亚男, 贺秋芳, 江可, 陈畅, 叶凯     
西南大学地理科学学院, 岩溶环境重庆市重点实验室, 重庆 400715
摘要: 土壤有机碳的组分及其稳定机制是深入了解陆地碳汇能力的关键, 岩溶生态系统中土壤有机碳稳定性在很大程度上影响土壤固碳能力.为了解人类活动对岩溶区土壤有机碳稳定性的影响, 选取重庆市中梁山岩溶槽谷区为例, 分层采集了4种典型土地利用方式(混交林、竹林地、荒草地和耕地)的土壤样本, 分析不同土地利用方式下总有机碳(TOC)、重组有机碳(HFOC)、轻组有机碳(LFOC)、活性有机碳(LOC)、惰性有机碳(ROC)的分布特征, 运用结构方程模型定量分析土地利用方式对土壤有机碳组成的影响及其稳定性的影响, 为岩溶区土壤碳汇评估和土壤质量保护提供基础数据.结果表明:岩溶区不同土地利用方式下的各有机碳组分均出现明显的表聚现象, 表层有机碳组分含量是底层的1.2倍;应用土壤惰性有机碳指数(ROCI)指示土壤有机碳稳定性, 其变化区间为33.9% ~ 64.5%, 其中混交林最高为64.5% ~ 66.3%, 耕地最低为33.8% ~ 39.6%.岩溶区惰性有机碳含量和ROCI表明, 人类农业耕作活动引起土壤有机碳含量减少和土壤物理结构被破坏, 导致土壤有机质分解和周转速率加快;影响岩溶区土壤稳定性的最重要因素是土壤pH, 耕作活动引起土壤pH降低, 减少了土壤微生物活性, 不利于土壤中惰性有机碳和土壤有机碳库的积累.
关键词: 岩溶区      土地利用      惰性有机碳      土壤有机碳稳定性      结构方程模型     
Effect of Land Use on the Stability of Soil Organic Carbon in a Karst Region
CHEN Jian-qi , JIA Ya-nan , HE Qiu-fang , JIANG Ke , CHEN Chang , YE Kai     
Chongqing Key Laboratory of Karst Environment, School of Geographic Sciences, Southwest University, Chongqing 400715, China
Abstract: The composition of soil organic carbon and its stability mechanism are the key to understanding the terrestrial carbon sink capacity. The stability of soil organic carbon in a karst ecosystem greatly affects the soil carbon fixation capacity. In order to understand the impact of human activities on the stability of soil organic carbon in karst areas, the karst valley area of Zhongliang Mountain in Chongqing was selected as an example, and soil samples of four typical land use modes (mixed forest, bamboo forest, grassland, and cultivated land) were collected in layers to analyze the total organic carbon (TOC) and heavy fraction organic carbon (HFOC). The distribution characteristics of light fraction organic carbon (LFOC), labile organic carbon (LOC), and recalcitrant organic carbon (ROC) were analyzed quantitatively by using a structural equation model to provide basic data for soil carbon sink assessment and soil quality protection in karst areas. The results showed that the organic carbon components under different land use patterns in karst areas had obvious surface accumulation, and the content of organic carbon components in the surface layer was 1.2 times that in the bottom layer. Except for LFOC, the content of other organic carbon components was the highest in the mixed forest, followed by that in the bamboo forest and wasteland, with the lowest in cultivated land. Mixed forest ω(TOC) content was the highest, 42.5 g·kg-1, followed by that of bamboo forest (36.6 g·kg-1) and grassland (18.7 g·kg-1), and cultivated land content was the lowest, 13.4 g·kg-1. The soil organic carbon content of cultivated land was 68.5%, 63.5%, and 28.3% lower than that of mixed forest, bamboo forest, and grassland, respectively. Mixed forest had the highest content of ω(HFOC), 21 g·kg-1, followed by those of bamboo forest (20.9 g·kg-1), grassland (18.2 g·kg-1), and cultivated land (13.5 g·kg-1). The mixed forest ω(LOC) content was the highest, 16.3 g·kg-1, followed by those of bamboo forest (14.9 g·kg-1), grassland (11.5 g·kg-1), and cultivated land (5.3 g·kg-1). Mixed forest ω (ROC) content was the highest, 25.7 g·kg-1, followed by those of bamboo forest (21.6 g·kg-1), grassland (15.9 g·kg-1), and cultivated land (10.3 g·kg-1). The bamboo forest land ω(LFOC) content was 15.9 g·kg-1, followed by those of mixed forest (13.9 g·kg-1), grassland (7.3 g·kg-1), and cultivated land (4.9 g·kg-1). The recalcitrant organic carbon index (ROCI) was used to indicate the stability of soil organic carbon. The variation range of ROCI was 33.9%-64.5%, of which the highest was mixed forest (64.5%-66.3%), and the lowest was cultivated land (33.8%-39.6%). The ROCI of mixed forest, bamboo forest, and grassland were 1.8 times, 1.6 times, and 1.4 times that of cultivated land, respectively. Karst area ω (inert organic carbon) content and ROCI showed that human agricultural activities caused the reduction in soil organic carbon content and the destruction of soil physical structure, resulting in the accelerated decomposition and turnover rate of soil organic matter. The most important factor affecting soil stability in karst areas was soil pH. Tillage activities caused soil pH to rise, reduced soil microbial activity, and were not conducive to the accumulation of the inert organic carbon and soil organic carbon pool in the soil.
Key words: karst area      land use      recalcitrant organic carbon      soil organic carbon stability      structural equation models     

土壤碳库的相对稳定性是保持碳平衡、应对全球气候变化的关键[1], 不仅影响土壤的固碳能力, 并且会对土壤有机碳(total soil organic carbon, TOC)的排放过程产生影响, 进而引起全球气候变化[2, 3].因此, 了解土壤有机碳稳定性的时空变化特征, 有助于制定土壤碳库管理策略、提高土壤碳汇能力.土壤中的惰性有机碳(recalcitrant organic carbon, ROC)和重组有机碳(heavy faction organic carbon, HFOC)和活性有机碳组分(labile organic carbon, LOC;light faction organic carbon, LFOC)主要来源于植物通过一系列生物化学过程分解形成的有机质[4], 可以在土壤中长期保留[5, 6], 同时表征土壤长期有机碳储存和土壤有机碳的稳定性.有研究表明, 土壤中TOC含量及其活性组分对岩溶区土地利用方式改变具有负向响应, 人类活动引起的土地利用方式变化导致了活性有机碳的转化[7, 8], 从而影响土壤碳库的稳定性.土壤TOC含量和转化过程对岩溶区土壤中惰性有机碳汇的形成和积累十分重要, 但是目前对岩溶区土壤TOC稳定性机制及其影响因素还缺乏明确的定论, 不利于有效评估岩溶区土壤有机碳汇过程和通量.

土地利用方式变化是影响TOC动态平衡的主要因素[9 ~ 11].中国土地利用方式变化造成的TOC损失约7.1 Pg, 其中大部分损失发生在耕作土壤中[12].长期施肥使耕地土壤惰性碳库HFOC的含量降低了16.8% ~ 103% [13 ~ 16], 耕地HFOC的分解速率为65.3%, 远高于林地31.6%[17].岩溶区也有类似的现象, 虽然中梁山岩溶区土壤中耕地的TOC含量高于林地, 但是耕地破坏土壤结构, 导致LFOC矿化损失, HFOC成为土壤有机碳的主要部分 [18].因而, 人类活动引起的土地利用方式改变是岩溶区影响土壤TOC的重要因素, 而HFOC是保持土壤有机碳稳定的主要贡献载体.但HFOC的团聚体物理保护机制只能短暂地减缓有机质分解, 无法长时间保持土壤有机碳的稳定[19].ROC是土壤中有机碳最稳定的成分, 也是岩溶土壤碳汇最重要的部分.但是, 目前对岩溶区ROC的含量变化和影响因素研究尚少, 需要在岩溶区开展更为深入和广泛的ROC监测分析, 了解ROC的稳定和转化机制及其主要影响因素, 进而评估岩溶土壤碳汇的环境效应, 采取有效的土壤改良和增汇措施.

本文以重庆市北部的中梁山岩溶槽谷为例, 采集耕地、混交林、竹林地和荒草地这4种土地利用方式下的土壤样品, 分析生物化学分组的LOC、ROC、物理密度分组的LFOC和HFOC这4个指标的分布特征, 结合土壤理化性质, 揭示不同土地利用方式对土壤有机碳组分分布以及土壤有机碳稳定性的影响, 了解岩溶区土壤有机碳库对不同程度人类干扰的响应, 以期为评价该区土地利用变化对土壤固碳潜力的影响提供数据基础.

1 材料与方法 1.1 研究区概况

中梁山岩溶槽谷区位于重庆市北碚区, 地理坐标为29°39´ ~ 29°50´N, 106°22´ ~ 106°29´E, 为南北走向“一山三岭二槽”槽谷地貌(图 1).槽谷核部地层为下三叠统飞仙关组(T1f), 向两翼延伸分别为下三叠统嘉陵江组(T1j)、中三叠统雷口坡组(T2l)及上三叠统须家河组(T3xj).

改自文献[20] 图 1 中梁山岩溶槽谷地质和土地利用分布及采样点分布示意 Fig. 1 Distribution map of tunnels and sampling points in the study areas

研究区气候类型为亚热带季风气候, 具有气温高, 雨量充沛, 湿度大, 云雾多, 日照少等特点.研究区土壤类型以地带性黄壤和非地带性石灰土为主, 土层薄且不连续.区内面积为56.3 km2, 土地利用方式以混交林、竹林地、耕地和荒草地为主, 混交林和竹林地分布于槽谷两侧山坡, 耕地分布于坡脚及谷底.耕地大都为旱地, 占地面积最大, 为28.8 km2, 荒草地由耕地撂荒而成, 面积为0.3 km2.混交林的面积为23.4 km2, 竹林地的面积为3.7 km2, 分别占研究区面积的51.2%、41.5%、6.5%和0.5%.人类干扰程度依次为:混交林 < 竹林地 < 荒草地 < 耕地.研究区位于重庆市北碚郊区, 人口密度高, 人地矛盾突出, 受到人类活动干扰较大, 耕地面积所占比例最大.

1.2 样品采集与处理

2021年11月在中梁山岩溶槽谷中选取4种分别代表不同人类干扰强度的土地利用方式, 从小到大依次为:混交林 < 竹林地 < 荒草地 < 耕地.在每个固定样地内, 按典型方式分别设置10 m×10 m的固定样方3个, 用于重复取样, 每个固定样方随机设置固定采样点10个.为保证土壤样品的一致性, 每次采样均在采样点附近重新挖土壤剖面, 按0 ~ 20 cm和20 ~ 40 cm, 从下往上采取土壤样品, 3个同样深度层次土壤充分混合从中取出1 kg样品, 立即装入采样袋中密封.同时用环刀沿剖面采集土样、密封并立即放进便携式避光箱中, 用于测试土壤容重和含水量.土壤样品总计采集80个, 将采集的样品运回实验室, 除去碎石、植物残根等杂物, 阴凉通风处自然风干.将风干后的土壤样品按对角线四分法取出一半备用保存, 剩余部分平铺, 用玛瑙勺多点取样混合并在玛瑙研钵中磨碎, 分别过2 mm和0.25 mm筛以备测试.

1.3 土壤指标测定方法

TOC含量用TOC3100仪器测定;土壤含水率用质量法测定;pH值用WTW3430仪器测定, 水土质量比为2.5∶1;土壤容重使用环刀法(100 cm3)测定;TN使用半微量凯氏法;LOC和ROC使用酸水解法[21];LFOC和HFOC使用溴化锌溶液分离法[22].

1.4 数据处理统计分析

采用SPSS 25.0软件进行数据统计分析, 运用ANOVA对不同土地利用方式下各土层土壤有机碳及组分含量进行统计分析;用Pearson系数相关分析法分析土壤有机碳及各组分与土壤理化性质间的相关性.运用RStudio 4.2.2的“lavaan”程序包构建结构方程模型(structural equations model, SEM), 在Excel 2007、Visio及Origin 2021软件中完成数据整理和制图.ROCI =(ROC/TOC)×100%[21].变异系数(CV)的计算公式为:CV = [标准偏差(SD)/均值(Mean)]× 100%.

2 结果与分析 2.1 不同土地利用方式土壤的基本理化性质

表 1所示, 各土地利用方式土壤样品pH值基本呈中性或偏碱性, 其中耕地0 ~ 20 cm土壤层的pH值低于其他土地利用方式.在不同土地利用方式下含水率(soil moisture content, SMC)的表现与TOC一致, 均为:混交林 > 竹林地 > 荒草地 > 耕地.4种土地利用地方式的碳氮比(carbon/nitrogen, C/N)、SMC垂直变化特征相似, 随着土壤深度的增加而降低, 上下土层的C/N和容重(bulk density, BD)均表现为随着土壤层的加深而增大.

表 1 不同土地利用方式下土壤理化性质分布特征1) Table 1 Soil physiochemical properties for different land use types

2.2 不同土地利用方式下土壤有机碳含量

土壤层中混交林与竹林地转变为荒草地和耕地后, 0 ~ 20 cm和20 ~ 40 cm土壤层的TOC含量显著减少(P < 0.01, 表 2), 且随土壤深度增加含量降低.由表 2可知, 土壤ω(TOC)均值大小顺序为:混交林(42.5 g·kg-1) > 竹林地(36.6 g·kg-1) > 荒草地(18.7 g·kg-1) > 耕地(13.4 g·kg-1), 耕地和荒草地TOC含量分别比混交林低68.5%和56.1%, 比竹林地低63.5%和49.0%.荒草地与耕地之间无显著性差异(P > 0.05).

表 2 不同人类干预程度下土壤有机碳含量的描述性统计 Table 2 Descriptive statistics of the content of soil organic carbon for different land use types

2.3 不同土地利用方式有机碳组分的分布特征

LOC和LFOC是指土壤中移动快、稳定性差且易氧化、矿化, 并对植物和土壤微生物活性较高的那部分有机碳, 直接参与土壤生物化学转化过程[23, 24], 因此其有机质惰性程度差.本研究中, 土壤ω(LOC)均值大小顺序为:混交林(16.3 g·kg-1) > 竹林地(14.9 g·kg-1) > 荒草地(11.5 g·kg-1) > 耕地(5.3 g·kg-1);ω(LFOC)均值大小顺序为:竹林地(15.90 g·kg-1) > 混交林(13.4 g·kg-1) > 荒草地(7.3 g·kg-1) > 耕地(4.9 g·kg-1).结果表明, 不同土地利用方式下, 土壤中活性有机碳组分存在显著差异(图 2).耕地的LOC和LFOC含量最低, 而混交林和竹林地的含量最高.

*、**、***分别表示在P < 0. 05、P < 0. 01和P < 0. 001水平达显著性水平, 黑点为个别异常的数值 图 2 不同土地利用方式下土壤有机碳各组分含量 Fig. 2 Contents of soil carbon fractions for different land uses

HFOC是与LFOC相对的一种稳定有机碳, 主要吸附在矿物表面或隐藏在土壤微团聚体内部[25];ROC是与LOC相对的稳定有机碳, 在土壤中的固存时间为50 ~ 3 000 a[26].一般认为ROC受土地利用方式变化的影响较小, 但是反映了土壤长期积累和固碳的能力, 因此有机质惰性程度高.土壤ω(HFOC)均值大小顺序为:混交林(21.0 g·kg-1) > 竹林地(20.9 g·kg-1) > 荒草地(18.2 g·kg-1) > 耕地(13.5 g·kg-1);ω(ROC)均值大小顺序为:混交林(25.7 g·kg-1) > 竹林地(21.6 g·kg-1) > 荒草地(15.9 g·kg-1) > 耕地(10.3 g·kg-1).总体上, 耕地土壤LOC、LFOC、ROC和HFOC含量显著低于荒草地、竹林地和混交林(P < 0.01, 图 2).表明土地利用方式明显地影响各有机碳组分的含量及其分布.

利用ROC与TOC的比值可以计算土壤惰性有机碳指数(recalcitrant organic carbon index, ROCI), ROCI代表土壤有机碳的稳定性, 可以表征土壤有机质的积累和分解状态, ROCI越高表明土壤有机碳稳定性越高[21].本研究中, ROCI的大小为:混交林(64.5% ~ 66.3%) > 竹林地(56.8% ~ 61.7%) > 荒草地(50.7% ~ 57.7%) > 耕地(33.8% ~ 39.6%), 混交林的ROCI最高, 耕地的ROCI最低(图 3).

图 3 不同土地利用类型下土壤上层(0 ~ 20 cm)和下层(20 ~ 40 cm)土壤惰性有机碳指数 Fig. 3 Recalcitrant organic carbon index at different soil depths (0-20 cm and 20-40 cm) under different land uses

2.4 土壤有机碳变化的主要驱动因素

结构方程模型(SEM)与其他多变量统计方法不同, 建模过程由理论假设驱动, 且可以同时量化多个变量间的直接和间接因果关系[27].因此利用SEM可以解释因子之间的影响大小以及影响机制.本研究基于SEM, 构建土壤有机碳与土壤理化性质之间的驱动与耦合模型.选取相关变量(pH、BD、SMC、C/N、TOC、LOC、ROC、LFOC、HFOC和ROCI)整合到结构方程模型中, 通过构建初始模型、检查模型、模型修正, 最终获得拟合度最高的结构方程模型(图 4).结果显示, 土壤的容重(BD)和pH可直接对土壤有机碳(TOC)产生显著的负影响(λ = -0.23, P < 0.05;λ = -0.94, P < 0.001), 土壤含水率(SMC)和碳氮比(C/N)对TOC(λ = 0.62, P < 0.01;λ = 0.44, P < 0.01)起一定程度的促进作用.ROC和HFOC对ROCI(λ = 0.72, P < 0.001;λ = 0.54, P < 0.01)有促进作用, LFOC和LOC则对ROCI(λ = -0.11, P < 0.05;λ = -0.14, P < 0.05)具有负面影响.

DF:自由度, GFI:拟合优度指数, RMESA:近似误差均方根;箭头上的数字表示标准化的路径系数(λ), 表明两两之间关联的效应强度;红色箭头和蓝色箭头分别表示正向关系和负向关系, 双箭头表示变量之间相互影响, 单箭头表示变量之间存在的因果关系, 箭头宽度和路径系数强度成正比;显著性水平如下:*为P < 0.05, **为P < 0.01, ***为P < 0.001 图 4 土壤有机碳稳定性影响因子的结构方程模型 Fig. 4 Structural equation model (SEM) to predict the influence factors of soil organic carbon stability

3 讨论

植被凋落物在土壤中的积累引起土壤TOC含量升高, 改善了土壤物理性状[28, 29], 提高土壤保水能力和TN含量.而农业活动移除了植物凋落物, 破坏土壤团聚体结构, 导致水土流失, TOC含量随之降低.本研究表明, 4种土地利用方式下TOC与SMC、TN为显著正相关水平(P < 0.01), 与BD呈显著负相关(P < 0.05)(表 3), 可见人类对土地利用的改变引起了岩溶区土壤中TOC含量的大幅度减少.耕地比混交林中TOC含量减少了56.0%, 与廖洪凯等[30]在贵州花江干热河谷的研究结论较为一致.这是因为耕地和混交林地的土壤有机质输入的数量和质量不同, 影响了有机质的分解和积累状态[31, 32], 进而导致土壤TOC含量的变化.

表 3 土壤有机碳与土壤理化性质的相关性 Table 3 Correlation between soil organic carbon and soil physiochemical properties

与此同时, 人类活动的负面影响还体现在改变了原有的有机质组分.C/N可以表征土壤有机质的分解速度, C/N比越小, 土壤有机质的分解速度越快[33].本研究中耕地的C/N比混交林减小了34.2%, 且耕地的LOC、LFOC、ROC和HFOC各有机质组分含量也分别比混交林减少了67.5%、63.4%、59.9%和35.7%.这是由于农业活动回收了农作物, 不仅破坏土壤团聚体结构, 还切断外源有机质的输入, 使有机质的分解速度大于有机质的积累速度, 导致LOC、LFOC、HFOC和ROC各有机质组分含量随之降低.而混交林受人类活动的影响小, 且具有较高的植被覆盖率和丰富的凋落物, 使得有机质的积累速度大于分解速度, 进而提高LOC、LFOC、HFOC和ROC各有机质组分含量.4种土地利用方式下, 土壤有机质LOC与C/N呈显著负相关(P < 0.01), ROC与C/N呈显著正相关(P < 0.01)(表 3), 可见人类活动促进了岩溶区土壤有机质的分解速度, 这与前人在焉耆盆地和长江河口的研究一致[34, 35], 说明耕地土壤有机质的分解速率高于混交林.

岩溶区水土流失较为严重, 土壤贫瘠, 并具有偏碱的特征[36], 所以一定程度上会抑制微生物的活性, 减缓土壤有机质的分解[37, 38].有研究表明, 岩溶区由混交林转为耕地会导致土壤活性有机碳在短时间内迅速矿化分解 [7, 22], 但无法反映土壤有机碳长期的稳定性.因此, 本文用土壤惰性有机碳指数(ROCI)反映土地利用变化对土壤有机质的稳定性的影响, 并利用SEM分析主要影响因子.本研究表明, 耕地的ROCI比混交林低了41.2%, 且土壤pH值是导致岩溶区ROCI变化的主要因素.耕地pH值的降低增强了土壤微生物的活性[39, 40], 促进了土壤有机质的分解, 最终引起ROCI降低.相反, 混交林由于凋落物分解后大量的多酚类、芳香类物质选择性积累, 且土壤pH偏碱性, 抑制了微生物的活动, 由此降低了有机质的分解速率, 导致ROCI较高.另外, 本研究对比前人在中梁山研究不同土地利用方式的碳形态[41]发现, 岩溶区耕地条件下的ROCI会随着时间的推移而降低, 这与Dalal等[42]研究的结果一致.随着土壤层的加深, 不同土地利用方式之间的ROCI差异减小, 表明其土壤有机质的分解速率下降.这与前人研究的结果一致[43, 44].此外, 不同土地利用方式下的土壤有机碳以及组分含量的大小顺序不会因土层的差异而改变(图 2).这表明, 土地利用方式对下层土壤(20 ~ 40 cm)与表层土壤(0 ~ 20 cm)的TOC影响一致, 并且活性有机碳和惰性有机碳都可能被农业活动所消耗.这与Kramer等[45]利用碳同位素测量0 ~ 800 cm的土壤有机碳含量的结果一致.

4 结论

(1)人类耕作活动导致了岩溶区土壤有机碳中所有组分的减少.耕地中LOC、LFOC和ROC组分都比混交林减少了60%左右, 随着土壤的加深, 其差异性减小, 土壤凋落物的减少和有机碳分解和循环速度加快是影响岩溶区有机碳积累的主要因素.

(2)人类耕作活动导致了岩溶区土壤有机碳稳定性降低.ROCI表明, 耕地土壤有机碳稳定性比混交林低了41.2%, 土壤pH值是导致岩溶区ROCI变化的主要因素.

参考文献
[1] 肖胜生, 房焕英, 徐佳文, 等. 侵蚀区植被恢复过程中土壤有机碳稳定性的研究进展[J]. 水土保持学报, 2022, 36(5): 1-8.
Xiao S S, Fang H Y, Xu J W, et al. Advances of the soil organic carbon stability under vegetation restoration in eroded areas[J]. Journal of Soil and Water Conservation, 2022, 36(5): 1-8.
[2] Schmidt M W I, Torn M S, Abiven S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367): 49-56. DOI:10.1038/nature10386
[3] Stockmann U, Adams M A, Crawford J W, et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon[J]. Agriculture, Ecosystems & Environment, 2013, 164: 80-99.
[4] Gunina A, Kuzyakov Y. From energy to (soil organic) matter[J]. Global Change Biology, 2022, 28(7): 2169-2182. DOI:10.1111/gcb.16071
[5] 周正虎, 刘琳, 侯磊. 土壤有机碳的稳定和形成: 机制和模型[J]. 北京林业大学学报, 2022, 44(10): 11-22.
Zhou Z H, Liu L, Hou L. Soil organic carbon stabilization and formation: mechanism and model[J]. Journal of Beijing Forestry University, 2022, 44(10): 11-22.
[6] Lei D, Kai B W, Mei L C, et al. Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China[J]. Catena, 2013, 110: 1-7. DOI:10.1016/j.catena.2013.06.016
[7] 蓝家程, 傅瓦利, 袁波, 等. 岩溶山区土地利用方式对土壤活性有机碳及其分布的影响[J]. 中国岩溶, 2011, 30(2): 175-180.
Lan J C, Fu W L, Yuan B, et al. Impact of land use type on soil active organic carbon and its distribution in karst mountain[J]. Carsologica Sinica, 2011, 30(2): 175-180. DOI:10.3969/j.issn.1001-4810.2011.02.009
[8] 陈高起, 傅瓦利, 沈艳, 等. 岩溶区不同土地利用方式对土壤有机碳及其组分的影响[J]. 水土保持学报, 2015, 29(3): 123-129.
Chen G Q, Fu W L, Shen Y, et al. Effects of land use types on soil organic carbon and its fractions in karst area[J]. Journal of Soil and Water Conservation, 2015, 29(3): 123-129.
[9] Dawson J J C D, Smith P. Carbon losses from soil and its consequences for land-use management[J]. Science of the Total Environment, 2007, 382(2-3): 165-190. DOI:10.1016/j.scitotenv.2007.03.023
[10] Poeplau C, Don A. Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe[J]. Geoderma, 2013, 192: 189-201. DOI:10.1016/j.geoderma.2012.08.003
[11] 章晓芳, 郑生猛, 夏银行, 等. 红壤丘陵区土壤有机碳组分对土地利用方式的响应特征[J]. 环境科学, 2020, 41(3): 1466-1473.
Zhang X F, Zheng S M, Xia Y H, et al. Responses of soil organic carbon fractions to land use types in hilly red soil regions, China[J]. Environmental Science, 2020, 41(3): 1466-1473.
[12] Wu H B, Guo Z T, Peng C H. Land use induced changes of organic carbon storage in soils of China[J]. Global Change Biology, 2003, 9(3): 305-315. DOI:10.1046/j.1365-2486.2003.00590.x
[13] 白义鑫, 盛茂银, 胡琪娟, 等. 西南喀斯特石漠化环境下土地利用变化对土壤有机碳及其组分的影响[J]. 应用生态学报, 2020, 31(5): 1607-1616.
Bai Y X, Sheng M Y, Hu Q J, et al. Effects of land use change on soil organic carbon and its components in karst rocky desertification of southwest China[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1607-1616.
[14] 李学斌, 李月飞, 陈林, 等. 宁夏荒漠草原不同土地利用方式对土壤活性有机碳的影响[J]. 北方园艺, 2021(1): 91-99.
Li X B, Li Y F, Chen L, et al. Effects of different land use types on soil active organic carbon in desert steppe of Ningxia[J]. Northern Horticulture, 2021(1): 91-99.
[15] 佟小刚. 长期施肥下我国典型农田土壤有机碳库变化特征[D]. 北京: 中国农业科学院, 2008.
Tong X G. Change characteristics of soil organic carbon pools in typical cropland of China under long-term fertilization[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008.
[16] Mohanty S, Nayak A K, Kumar A, et al. Carbon and nitrogen mineralization kinetics in soil of rice-rice system under long term application of chemical fertilizers and farmyard manure[J]. European Journal of Soil Biology, 2013, 58: 113-121. DOI:10.1016/j.ejsobi.2013.07.004
[17] 任寰宇. 森林和农田土壤有机碳不同组分分解及Q10对升温响应的比较研究[D]. 晋中: 山西农业大学, 2015.
Ren H Y. The dynamic response of different pools of organic carbon decomposition and Q10 of forest and farmland soil to rising temperature[D]. Jinzhong: Shanxi Agricultural University, 2015.
[18] 段正锋, 傅瓦利, 甄晓君, 等. 岩溶区土地利用方式对土壤有机碳组分及其分布特征的影响[J]. 水土保持学报, 2009, 23(2): 109-114.
Duan Z F, Fu W L, Zhen X J, et al. Effects of land use on soil organic carbon fractions and its distribution in karst[J]. Journal of Soil and Water Conservation, 2009, 23(2): 109-114. DOI:10.3321/j.issn:1009-2242.2009.02.024
[19] Krull E S, Baldock J A, Skjemstad J O. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover[J]. Functional Plant Biology, 2003, 30(2): 207-222. DOI:10.1071/FP02085
[20] 王正雄, 蒋勇军, 张远嘱, 等. 基于GIS与地理探测器的岩溶槽谷石漠化空间分布及驱动因素分析[J]. 地理学报, 2019, 74(5): 1025-1039.
Wang Z X, Jiang Y J, Zhang Y Z, et al. Spatial distribution and driving factors of karst rocky desertification based on GIS and geodetectors[J]. Acta Geographica Sinica, 2019, 74(5): 1025-1039.
[21] 家伟. 丹江口库区造林对土壤有机碳稳定性和温度敏感性的影响[D]. 武汉: 中国科学院大学(中国科学院武汉植物园), 2021.
Jia W. Impacts of afforestation on soil organic carbon stability and temperature sensitivity in Danjiangkou reservoir area[D]. Wuhan: University of Chinese Academy of Sciences (Wuhan Botanical Garden, Chinese Academy of Sciences), 2021.
[22] 蓝家程, 肖时珍, 林俊清, 等. 土地利用方式对岩溶山地土壤轻组和重组有机碳的影响[J]. 浙江农业学报, 2017, 29(10): 1720-1725.
Lan J C, Xiao S Z, Lin J Q, et al. Effect of land use types on soil light and heavy fraction organic carbon in Karst Mountain area[J]. Acta Agriculturae Zhejiangensis, 2017, 29(10): 1720-1725. DOI:10.3969/j.issn.1004-1524.2017.10.18
[23] 吴建国, 张小全, 王彦辉, 等. 土地利用变化对土壤物理组分中有机碳分配的影响[J]. 林业科学, 2002, 38(4): 19-29.
Wu J G, Zhang X Q, Wang Y H, et al. The effects of land use changes on the distribution of soil organic carbon in physical fractionation of soil[J]. Scientia Silvae Sinicae, 2002, 38(4): 19-29.
[24] 刘梦云, 常庆瑞, 杨香云. 黄土台塬不同土地利用方式下土壤碳组分的差异[J]. 植物营养与肥料学报, 2010, 16(6): 1418-1425.
Liu M Y, Chang O R, Yang X Y. Soil carbon fractions under different land use types in the tablelands of the Loess Plateau[J]. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1418-1425.
[25] 王卫霞, 杨光, 阿丽娅•阿力木, 等. 3种不同农作方式对土壤轻组有机碳的影响[J]. 西南农业学报, 2020, 33(11): 2477-2482.
Wang W X, Yang G, Alimu A, et al. Effects of three different farming patterns on soil light fraction organic carbon[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(11): 2477-2482.
[26] Fontaine S, Barot S, Barré P, et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply[J]. Nature, 2007, 450(7167): 277-280. DOI:10.1038/nature06275
[27] 石亚飞, 石善恒, 黄晓敏. 基于R的结构方程模型在生态学中的应用[J]. 生态学杂志, 2022, 41(5): 1015-1023.
Shi Y F, Shi S H, Huang X M. The application of structural equation modeling in ecology based on R[J]. Chinese Journal of Ecology, 2022, 41(5): 1015-1023.
[28] Walse C, Berg B, Sverdrup H. Review and synthesis of experimental data on organic matter decomposition with respect to the effect of temperature, moisture, and acidity[J]. Environmental Reviews, 1998, 6(1): 25-40. DOI:10.1139/a98-001
[29] 王纪杰, 徐秋芳, 姜培坤. 毛竹凋落物对阔叶林土壤微生物群落功能多样性的影响[J]. 林业科学, 2008, 44(9): 146-151.
Wang J J, Xu Q F, Jiang P K. Impacts of litter of phyllostachy pubescens on functional biodiversity of soil microorganism communities in broad-leaved forest[J]. Scientia Silvae Sinicae, 2008, 44(9): 146-151. DOI:10.3321/j.issn:1001-7488.2008.09.026
[30] 廖洪凯, 龙健. 喀斯特山区不同植被类型土壤有机碳的变化[J]. 应用生态学报, 2011, 22(9): 2253-2258.
Liao H K, Long J. Variation of soil organic carbon under different vegetation types in Karst Mountain areas of Guizhou Province, Southwest China[J]. Chinese Journal of Applied Ecology, 2011, 22(9): 2253-2258.
[31] Thorburn P J, Meier E A, Collins K, et al. Changes in soil carbon sequestration, fractionation and soil fertility in response to sugarcane residue retention are site-specific[J]. Soil and Tillage Research, 2012, 120: 99-111. DOI:10.1016/j.still.2011.11.009
[32] 陈仕奇, 吕盛, 高明, 等. 缙云山不同林分下土壤有机碳及矿化特征[J]. 环境科学, 2019, 40(2): 953-960.
Chen S Q, Lü S, Gao M, et al. Characteristics of soil organic carbon and mineralization with different stands in Jinyun Mountain[J]. Environmental Science, 2019, 40(2): 953-960.
[33] Zhang Y, Li P, Liu X J, et al. Effects of farmland conversion on the stoichiometry of carbon, nitrogen, and phosphorus in soil aggregates on the Loess Plateau of China[J]. Geoderma, 2019, 351: 188-196. DOI:10.1016/j.geoderma.2019.05.037
[34] Zhang J, Wang X J, Wang J P. Impact of land use change on profile distributions of soil organic carbon fractions in the Yanqi Basin[J]. CATENA, 2014, 115: 79-84. DOI:10.1016/j.catena.2013.11.019
[35] Cheng X L, Chen J Q, Luo Y Q, et al. Assessing the effects of short-term Spartina alterniflora invasion on labile and recalcitrant C and N pools by means of soil fractionation and stable C and N isotopes[J]. Geoderma, 2008, 145(3-4): 177-184. DOI:10.1016/j.geoderma.2008.02.013
[36] 曹建华, 袁道先, 潘根兴. 岩溶生态系统中的土壤[J]. 地球科学进展, 2003, 18(1): 37-44.
Cao J H, Yuan D X, Pan G X. Some soil features in karst ecosystem[J]. Advances in Earth Science, 2003, 18(1): 37-44.
[37] Hu L N, Li Q, Yan J H, et al. Vegetation restoration facilitates belowground microbial network complexity and recalcitrant soil organic carbon storage in southwest China karst region[J]. Science of the Total Environment, 2022, 820. DOI:10.1016/j.scitotenv.2022.153137
[38] Bahram M, Hildebrand F, Forslund S K, et al. Structure and function of the global topsoil microbiome[J]. Nature, 2018, 560(7717): 233-237. DOI:10.1038/s41586-018-0386-6
[39] Zhong Y Q W, Yan W M, Canisares L P, et al. Alterations in soil pH emerge as a key driver of the impact of global change on soil microbial nitrogen cycling: Evidence from a global meta-analysis[J]. Global Ecology and Biogeography, 2023, 32(1): 145-165. DOI:10.1111/geb.13616
[40] 宋文峰, 王超, 陈荣府, 等. 长期不同施肥下小麦离子吸收对土壤酸化贡献能力的比较[J]. 土壤, 2017, 49(1): 7-12.
Song W F, Wang C, Chen R F, et al. Comparison of contribution of wheat ionic uptake to soil acidification under long-term different fertilization[J]. Soils, 2017, 49(1): 7-12.
[41] 沈艳. 岩溶区不同土地利用方式土壤碳形态特征的研究——以重庆市中梁山北碚段为例[D]. 重庆: 西南大学, 2013.
Shen Y. Features of the soil organic matter fractions of different land use patterns in the Karst areas[D]. Chongqing: Southwest University, 2013.
[42] Dalal R C, Thornton C M, Allen D E, et al. Long-term land use change in Australia from native forest decreases all fractions of soil organic carbon, including resistant organic carbon, for cropping but not sown pasture[J]. Agriculture, 2021, 311(1). DOI:10.1016/j.agee.2021.107326
[43] 李昕竹, 贡璐, 唐军虎, 等. 塔里木盆地北缘绿洲不同连作年限棉田土壤有机碳组分特征及其与理化因子的相关性[J]. 环境科学, 2022, 43(10): 4639-4647.
Li X Z, Gong L, Tang J H, et al. Characteristics of soil organic carbon components and their correlation with other soil physical and chemical factors in cotton fields with different continuous cropping years in the oasis on the northern edge of Tarim Basin[J]. Environmental Science, 2022, 43(10): 4639-4647. DOI:10.3969/j.issn.1000-6923.2022.10.021
[44] 廖宇琴, 龙娟, 木志坚, 等. 重庆农田土壤有机碳稳定性同位素空间分布特征[J]. 环境科学, 2022, 43(6): 3348-3356.
Liao Q Y, Long J, Mu Z J, et al. Spatial characterization of stable isotope composition of organic carbon from farmland soils in Chongqing[J]. Environmental Science, 2022, 43(6): 3348-3356.
[45] Kramer M G, Chadwick O A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale[J]. Nature Climate Change, 2018, 8(12): 1104-1108. DOI:10.1038/s41558-018-0341-4