环境科学  2024, Vol. 45 Issue (1): 173-180   PDF    
珠江河口地表水锰氧化物对磷的“载-卸”作用
李睿1,2, 梁作兵1, 伍祺瑞1, 杨晨晨1, 田帝1, 高磊2, 陈建耀1     
1. 中山大学地理科学与规划学院, 广州 510275;
2. 中国科学院华南植物园退化生态系统植被恢复与管理重点实验室, 广州 510650
摘要: 地表径流输送的磷在河口水环境营养结构平衡和初级生产力调节中起到了关键作用.通过测定不同季节珠江下游及河口地表水阴阳离子、总磷及其形态、颗粒态铁(PFe)、颗粒态锰(PMn)和颗粒态铝(PAl)等理化性质, 探究咸-淡水交互区内磷的时空分布特征, 并识别控制磷迁移转化的关键因素.结果表明, ρ(TP)(28.88 ~ 233.68 μg·L-1)受到沉降和稀释作用随盐度升高呈下降趋势, 且占比大小为:溶解态无机磷(DIP, 37.3%) > 颗粒态无机磷(PIP, 22.7%) > 溶解态有机磷(DOP, 21.0%) > 颗粒态有机磷(POP, 19.0%).PIP与PFe、PMn和PAl有显著(P < 0.05)的共迁移相关关系, 水体盐度的升高促进了悬浮颗粒态无机磷的解吸, 且该过程主要发生在咸-淡水界面附近.无机磷的固-液分配系数(Kd)与盐度间的显著正相关关系(P < 0.001)表明, 高盐度水域PIP主要以更稳定的结合形态存在.Kd与PMn的显著正相关关系(P < 0.01)证明了Mn氧化物对磷的“载-卸”作用:从淡水环境中吸附携载无机磷, 迁移至高盐度水体释放.
关键词: 咸-淡水交互区      盐度梯度           赋存形态      迁移转化     
"Load-Unload" Effect of Manganese Oxides on Phosphorus in Surface Water of the Pearl River Estuary
LI Rui1,2 , LIANG Zuo-bing1 , WU Qi-rui1 , YANG Chen-chen1 , TIAN Di1 , GAO Lei2 , CHEN Jian-yao1     
1. School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China;
2. Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
Abstract: Phosphorus (P) conveyed by surface runoff plays an essential role in regulating nutrient balance and primary production in estuarine waters. In this study, basic physiochemical properties, total phosphorus (TP, including speciation), particulate iron (PFe), particulate manganese (PMn), and particulate aluminum (PAl) of the surface water in the Pearl River Estuary (PRE) in different seasons were determined to investigate the spatiotemporal distribution characteristics of P and to identify the crucial factor controlling P migration and transformation in the freshwater-saltwater interaction zone. TP concentrations (28.88-233.68 μg·L-1) decreased with increasing salinity gradient owing to deposition and dilution. The proportions of P speciation followed a decreasing order as dissolved inorganic phosphorus (DIP, 37.3%) > particulate inorganic phosphorus (PIP, 22.7%) > dissolved organic phosphorus (DOP, 21.0%) > particulate organic phosphorus (POP, 19.0%). PIP was positively related to PFe, PMn, and PAl (P < 0.05), confirming their concurrent migration behaviors. In addition, the increase in salinity promoted the desorption of phosphate on the suspended particulate matters, which mainly took place near the freshwater-saltwater interface. A significant positive correlation (P < 0.001) between the solid-liquid phase partitioning coefficient (Kd) of phosphate and salinity indicated that PIP was present mainly in more stable forms in the brackish water. Most importantly, a better relationship between Kd and PMn (P < 0.01) supported our scientific hypothesis of the "load-unload" effect of Mn oxides on P: particulate-carrying phosphates transported from the freshwater zone tend to be desorbed and released into the brackish water.
Key words: freshwater-saltwater interaction zone      salinity gradient      phosphorus      speciation      migration and transformation     

磷是生物体遗传代谢、能量传输和细胞膜合成等过程所必需的生源要素, 在调节水体初级生产力方面具有关键作用[1 ~ 3].过量的磷进入水体会引发水体富营养化进而导致水华或赤潮等现象[4], 然而水体的磷浓度过低亦可能致使鱼类减产或破坏浮游生物的群落结构[5 ~ 7].维持适宜的磷浓度对于水生态系统的健康和稳定性具有重要意义.然而, 珠江三角洲快速的城市化进程与人口膨胀增加了珠江河口的水环境负担[8], 导致赤潮频发[9, 10], 而磷是藻类生长的主要限制元素[11, 12].

河流输送的磷是河口主要的磷来源方式, 其中铁(Fe)在磷迁移过程中起到“传输带”作用:无机磷被悬浮颗粒物上的Fe吸附或结合, 运移至河口并沉降于沉积物中, 在缺氧条件下的Fe氧化物还原溶解过程中被释放[13, 14].高强度SO42-还原环境产生的二价硫化物(∑S2-)可以与Fe反应, 形成非溶解性FeSx 并降低其对无机磷的吸附能力[15 ~ 17].由于环境中Fe的含量往往远高于锰(Mn), 以往的研究更多关注Fe循环对水环境中磷循环的影响[18 ~ 24];然而, Mn氧化物具有低Zeta电位、高比表面积和高表面电荷数, 对水体中无机磷迁移转化行为的影响不容忽视[25 ~ 27].此外, 铝(Al)的氢氧化物对磷也有良好的吸附亲和力[28, 29].华南地区富含Fe、Mn和Al的土壤在降水冲刷作用下进入水环境可以影响磷的迁移转化行为[30, 31].珠三角城市河流中发现了磷和Mn之间紧密的地球化学循环过程[15], 然而珠江河口却主要是铁-磷耦合的迁移机制[13, 32].这种差异可能源于磷在河流输送的过程中发生的形态转化.关于河口水体磷形态的研究已多有报道[33 ~ 36], 但是鲜有研究区分Fe、Mn和Al在磷迁移过程中的作用.由于海水中Mn氧化物对无机磷的吸附亲和力低于Fe氧化物和Al氢氧化物[29, 37], 本文提出咸-淡水交互区常量金属Mn对无机磷的输送过程起到关键“载-卸”作用的科学假设:Mn氧化物吸附富集淡水环境的无机磷在高盐度水体中释放.基于此, 本文以珠江河口咸-淡水交互区为研究区, 探索地表水磷及其形态的时空变化规律, 揭示沿盐度梯度常量金属(Fe、Mn和Al)对磷迁移转化的影响, 研究结果可以提升河口地区磷循环的认知, 以期为珠江河口削减磷负荷提供科学依据.

1 材料与方法 1.1 研究区概况与样品采集

珠江流域(112°14′ ~ 115°53′E, 21°31′ ~ 26°49′N)由西江、北江、东江和珠江三角洲诸河组成, 流域面积453 690 km2, 多年平均年径流量3.38 × 1011 m3.属于热带和热带季风气候, 降水主要集中在4 ~ 10月.各水系交汇于珠江三角洲平原, 形成散射状水网入海, 其中东部4个入海口虎门、蕉门、洪奇沥和横门的水流汇入伶仃洋, 潮汐属于不正规半日潮(图 1).

图 1 珠江河口表层水采样点示意 Fig. 1 Sampling sites for the surface water in the Pearl River Estuary

1.2 样品采集与现场测定

图 1所示, 沿盐度梯度在珠江口干流与伶仃洋水域设置5个采样点位:①中山大学码头(ZD)位于珠江前航道;②海鸥岛(HOD)是冲积而成的内河岛屿, 岛上以种养业为主;③舢板洲(SBZ)位于广州南沙港附近;④淇澳岛(QAD)北部是红树林保护区;⑤桂山岛(GSD)主要发展旅游业, 也是重要的网箱养殖基地.本研究于2021年4月初旱季与7月中旬雨季, 在高高潮、低低潮以及高低潮或低高潮时段采集地表水样品(在不同潮位时段采集以增加样品的代表性), 用0.45 μm孔径醋酸纤维滤膜(提前烘干、称重)分离溶解态物质和悬浮颗粒物(SPM).采用便携式多功能分析仪(HQ-40d;Hach, Loveland, USA)现场测定pH、盐度、温度和溶解氧(DO).采用酸碱滴定试剂盒(Mquant Alkalinity Test;Merk, USA)现场测定重碳酸根(HCO3-).

1.3 实验分析方法

地表水溶解阴离子Cl-和SO42-浓度用离子色谱仪(ICS-900;Dionex, USA)测定.Na+、K+、Ca2+、Mg2+等溶解阳离子浓度用电感耦合等离子体原子发射光谱仪(ICP-AES;IRIS, USA)测定.溶解态无机磷(dissolved inorganic phosphorus, DIP)使用磷钼蓝法测定[38], 溶解态总磷(dissolved total phosphorus, DTP)经过硫酸钾消解后用磷钼蓝法测定, 溶解态有机磷(dissolved organic phosphorus, DOP)为DTP和DIP之差.

醋酸纤维滤膜上的悬浮颗粒物样品在60℃下烘干至恒重后计算其质量.用陶瓷刀将滤膜对半分开, 一半滤膜用1 mol·L-1盐酸浸提24 h测定颗粒态无机磷(particulate inorganic phosphorus, PIP), 另一半滤膜用H2SO4-HClO4消解后测定颗粒态总磷(particulate total phosphorus, PTP)、颗粒态铝(particulate aluminum, PAl)、颗粒态铁(particulate iron, PFe)和颗粒态锰(particulate manganese, PMn)等.上述浸提液与消解液以2, 4-二硝基苯酚为指示剂用4 mol·L-1 NaOH调节至pH≈3后, 用磷钼蓝法测定其中磷含量.颗粒态有机磷(particulate organic phosphorus, POP)为PTP和PIP之差, 总磷(total phosphorus, TP)则为DTP和PTP之和.

1.4 数据分析方法

本研究涉及的阴阳离子数据经过离子电荷平衡计算验证.地表水总溶解性固体(total dissolved solid, TDS)为所有溶解阴阳离子质量浓度总和.采用IBM SPSS Statistics 22进行数据统计分析, 如果参数符合正态分布, 选用Pearson相关及线性相关分析参数间的相关关系;否则, 采用非参数Spearman进行相关分析.采用非参数用Origin 2021描绘Piper三线图和Gibbs图, 拟合水质理化参数间的二元回归方程.

2 结果与讨论 2.1 地表水基本理化性质

表 1所示, 研究区地表水pH范围为7.19 ~ 8.03, 平均值为7.59, 呈弱碱性.盐度范围为0.14‰ ~ 21.12‰, 属于淡水(< 0.5‰)或微咸水(0.5‰ ~ 30‰), 其中HOD点位在旱季和雨季分别属于微咸水与淡水;此外, SBZ、QAD和GSD点位在雨季时受地表径流的稀释作用较为明显.ρ(DO)范围为4.25 ~ 8.60 mg·L-1, 旱季时的水体DO浓度总体上高于雨季;其中, ZD点位的水体DO浓度显著低于其他点位(P < 0.05), 可能与城市排放的污染物在分解过程中消耗了大量溶解氧有关.ρ(SPM)范围为5.27 ~ 79.23 μg·L-1, 雨季时受降水冲刷作用影响高于旱季.

表 1 珠江河口地表水基本理化性质1) Table 1 Physiochemical properties of the surface water in the Pearl River Estuary

2.2 水化学特征

图 2所示, 研究区地表水ρ(TDS)范围为270 ~ 37 500 mg·L-1.GSD、QAD、SBZ和HOD(旱季)点位的ρ(Cl-)/ρ(Cl-+HCO3-)和ρ(Na+)/ρ(Na++Ca2+)均接近1, 说明这些点位的地表水主要受蒸发浓缩作用控制, 受海水的影响;而ZD和HOD(雨季)点位为陆地流域水岩作用控制, 可被视为淡水水体[39].HOD点位在雨季和旱季时分属不同水化学类型, 说明该点位于咸-淡水交互作用的界面附近, 理化性质取决于径流与潮汐作用的相对强度.该点位的水流方向可能随潮汐涨落出现相反的变化, 而这种复杂多变的水动力条件不利于悬浮颗粒物的沉降, 导致地表水中高浓度的悬浮颗粒物(表 1).综合基本理化性质及水化学特征将采样点划分为3类:淡水区(ZD)、咸-淡水界面(HOD)、微咸水区(SBZ、QAD、GSD).

图 2 珠江河口地表水Gibbs图 Fig. 2 Gibbs map of the surface water in the Pearl River Estuary

2.3 珠江河口地表水磷的时空分布特征

珠江河口地表水ρ(TP)范围为28.88 ~ 233.68 μg·L-1, 从淡水区向微咸水区呈现降低趋势(表 2).随水流迁移距离的增加, 咸水逐渐稀释了磷浓度;此外, 河口区域的水流趋缓, 有利于颗粒态磷的沉降作用.旱季时, 地表水ρ(TP)(均值:95.93 μg·L-1)略低于雨季(均值:116.18 μg·L-1).一方面, 雨季的降水增强了磷的面源负荷, 可能是总磷浓度升高的主要原因;另一方面, 径流量增大使咸-淡水界面向河口区推移, 扩大了陆源物质输送的影响范围.如表 2所示, 水体中主要的磷形态为DIP(10.98 ~ 54.41 μg·L-1), 占TP的37.3%, 从淡水区到微咸水区呈现显著下降的趋势(P < 0.05);旱季时, ZD和HOD点位的DIP浓度高于雨季, 而微咸水区点位却低于雨季, 这主要是因为旱季采样期间正值浮游植物生长期, 大量无机磷被吸收利用[11, 33].ρ(DOP)范围为9.04 ~ 50.80 μg·L-1, 占TP的21.0%;雨季时, DOP从淡水区到咸水区呈现显著的降低趋势(P < 0.05), 而旱季无显著空间差异(P > 0.05).水体中的DOP可能与降水导致的面源污染有关, 雨季时加剧了这一过程.ρ(PIP)和ρ(POP)范围分别为2.54 ~ 74.67 μg·L-1和4.39 ~ 61.24 μg·L-1, 分别占TP的22.7%和19.0%, 雨季时PIP和POP普遍大于旱季, 随盐度的升高大致呈现降低的趋势.而雨季时, GSD点位的PIP和POP浓度较QAD点位更高, 说明该点位可能存在除径流输入以外的颗粒态磷来源.

表 2 珠江河口地表水总磷及磷形态浓度1) /μg·L-1 Table 2 Concentrations of TP and phosphorus speciation in the surface water in the Pearl River Estuary/μg·L-1

珠江口水体磷主要以溶解态(41.9% ~ 75.5%)的形式进行迁移, 不同点位的DTP和PTP的占比有明显差异, 表明各形态的磷在不同水动力、水环境条件下的迁移转化过程迥异(图 3).从淡水区点位ZD到微咸水区点位SBZ, 水动力条件减弱, 促进了PTP沉降, 导致其比例降低;而在微咸水区(除雨季GSD点), DTP的比例随盐度没有明显的变化.GSD点位雨季的PTP比例显著大于旱季(P < 0.05), 与SPM浓度的季节变化特征一致(表 1).这可能与桂山岛的人类活动污染排放有关, 而降水事件则进一步加剧了GSD局部的陆源磷负荷.

图 3 珠江口地表水不同磷形态(溶解态总磷和颗粒态总磷)的占比 Fig. 3 Proportion of phosphorus speciation (DTP & PTP) in the surface water in the Pearl River Estuary

由于各采样点受到的海水稀释作用差异, 磷与盐度的关系曲线可以更准确地反映其在咸-淡水交互区的迁移行为(图 4).如图 4(a)所示, TP浓度沿盐度梯度呈现负对数下降趋势, 在盐度小于5‰的区域大幅减少, 说明TP除受到咸水的稀释作用外还发生了明显的沉降过程.在径流、潮汐和咸淡水混合等因素的作用下, 可能出现滞流或往复流现象, 使悬浮颗粒物在原位大量沉降, 并在口门区附近形成拦门沙[40].例如海鸥沙, 就是近代珠江三角洲河网区快速沉积形成沙坝, 而后进一步发育扩大[41].TP浓度沿盐度梯度分布的季节差异不明显.地表水中不同形态的无机磷均随盐度升高而下降(图 4);溶解态磷(DIP和DOP)主要受到咸水和淡水混合后的稀释作用, 而颗粒态磷(PIP和POP)受到稀释作用的同时在沿程上发生沉降.

图 4 珠江口地表水磷及其形态与盐度的关系 Fig. 4 Relationship between P and salinity of the surface water in the Pearl River Estuary

2.4 常量金属元素对无机磷迁移过程的影响

表 3所示, 旱季时, 磷及其各形态均与PFe、PMn和PAl呈显著正相关(P < 0.05);而雨季时, 仅发现TP、PIP和POP与PMn之间的显著正相关关系(P < 0.05).这说明磷的迁移、沉降过程与PFe、PMn和PAl密切相关.由于悬浮颗粒物主要来源于面源负荷, 因此受雨季降水增强的影响, 出现磷与常量金属相关关系的部分解耦[42].此外, PMn与磷及其形态之间的相关系数较PFe和PAl更高(表 3), 表明PMn在磷的迁移过程中可能发挥了更重要的作用.

表 3 不同季节磷(形态)与颗粒态铁、颗粒态锰和颗粒态铝相关性分析1) Table 3 Correlation analysis between phosphorus (including speciation), PFe, PMn, and PAl in different seasons

图 5所示, PIP与PFe、PMn和PAl之间在淡水区、咸-淡水界面和微咸水区都存在显著正线性相关关系(P < 0.05), 说明悬浮颗粒物上的Fe、Mn和Al与无机磷在咸-淡水交互区的吸附-解吸过程有关, 证实了Fe、Mn和Al携载磷的理论假设.不同水域PFe、PMn和PAl与PIP拟合曲线斜率均呈现相同大小顺序:淡水区 > 咸-淡水交互区 > 微咸水区(图 5).这表示在盐度越高的水域, 等量的PFe、PMn和PAl携载的无机磷越少, 主要原因为高浓度阴离子的竞争吸附作用促进了吸附态无机磷的解吸.而且从淡水区到咸-淡水交互区的拟合曲线斜率变幅(2.4 ~ 5.7倍)远大于从咸-淡水交互区到微咸水区(1.3 ~ 1.6倍), 说明PIP的解吸过程主要发生在颗粒物通过咸-淡水界面的过程.当悬浮颗粒物通过咸-淡水界面进入盐度更高的水域时, 无机磷的释放量相对较少, 可能是因为此时PIP主要以更稳定的Fe、Mn或Al结合态的形式存在.

图 5 珠江口地表水颗粒态无机磷与颗粒态铁、锰和铝的关系 Fig. 5 Relationships between PIP, PFe, PMn, and PAl in the surface water in the Pearl River Estuary

固-液分配系数表征地表水中PIP与DIP之间的配分关系, 可以反映悬浮颗粒物上无机磷的吸附-解吸特征:

(1)

式中, Kd为无机磷的固-液分配系数(L·mg-1), ρ(PIP)为珠江口地表水PIP的质量浓度(μg·L-1);ρ(DIP)为珠江口地表水DIP的质量浓度(μg·L-1);ρ(SPM)是珠江口地表水SPM的质量浓度(mg·L-1).如图 6所示, 旱季时淡水点位ZD的Kd(0.101 L·mg-1)高于雨季(均值:0.074 L·mg-1).悬浮颗粒物能起到“缓冲”作用:当水体DIP被降水稀释时, 悬浮颗粒物能够释放PIP, 维持固-液相间DIP的动态平衡[43, 44].咸-淡水界面点位HOD的Kd(0.007 ~ 0.030 L·mg-1)均低于ZD(0.053 ~ 0.130 L·mg-1), 也证实了PIP在通过咸-淡水界面时被大量释放.在微咸水水域(盐度 > 0.5‰), Kd与盐度存在显著正相关关系(P < 0.001), 而DIP随盐度的升高而减小(图 4), 说明微咸水区内PIP的稳定性随盐度而升高, 以更稳定的Fe、Mn或Al结合态存在.

图 6 珠江口地表水无机磷的固-液分配系数(Kd)与盐度的关系 Fig. 6 Relationship between solid-liquid phase partitioning coefficient (Kd) of inorganic phosphorus and salinity in the surface water in the Pearl River Estuary

Fe、Mn和Al氧化物或氢氧化物能通过物理吸附、络合反映或化学结合的形式与磷一起迁移, 然而珠江河口PFe、PMn和PAl对PIP吸附-释放特征的影响程度迥异.如图 7所示, ZD点到QAD点的PMn与Kd相关关系(R=0.93, P < 0.001)较PFe(R=0.53, P < 0.01)和PAl(R=0.46, P < 0.05)更显著, 说明无机磷的吸附-释放过程与Mn有更紧密的联系.天然Mn氧化物通过静电吸附或络合反应的机制吸附无机磷, 但是这种反应是完全可逆的[18, 26, 45].尤其在咸水环境中, 钙和镁离子可以增强阴离子和锰氧化物表面之间的相互作用, 一定程度上降低锰氧化物对无机磷的吸附[37].相对而言, Fe氧化物表面的吸附点位在pH > 7的海水中对无机磷的吸附亲和力都高于Mn氧化物, 而且Al的氢氧化物对无机磷的吸附选择性远高于Cl-和SO42-等其他阴离子, 因此Fe和Al携载的PIP在高盐度环境中解吸释放的可能性更小.那么, 通过咸-淡水界面后, PIP沿盐度升高梯度的释放主要来源于Mn氧化物, 证实了Mn在无机磷迁移过程中起到了关键的“卸-载”作用.PIP与PFe和PAl之间的显著正相关关系(P < 0.05)说明Fe和Al是无机磷的良好载体(图 5), 但是在咸水环境依然保持相对稳定, 不具备“卸”磷的作用.华南地区富锰的土壤条件放大了水环境Mn氧化物对磷迁移的影响, 相似的情况也在福建九龙江河口发现[30, 31].在GSD点, Kd仅与PMn具有显著相关关系(P < 0.01), 且拟合曲线偏离其他点位(图 7), 这说明PIP除了珠江主干流输送, 也有一部分来源于桂山岛等周围岛屿.桂山岛与珠三角污染源性质的差异可能是该点位Kd与PFe和PAl解耦的主要原因.

图 7 珠江口地表水无机磷的固-液分配系数与颗粒态的Fe、Mn和Al质量分数相关性 Fig. 7 Relationships between solid-liquid phase partitioning coefficient (Kd) of inorganic phosphorus and the mass percentage concentrations of PFe, PMn, and PAl in the surface water in the Pearl River Estuary

3 结论

河口区的磷主要来源于陆地径流带来的面源负荷, 总磷的质量浓度沿着盐度梯度呈下降趋势, 各形态占比大小顺序依次为:DIP > DOP > PIP > POP.悬浮颗粒物中的Fe、Mn和Al的氧化物或氢氧化物吸附并携载无机磷向河口迁移.微咸水环境中PMn是无机磷吸附-解吸的关键控制因素, 受阴离子竞争吸附作用而解吸.这证明了Mn氧化物在咸-淡水交互区无机磷迁移过程中起着重要的“载-卸”作用:将淡水环境中吸附的无机磷携载至高盐度水域释放.咸水区内, PIP的稳定性沿盐度梯度增大, 转为更稳定的Fe、Mn或Al结合态磷.上述结论验证了本文的理论假设, 并强调了氧化环境中Mn氧化物对于无机磷环境行为的重要意义.

参考文献
[1] Némery J, Garnier J. The fate of phosphorus[J]. Nature Geoscience, 2016, 9(5): 343-344.
[2] Conley D J, Paerl H W, Howarth R W, et al. Controlling eutrophication: nitrogen and phosphorus[J]. Science, 2009, 323(5917): 1014-1015.
[3] Canfield D E, Bjerrum C J, Zhang S C, et al. The modern phosphorus cycle informs interpretations of Mesoproterozoic Era phosphorus dynamics[J]. Earth-Science Reviews, 2020, 208. DOI:10.1016/j.earscirev.2020.103267
[4] Sellner K G, Doucette G J, Kirkpatrick G J. Harmful algal blooms: causes, impacts and detection[J]. Journal of Industrial Microbiology and Biotechnology, 2003, 30(7): 383-406.
[5] Soomets T, Kutser T, Wüest A, et al. Spatial and temporal changes of primary production in a deep peri-alpine lake[J]. Inland Waters, 2019, 9(1): 49-60. DOI:10.1080/20442041.2018.1530529
[6] Yamamoto T. The Seto Inland Sea―eutrophic or oligotrophic?[J]. Marine Pollution Bulletin, 2003, 47(1-6): 37-42.
[7] Irizuki T, Hirose K, Ueda Y, et al. Ecological shifts due to anthropogenic activities in the coastal seas of the Seto Inland Sea, Japan, since the 20th century[J]. Marine Pollution Bulletin, 2018, 127: 637-653.
[8] Gao L, Wang Z W, Shan J J, et al. Aquatic environmental changes and anthropogenic activities reflected by the sedimentary records of the Shima River, Southern China[J]. Environmental Pollution, 2017, 224: 70-81.
[9] Huang X P, Huang L M, Yue W Z. The characteristics of nutrients and eutrophication in the Pearl River estuary, South China[J]. Marine Pollution Bulletin, 2003, 47(1-6): 30-36.
[10] Ip C C M, Li X D, Zhang G, et al. Over one hundred years of trace metal fluxes in the sediments of the Pearl River Estuary, South China[J]. Environmental Pollution, 2004, 132(1): 157-172.
[11] 韦桂秋, 王华, 蔡伟叙, 等. 近10年珠江口海域赤潮发生特征及原因初探[J]. 海洋通报, 2012, 31(4): 466-474.
Wei G Q, Wang H, Cai W X, et al. 10-year retrospective analysis on the harmful algal blooms in the Pearl River Estuary[J]. Marine Science Bulletin, 2012, 31(4): 466-474.
[12] Yin K D, Qian P Y, Chen J C, et al. Dynamics of nutrients and phytoplankton biomass in the Pearl River estuary and adjacent waters of Hong Kong during summer: preliminary evidence for phosphorus and silicon limitation[J]. Marine Ecology Progress Series, 2000, 194: 295-305.
[13] Gao L, Li R, Liang Z B, et al. Remobilization mechanism and release characteristics of phosphorus in saline sediments from the Pearl River Estuary (PRE), South China, based on high-resolution measurements[J]. Science of the Total Environment, 2020, 703. DOI:10.1016/j.scitotenv.2019.134411
[14] Jordan T E, Cornwell J C, Boynton W R, et al. Changes in phosphorus biogeochemistry along an estuarine salinity gradient: the iron conveyer belt[J]. Limnology and Oceanography, 2008, 53(1): 172-184.
[15] Li R, Gao L, Wu Q R, et al. Release characteristics and mechanisms of sediment phosphorus in contaminated and uncontaminated rivers: a case study in South China[J]. Environmental Pollution, 2021, 268. DOI:10.1016/j.envpol.2020.115749
[16] Pan F, Guo Z R, Cai Y, et al. Kinetic exchange of remobilized phosphorus related to phosphorus-iron-sulfur biogeochemical coupling in coastal sediment[J]. Water Resources Research, 2019, 55(12): 10494-10517.
[17] Xiong Y J, Guilbaud R, Peacock C L, et al. Phosphorus cycling in Lake Cadagno, Switzerland: a low sulfate euxinic ocean analogue[J]. Geochimica et Cosmochimica Acta, 2019, 251: 116-135.
[18] Yan Y P, Wan B, Mansor M, et al. Co-sorption of metal ions and inorganic anions/organic ligands on environmental minerals: a review[J]. Science of the Total Environment, 2022, 803. DOI:10.1016/j.scitotenv.2021.149918
[19] Chen Q, Chen J G, Wang J F, et al. In situ, high-resolution evidence of phosphorus release from sediments controlled by the reductive dissolution of iron-bound phosphorus in a deep reservoir, southwestern China[J]. Science of the Total Environment, 2019, 666: 39-45.
[20] Gao Y L, Liang T, Tian S H, et al. High-resolution imaging of labile phosphorus and its relationship with iron redox state in lake sediments[J]. Environmental Pollution, 2016, 219: 466-474.
[21] Ding S M, Han C, Wang Y P, et al. In situ, high-resolution imaging of labile phosphorus in sediments of a large eutrophic lake[J]. Water Research, 2015, 74: 100-109.
[22] Hu M J, Sardans J, Le Y X, et al. Phosphorus mobilization and availability across the freshwater to oligohaline water transition in subtropical estuarine marshes[J]. CATENA, 2021, 201. DOI:10.1016/j.catena.2021.105195
[23] 张雪, 朱波. 三峡库区支流库湾消落带土壤磷形态赋存特征及其释放风险[J]. 环境科学, 2023, 44(5): 2574-2582.
Zhang X, Zhu B. Distribution and release potential of soil phosphorus fractions in water-level-fluctuation zone of the Tributary Bay, Three Gorges Reservoir[J]. Environmental Science, 2023, 44(5): 2574-2582.
[24] 刘笑天, 刘军, 王以斌, 等. 不同溶解氧条件下沉积物-水体系磷循环[J]. 环境科学, 2022, 43(12): 5571-5584.
Liu X T, Liu J, Wang Y B, et al. Phosphorus cycling in a sediment-water system controlled by different dissolved oxygen levels of overlying water[J]. Environmental Science, 2022, 43(12): 5571-5584.
[25] Zaman M I, Mustafa S, Khan S, et al. The effects of phosphate adsorption on the surface characteristics of Mn oxides[J]. Separation Science and Technology, 2013, 48(11): 1709-1716.
[26] Ouvrard S, Simonnot M O, Sardin M. Reactive behavior of natural manganese oxides toward the adsorption of phosphate and arsenate[J]. Industrial & Engineering Chemistry Research, 2002, 41(11): 2785-2791.
[27] 蔡言安, 毕学军, 张嘉凝, 等. 铁锰原位氧化产物吸附微量磷的实验[J]. 环境科学, 2018, 39(7): 3222-3229.
Cai Y A, Bi X J, Zhang J N, et al. Trace amounts of phosphorus removal based on the in-suit oxidation products of iron or manganese in a biofilter[J]. Environmental Science, 2018, 39(7): 3222-3229.
[28] Jensen H S, Reitzel K, Egemose S. Evaluation of aluminum treatment efficiency on water quality and internal phosphorus cycling in six Danish lakes[J]. Hydrobiologia, 2015, 751(1): 189-199.
[29] Tanada S, Kabayama M, Kawasaki N, et al. Removal of phosphate by aluminum oxide hydroxide[J]. Journal of Colloid and Interface Science, 2003, 257(1): 135-140.
[30] 黄丽, 洪军, 谭文峰, 等. 我国几种亚热带土壤铁锰胶膜的微形貌和元素分布特征[J]. 自然科学进展, 2006, 16(9): 1122-1129.
[31] Pan F, Liu H T, Guo Z R, et al. Metal/metalloid and phosphorus characteristics in porewater associated with manganese geochemistry: a case study in the Jiulong River Estuary, China[J]. Environmental Pollution, 2019, 255. DOI:10.1016/j.envpol.2019.113134
[32] 翁焕新, 孙向卫, 陈静峰, 等. 珠江口沉积铁-磷的富集对赤潮频发的潜在作用[J]. 中国科学D辑: 地球科学, 2006, 36(12): 1122-1130.
[33] Li R H, Xu J, Li X F, et al. Spatiotemporal variability in phosphorus species in the Pearl River Estuary: influence of the river discharge[J]. Scientific Reports, 2017, 7(1). DOI:10.1038/s41598-017-13924-w
[34] Ke S, Zhang P, Ou S J, et al. Spatiotemporal nutrient patterns, composition, and implications for eutrophication mitigation in the Pearl River Estuary, China[J]. Estuarine, Coastal and Shelf Science, 2022, 266. DOI:10.1016/j.ecss.2022.107749
[35] Zhang M Z, Krom M D, Lin J J, et al. Effects of a storm on the transformation and export of phosphorus through a subtropical river-turbid estuary continuum revealed by continuous observation[J]. Journal of Geophysical Research: Biogeosciences, 2022, 127(8). DOI:10.1029/2022JG006786
[36] Yang B, Lin H, Bartlett S L, et al. Partitioning and transformation of organic and inorganic phosphorus among dissolved, colloidal and particulate phases in a hypereutrophic freshwater estuary[J]. Water Research, 2021, 196. DOI:10.1016/j.watres.2021.117025
[37] Yao W S, Millero F J. Adsorption of phosphate on manganese dioxide in seawater[J]. Environmental Science & Technology, 1996, 30(2): 536-541.
[38] Dick W A, Tabatabai M A. Determination of orthophosphate in aqueous solutions containing labile organic and inorganic phosphorus compounds[J]. Journal of Environmental Quality, 1977, 6(1): 82-85.
[39] 延子轩, 冯民权. 长河流域矿区地表水水化学特征及驱动因子分析[J]. 环境化学, 2022, 41(2): 632-642.
Yan Z X, Feng M Q. Hydrochemical characteristics and driving factors of surface water in the mining area of Changhe River Basin[J]. Environmental Chemistry, 2022, 41(2): 632-642.
[40] 逄勇, 李学灵. 珠江三角洲河网入伶仃洋污染物通量计算研究[J]. 水利学报, 2001(9): 40-44.
Jiang Y, Li X L. Pollutant effluent flowing from the four eastern outlets of Pearl River Delta into Lingdingyang Sea[J]. Journal of Hydraulic Engineering, 2001(9): 40-44.
[41] 莫文渊, 韦惺, 吴超羽. 全新世以来珠江三角洲海鸥沙形成过程的地貌动力学分析[J]. 热带海洋学报, 2019, 38(3): 68-78.
Mo W Y, Wei X, Wu C Y. Morphodynamic analysis of Haiou sandbody evolution in Pearl River delta since Holocene[J]. Journal of Tropical Oceanography, 2019, 38(3): 68-78.
[42] 韩冰, 王效科, 欧阳志云. 城市面源污染特征的分析[J]. 水资源保护, 2005, 21(2): 1-4.
Han B, Wang X K, Ouyang Z Y. Analysis on characteristics of urban non-point source pollution[J]. Water Resources Protection, 2005, 21(2): 1-4.
[43] Jin X, Zhang W Q, Li S M. Complex responses of suspended particulate matter in eutrophic river and its indicative function in river recovery process[J]. Ecological Indicators, 2020, 115. DOI:10.1016/j.ecolind.2020.106397
[44] Ji N N, Liu Y, Wang S R, et al. Buffering effect of suspended particulate matter on phosphorus cycling during transport from rivers to lakes[J]. Water Research, 2022, 216. DOI:10.1016/j.watres.2022.118350
[45] Zaman M I, Mustafa S, Khan S, et al. Effect of phosphate complexation on Cd2+ sorption by manganese dioxide (β2)[J]. Journal of Colloid and Interface Science, 2009, 330(1): 9-19.