环境科学  2023, Vol. 44 Issue (12): 7036-7044   PDF    
1株肠杆菌与硫肥联合施用对水稻积累镉砷的影响
张朴心1,2,3, 姚俊帆1,2,3, 刘玉玲1,2,3, 张威宇1,2,3, 尹雪斐1,2,3, 铁柏清1,2,3     
1. 湖南农业大学资源环境学院, 长沙 410128;
2. 湖南省灌溉水源水质污染净化工程技术研究中心, 长沙 410128;
3. 农业农村部南方产地污染防控重点实验室, 长沙 410128
摘要: 为探究不同硫肥联合硫酸盐还原菌在长期淹水条件下对水稻积累镉(Cd)和砷(As),以及对根表铁膜形成的影响,为中轻度Cd-As复合污染稻田安全生产提供参考.采用盆栽试验的方法,选取了硫磺和硫酸钙两种硫肥及具有硫酸盐还原能力的肠杆菌M5,设计单一施用及不同硫肥与菌株联合施用共6个处理.结果显示,同时基施硫酸钙和菌株的处理(CM5)降低水稻根际土中有效态Cd和As的效果均最好.淹水条件下基施硫肥或菌株会使早稻籽粒中Cd含量降低8%~51%,无机As含量降低42%~61%;使晚稻籽粒中Cd含量降低81%~92%,无机As含量降低41%~62%.其中,同时基施硫磺和菌株的处理(SM5)和CM5处理降低早、晚稻籽粒中Cd、As含量效果均最佳.SM5处理和CM5处理能促进水稻根表铁膜对Cd、As的吸附,二者ACA提取态Cd和As含量较CK显著增加,且CM5处理ACA提取态铁含量较CK也显著增加,说明同时基施硫酸钙和菌株会促进水稻根表铁膜的形成.结果表明,硫肥和菌株联合施用相较单一施用降低籽粒中Cd、As含量的效果更好,而同时基施硫酸钙和菌株是效果最佳且最为稳定的方法.
关键词: 镉(Cd)      砷(As)      水稻      硫肥      硫酸盐还原      根表铁膜     
Effect of Combined Application of an Enterobacter and Sulfur Fertilizer on Cadmium and Arsenic Accumulation in Rice
ZHANG Pu-xin1,2,3 , YAO Jun-fan1,2,3 , LIU Yu-ling1,2,3 , ZHANG Wei-yu1,2,3 , YIN Xue-fei1,2,3 , TIE Bo-qing1,2,3     
1. College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China;
2. Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, China;
3. Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Changsha 410128, China
Abstract: The aim of this study was to explore the effects of different sulfur fertilizers combined with sulfate-reducing bacteria on the accumulation of cadmium and arsenic in rice and the formation of iron plaque under long-term flooding conditions and to provide a reference for the safe production of rice fields polluted by moderate and mild cadmium and arsenic. We adopted a pot experiment, selecting two sulfur fertilizers, sulfur and calcium sulfate, and Enterobacter M5 with sulfate-reducing ability, and designed six treatments of single application and combined application of different sulfur fertilizers and M5. The results showed that the combined application of calcium sulfate and M5(CM5) had the best effect on reducing available cadmium and arsenic in rice rhizosphere soil. The combined application of sulfur fertilizer or M5 could reduce the content of cadmium and inorganic arsenic in early season rice grains by 8%-51% and 42%-61%, respectively, under flooding conditions. The content of cadmium and inorganic arsenic in late rice grains decreased by 81%-92% and 41%-62%, respectively. The treatment of the combined application of sulfur and M5(SM5) and CM5 had the best effect on reducing cadmium and arsenic content in both early and late season rice grains. SM5 and CM5 could promote the adsorption of cadmium and arsenic by iron plaque, and the extracted cadmium and arsenic content of ACA in both treatments was significantly higher than that of CK. The extracted iron content of ACA in the CM5 treatment was also significantly higher than that of CK, which indicates that the combined application of calcium sulfate and M5 would promote the formation of iron plaque. The results showed that the combined application of sulfur fertilizer and M5 was better than single application in reducing the content of cadmium and arsenic in grains, whereas the combined application of calcium sulfate and M5 was the best and most stable method.
Key words: cadmium(Cd)      arsenic(As)      rice      sulfur fertilizer      sulfate reduction      iron plaque     

水稻作为全世界种植最为广泛的作物[1], 长期面临镉(Cd)和砷(As)等重金属的胁迫, 导致水稻生长不良而减产.人类长期食用Cd或As含量超标的水稻会诱发各种疾病, 如心血管疾病和神经系统疾病等[2, 3], 而快速的工业化和城市化导致农田重金属污染问题日益严重[4], 其中又以Cd-As复合污染土壤的治理最为棘手[5].据2014年环境保护部和国土资源部联合发布的公报显示, 我国19.4%的农用土壤重金属污染超标, 其中Cd超标率达7%, As超标率达2.7%.由于Cd和As在土壤中生物地球化学行为的差异[6, 7], 稻田淹水管理降低土壤Cd有效性时, 通常会导致As有效性的增加[8].有研究表明, 田间试验中, 水稻对Cd和As的积累能力呈负相关[5].如今研究阻控水稻单一Cd或As污染的学者有很多, 但如何同时降低水稻中Cd、As含量仍是技术难关[9], 也是近年来的热点议题.

硫(S)是植物生长的必需元素, 以硫酸盐的形式被植物根部吸收, 然后被还原并同化为半胱氨酸[10].S及其盐类常被用于修复农田重金属污染土壤, 外源S的添加能显著降低土壤中Cd和As的有效性[11], 并能抑制水稻籽粒对Cd和As的积累.淹水条件下, 施用S可抑制水稻根际CdS的溶解[12].赵娜娜等[13]研究还发现叶面喷施半胱氨酸会阻控Cd从水稻茎向叶的转运, 并使籽粒中Cd含量降低47.18%.S还可通过促进根表铁膜的形成而减少水稻幼苗中的As含量[14], 并降低土壤孔隙水中的As迁移率以及水稻植株对As的吸收[15].硫酸盐还原菌(SRB)在S的地球化学循环过程中起着重要的作用, 硫酸盐还原过程中SRB产生的硫化物可与重金属沉淀, 形成稳定的金属硫化物[16, 17].因其还原S的特性, SRB被认为是最有前途的重金属固定替代物之一, 已成功应用于废水、土壤和沉积物处理[18~20].目前, 单一修复技术很难解决Cd-As复合污染问题, 基本做不到二者兼顾.因此, 本试验选取硫磺、硫酸钙两种硫肥和1株具有硫酸盐还原能力的肠杆菌, 采用土壤调理剂耦合微生物菌剂的方式, 通过盆栽试验探究外源S和SRB联合施用对水稻土有效态Cd、As及水稻各部位累积Cd、As的影响, 以期为Cd-As复合污染农田粮食安全生产提供理论依据.

1 材料与方法 1.1 试验材料 1.1.1 供试水稻

盆栽试验分为早稻和晚稻两部分.所用早稻品种为湘早籼24号, 于2021年4月27日移栽, 2021年7月18日收割; 晚稻品种为泰优390, 于2021年7月24日移栽, 2021年10月24日收割.水稻幼苗均由株洲市禄口区南洲镇农技站田间育秧培育后提供.

1.1.2 供试土壤

土壤采自浏阳市蕉溪乡常丰村沙德组稻田, 采样深度为0~20 cm耕作层.将采集的土壤碾碎、除去石块和杂物后在塑料布上均匀铺开摊平, 于洁净处自然风干.经测定, 土壤pH为6.13, ω(总Cd)为1.02 mg·kg-1, ω(总As)为60.07 mg·kg-1, 依据《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618-2018), 土壤中Cd和As含量均超标.

1.1.3 供试肥料及菌株

(1) 硫肥硫磺(S, 分析纯)、硫酸钙(CaSO4·2H2 O, 分析纯), 均由国药集团化学试剂有限公司生产.

(2) 菌株通过实验室从Cd-As复合污染土壤中所筛选的耐Cd、As菌株M5(Enterobacter sp.)[21], 保藏号为GCMCC No.22636.

1.1.4 试验装置

试验盆栽桶为红色聚乙烯材质, 上口直径、下口直径和桶高分别为36、33和29 cm.每个盆栽桶中装入20 kg过10目尼龙筛的风干土壤, 将土壤填紧压实后室外淹水30 d左右, 土层约可下沉至桶高20 cm处.

1.2 试验设计

水稻盆栽试验场地位于湖南农业大学环境科学楼前网室内.本试验共设计6个处理, 每个处理3次重复, 所有处理均淹水2~3 cm.细菌添加量以4.305×109 cfu·mL-1(D600=1.352)为标准添加.基肥(硝酸钾1.3 g、尿素3.5 g和过磷酸钙3.5 g)、硫肥及菌液于水稻移栽前一周施入盆栽桶, 并将土壤混合均匀.具体试验处理见表 1.

表 1 试验处理1) Table 1 Treatments in potted experiment

1.3 样品采集及预处理

于水稻成熟期采集非根际土及根际土样品, 冷冻干燥后用于测定有效态Cd和As含量.成熟期收获水稻样品后用自来水冲洗, 再用去离子水洗净.用不锈钢剪刀将水稻分为根、茎、叶和糙米这4个部分.其中水稻根系再小心分为两部分, 一部分置于-20℃冰箱保存, 用于根表铁锰胶膜相关指标的测定.其余根同茎、叶装入相应的信封袋, 于105℃烘箱内杀青1 h后将温度调至65℃烘至恒重.糙米置于日光下晒干后用砻谷机将籽粒和谷壳分离.处理后的水稻各部位均用植物粉碎机粉碎, 按编号装入封口袋封存.

1.4 样品分析 1.4.1 土壤样品分析方法

采用0.1 mol·L-1 CaCl2提取土壤有效态Cd[22], 0.5 mol·L-1 NaH2PO4提取土壤有效态As[23], 所得提取液用ICP-OES测定Cd浓度, 原子荧光光谱仪测定As浓度.

1.4.2 水稻各部位重金属含量

采用混合酸(HClO4 ∶HNO3=1 ∶4)湿法进行消解, 每台消解仪设3个空白样和3个质控样, 消解液稀释过滤后用ICP-OES测定Cd浓度, 用原子荧光光谱仪测定As浓度.其中水稻根、茎、叶消解时用灌木枝叶GBW07602(GSV-1)做质控样品, 籽粒用大米GBW(E)100360做质控样品.总Cd回收率为91%~97%, 总As回收率为95%~107%.晚稻还增测了浸提铁膜后的根系样品.

1.4.3 籽粒中As形态测定方法

称取1g植物样品, 加入20mL 0.15mol·L-1HNO3, 静置过夜后, 于90℃条件下消煮150 min, 每30 min振荡一次, 所得提取液用LC-AFS测定无机As浓度.采用阴离子交换色谱柱(Hamilton PRP-X100, 柱长250 mm, 内径4.1 mm)进行As形态的分离, 流动相由45 mmol·L-1 KH2 PO4和5 mmol·L-1 Na2 HPO4组成, pH调节为6, 流速为1 mL·min-1, 于6 min内完成形态的分离测定.样品中有机As的浓度用总As和无机As的差表示.

1.4.4 根表铁膜浸提方法

根表铁膜采用ACA法提取[24], 所得提取液用ICP-MS测定ACA提取态Cd(ACA-Cd)、As(ACA-As)、Fe(ACA-Fe)和S(ACA-S)的含量.

1.5 数据处理

用IBM SPSS 25对数据进行统计分析处理及显著性差异分析.用Microsoft Excel 2021和Origin 2022软件对数据进行图表处理.

2 结果与分析 2.1 基施硫肥和菌株对水稻非根际土和根际土中有效态Cd、As的影响

图 1为基施不同处理后早晚稻非根际土和根际土中有效态Cd、As含量.所有处理非根际土中有效态Cd和As的含量均高于根际土.由图 1可知, 联合施用的处理较单一施用的处理根际土有效态Cd、As含量均更低.早稻中C处理非根际土中有效态Cd的含量最低, CM5处理根际土中有效态Cd的含量最低.对比CK, 除S处理外, 早稻其它处理非根际土中有效态As的含量显著下降.晚稻各处理中非根际土和根际土中有效态Cd、As含量差异较早稻而言更为明显, 其它现象基本与早稻相符.

不同小写字母表示同系列不同处理间差异显著(P < 0.05), 下同 图 1 水稻根际土和非根际土有效态Cd和As的含量 Fig. 1 Contents of available cadmium and arsenic in rhizosphere soil and non-rhizosphere soil of rice

2.2 基施硫肥和菌株对水稻产量的影响

早、晚稻各处理水稻产量如图 2所示.对早稻而言, 同CK相比, SM5处理和S处理其早稻产量显著增加, 产量分别为99.66 g·盆-1和97.43 g·盆-1, 其余处理相较于CK无显著性差异.晚稻中, SM5处理和CM5处理相比CK产量显著增加, 产量分别为92.57 g·盆-1和91.86 g·盆-1.

图 2 基施硫肥和菌株对水稻产量的影响 Fig. 2 Effects of different sulfur applications with M5 on rice yield

2.3 基施硫肥和菌株对水稻各部位Cd、As含量的影响 2.3.1 基施硫肥和菌株对水稻各部位Cd含量的影响

早晚稻各部位Cd含量如表 2所示.从中可知, 与CK相比, 早稻中各处理均可降低水稻根、茎和叶中的Cd含量, 其中根部降低了10%~38%, 茎秆降低了19%~50%, 叶片降低了23%~50%.单一施用处理中, S处理根和叶中Cd含量最低; C处理茎中Cd含量最低.联合施用处理中, SM5处理根和茎中Cd含量最低, CM5处理叶中Cd含量最低.联合施用的处理其根和叶中Cd含量均高于仅添加同种硫肥的处理, 而茎中的Cd含量均更低.对比联合施用的处理与仅施用菌株的处理, 联合施用的处理其根、茎中Cd含量更少.由于早稻中联合施用的处理根部Cd含量高于仅施用硫肥的处理, 但茎部Cd含量更低, 与预期结果不符, 故晚稻增测了提取铁膜后的根系样品.与CK相比, 联合施用的处理会促进晚稻根部对Cd的吸收, 但可降低去铁膜根、茎和叶中的Cd含量, 其中去铁膜根部降低了24%~43%, 茎秆降低了13%~29%, 叶片降低了0%~28%.单一施用处理中, S处理去铁膜根和叶中Cd含量最低; M5处理茎中Cd含量最低.联合施用处理中, CM5处理去铁膜根、茎、叶中Cd含量均最低.所有联合施用处理去铁膜根中Cd含量均低于单一施用的处理.

表 2 水稻各部位Cd含量1)/mg·kg-1 Table 2 Cd content in different parts of rice/mg·kg-1

2.3.2 基施硫肥和菌株对水稻各部位As含量的影响

早晚稻各部位As含量如表 3所示.从中可知, 与CK相比, 早稻中各处理均可降低水稻根、茎和叶中的As含量.其中根部降低了11%~60%, 茎秆降低了31%~70%, 叶片降低了38%~63%.单一施用处理中, S处理根中As含量最低; M5处理茎和叶中As含量最低.联合施用处理中, SM5处理降低根和叶中As含量效果最好; CM5处理降低茎中As含量效果最好.联合施用的处理根中As含量均高于单一施用同种硫肥的处理, 而茎和叶中As含量均更低, 这与晚稻的情况也一致.与CK相比, 晚稻中CM5处理降低水稻去铁膜根、茎和叶中As含量效果均最好.

表 3 水稻各部位As含量/mg·kg-1 Table 3 As content in different parts of rice/mg·kg-1

2.3.3 基施硫肥和菌株对籽粒中Cd含量的影响

基施不同处理后, 早晚稻籽粒中Cd含量如图 3所示.从中可知, 所有处理籽粒中Cd含量均低于安全生产标准(0.200 mg·kg-1).联合施用的处理降低早稻籽粒中Cd含量的效果相较于单一施用的处理要更好, 其中CM5处理阻控籽粒积累Cd的效果最佳, 其籽粒中ω(Cd)为0.090 mg·kg-1, 相较于CK降低了51%.与早稻相同, 晚稻所有处理籽粒中Cd含量均达标, 且联合施用的处理降低籽粒中Cd含量的效果相较于单一施用的处理要更好.其中SM5处理阻控籽粒积累Cd的效果最佳, 晚稻籽粒中ω(Cd)为0.015 mg·kg-1, 相较于CK降低了92%.总体来看SM5处理和CM5处理抑制籽粒积累Cd的效果无显著差异.

图 3 基施硫肥和菌株对籽粒中Cd含量的影响 Fig. 3 Effects of different sulfur applications with M5 on cadmium content in grains

2.3.4 基施硫肥和菌株对籽粒中不同As形态含量的影响

早稻和晚稻籽粒中不同As形态含量及占比如图 4所示.从中可知, 基施不同处理后, 早稻及晚稻籽粒中无机As含量均有不同程度地减低, 而有机As含量则无明显变化.相较于早稻, 晚稻籽粒中无机As含量占总As比例更少.同时基施硫酸钙及菌株(CM5)后早稻及晚稻籽粒中ω(无机As)均最少, 分别为0.199 mg·kg-1和0.186 mg·kg-1均低于安全生产标准(0.200 mg·kg-1).

图 4 基施硫肥和菌株对籽粒中不同As形态含量的影响 Fig. 4 Effects of different sulfur applications with M5 on the contents of different arsenic species in grains

2.4 基施硫肥和菌株对水稻根表ACA提取态Cd、As、Fe、S的影响

基施不同处理后早晚稻根部ACA-Cd、ACA-As、ACA-Fe和ACA-S的含量如图 56所示.各处理早稻ACA-Cd[图 5(a)]和ACA-S[图 5(c)]含量相比CK均显著增加.SM5处理和CM5处理ACA-As[图 5(b)]和ACA-Fe[图 5(d)]含量相比CK均显著增加.由图 6可知, 晚稻根部ACA-Cd、ACA-As、ACA-Fe和ACA-S的含量相较于早稻均有不同程度的降低.与早稻相似, 各处理ACA-Cd[图 6(a)]和ACA-S[图 6(c)]含量较CK均显著增加.除仅基施硫肥的处理外, 其它处理ACA-As[图 6(b)]含量较CK有显著增加.CM5处理能显著提升晚稻根部ACA-Fe含量.

图 5 早稻根部ACA-Cd、ACA-As、ACA-S、ACA-Fe的含量 Fig. 5 Contents of ACA-Cd, ACA-As, ACA-S, and ACA-Fe in the roots of early season rice

图 6 晚稻根部ACA-Cd、ACA-As、ACA-S、ACA-Fe的含量 Fig. 6 Contents of ACA-Cd, ACA-As, ACA-S, and ACA-Fe in the roots of late season rice

2.5 相关性分析

图 7图 8分别表示了早稻和晚稻不同因素间的相关程度.就籽粒中Cd含量而言, 除非根际土中有效态Cd和As含量外, 其它因素均与其在早晚稻数据分析结果中呈显著相关关系.其中, 籽粒中As及根际土有效态Cd、As含量与其在早晚稻中均呈极显著正相关(P < 0.01);ACA-Cd和ACA-S与其在早晚稻中均呈极显著负相关; ACA-As和ACA-Fe与其在早稻中呈极显著负相关, 在晚稻中呈显著负相关(P < 0.05).就籽粒中As含量而言, 除非根际土中有效态As含量外, 其它因素与其在早晚稻数据分析结果中均呈显著相关关系.其中, 根际土有效态As含量与其在早晚稻中均呈极显著正相关; 而ACA-S与其在早晚稻中均呈极显著负相关.

1. 籽粒-Cd, 2. 籽粒-As, 3. ACA-Cd, 4. ACA-As, 5. ACA-Fe, 6. ACA-S, 7. 根际Cd, 8. 非根际Cd, 9. 根际As, 10. 非根际As; *P < 0.05, ** P < 0.01, 下同 图 7 早稻各因素相关性分析热图 Fig. 7 Heat map of correlation analysis of various factors in early season rice

图 8 晚稻各因素相关性分析热图 Fig. 8 Heat map of correlation analysis of various factors in late season rice

3 讨论

在本研究中, 单施硫肥或SRB以及联合施用均会显著降低非根际土和根际土中有效态Cd和As含量, 进而导致水稻地上部Cd和As含量的降低.相关性分析的结果显示, 土壤有效态Cd、As含量是影响籽粒中Cd、As含量的重要因素.在淹水条件下, 土壤中的SO42-可被SRB还原为S2-, S2-可与Cd2+反应, 形成CdS沉淀物, 或与FeS和FeS2一起形成共沉淀物或表面沉淀物[25, 26].S2-还会与As3+形成水性硫砷酸盐络合物, 并可能沉淀为无定形的As2S3或AsS, 导致As3+的固定[27, 28], 而As主要以无机As的形式被水稻吸收, 且又以As3+更易被利用[29], 故施用硫肥或SRB会显著降低籽粒中无机As含量.本试验中, 联合施用较单一施用降低有效态Cd、As含量的效果更佳, 其原因可能是由于外源硫的添加促进了硫酸盐还原菌的还原功能.在硫酸盐的还原过程中, SRB主要利用SO42-作为电子受体, SO42-浓度会影响硫酸盐还原的强度[30, 31].Zhou等[32]的研究表明SO42-浓度的提升会促进硫酸盐的还原, 并会增强SRB的有机代谢提升SRB的丰度.Yang等[33]的研究也发现在缺氧条件下外源输入SO42-会增强硫酸盐的还原.

无论土壤中的Cd水平如何, 外源S的添加都会抑制Cd从水稻根部到茎部的转运[34], 其原因可能是随着S供应的增加导致根部S的同化及谷胱甘肽代谢的增加[35].谷胱甘肽是植物体内络合物的前体[36], 水稻根部的植物络合物越多, 液泡对Cd的固存程度就越高, 这可能也是本试验中联合施用的处理其根部Cd含量高于单一施用的原因之一.另一个原因是联合施用会促进根表铁膜的形成以及铁膜对Cd、As的吸附.王丹等[37]的研究也指出外源S能诱导根表铁膜形成.相关性分析的结果说明, ACA-Cd、ACA-As、ACA-Fe和ACA-S含量的增加是引起籽粒对Cd、As累积量降低的重要因素.根表铁膜可以吸附Pb、Cd和As等金属元素, 并影响水稻对其的吸收, 导致金属在植物组织中的转移和分布受到限制[38~40].本研究中由于持续淹水的影响, 水稻土pH值趋于中性并处于还原状态, 这会利于硫酸盐还原菌将SO42-还原成S2-[41], 而S2-又能将MnO2还原成Mn2+; 将Fe3+还原成Fe2+, 加强Mn2+、Fe2+向水稻根表移动形成铁膜[42].基施硫肥或菌株均会促进根表铁膜对硫的吸附, 而硫酸盐对氧化铁有很强的亲和力, 根表铁膜上硫浓度的增加可以抑制Fe(OH)3与铁还原菌的接触, 从而限制铁膜的溶解, 促进铁膜的形成及对金属的固定[43].

早晚稻各部位对于Cd、As积累量的差异, 主要是由于温度、降雨、光照等自然因素及不同水稻品种的影响, 且品种的不同是造成差异的主要因素[44].由于基因型的不同, 不同品种水稻对重金属的耐受性和吸收、转运能力会存在明显的区别[45~47].总体来看, 在本研究中联合施用能降低水稻地上部Cd、As含量及土壤有效态Cd、As含量, 并促进根表铁膜的形成, 但由于试验长期处于淹水状态, 导致土壤中As的活性较高[48], 进而影响籽粒中As的含量.因此, 对于Cd、As复合污染农田的粮食安全生产, 还需进一步优化水分管理措施, 以便达到同时有效阻控籽粒对Cd、As吸收累积的目的.

4 结论

(1) 本试验结果显示, 相较于单一施用硫肥或菌株的处理, 联合施用的处理降低籽粒中Cd、As含量的效果要更好, 其中以CM5处理最佳, SM5处理次之, 两种处理均能确保籽粒中Cd含量达安全生产标准.

(2) SM5和CM5处理会促进水稻根表铁膜的形成, 且SM5处理对水稻产量有促进作用.

参考文献
[1] Yang Y P, Zhang H M, Yuan H Y, et al. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation[J]. Environmental Pollution, 2018, 236: 598-608. DOI:10.1016/j.envpol.2018.01.099
[2] Yang J T, Wang J F, Liao X Y, et al. Chain modeling for the biogeochemical nexus of cadmium in soil-rice-human health system[J]. Environment International, 2022, 167. DOI:10.1016/J.ENVINT.2022.107424
[3] Jomova K, Jenisova Z, Feszterova M, et al. Arsenic: toxicity, oxidative stress and human disease[J]. Journal of Applied Toxicology, 2011, 31(2): 95-107. DOI:10.1002/jat.1649
[4] 沈洪艳, 安冉, 师华定, 等. 湖南省某典型流域农用地土壤重金属污染及影响因素[J]. 环境科学研究, 2021, 34(3): 715-724.
Shen H Y, An R, Shi H D, et al. Heavy metal pollution and influencing factors of agricultural land in a typical watershed in Hunan Province[J]. Research of Environmental Sciences, 2021, 34(3): 715-724.
[5] Duan G L, Shao G S, Tang Z, et al. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars[J]. Rice, 2017, 10(1). DOI:10.1186/s12284-017-0149-2
[6] De Livera J, McLaughlin M J, Hettiarachchi G M, et al. Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions[J]. Science of the Total Environment, 2011, 409(8): 1489-1497. DOI:10.1016/j.scitotenv.2010.12.028
[7] Zhao F J, Ma Y B, Zhu Y G, et al. Soil contamination in China: current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759.
[8] Hu P J, Li Z, Yuan C, et al. Effect of water management on cadmium and arsenic accumulation by rice(Oryza sativa L.) with different metal accumulation capacities[J]. Journal of Soils and Sediments, 2013, 13(5): 916-924. DOI:10.1007/s11368-013-0658-6
[9] 曹锐, 王悦, 陈爽, 等. 镉砷复合污染水稻土原位钝化修复技术研究进展[J]. 土壤学报, 2023, 60(3): 657-672.
Cao R, Wang Y, Cheng S, et al. Research progress on in-situ passivation remediation technology of cadmium and arsenic compound contaminated paddy soil[J]. Acta Pedologica Sinica, 2023, 60(3): 657-672.
[10] Xu H, Zhang P H, He E K, et al. Natural formation of copper sulfide nanoparticles via microbially mediated organic sulfur mineralization in soil: processes and mechanisms[J]. Geoderma, 2023, 430. DOI:10.1016/J.GEODERMA.2022.116300
[11] 彭鸥, 周靖恒, 喻崴伦, 等. 硅硫材料对复合污染土壤镉砷赋存形态的影响[J]. 农业环境科学学报, 2020, 39(2): 294-303.
Peng O, Zhou J H, Yu W L, et al. Effects of silicon- and sulfur-containing materials on the dynamics of cadmium and arsenic species in compound polluted soil[J]. Journal of Agro-Environment Science, 2020, 39(2): 294-303.
[12] Wang Z, Liu W J, Liu J, et al. Differences and mechanism of dynamic changes of Cd activity regulated by polymorphous sulfur in paddy soil[J]. Chemosphere, 2022, 291. DOI:10.1016/j.chemosphere.2021.133055
[13] 赵娜娜, 彭鸥, 刘玉玲, 等. 不同形态硫叶面喷施对水稻镉积累影响[J]. 农业环境科学学报, 2021, 40(7): 1387-1401.
Zhao N N, Peng O, Liu Y L, et al. Effect of foliar spraying different forms of sulfur on cadmium accumulation in rice[J]. Journal of Agro-Environment Science, 2021, 40(7): 1387-1401.
[14] Hu Z Y, Zhu Y G, Li M, et al. Sulfur(S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice(Oryza sativa L.) seedlings[J]. Environmental Pollution, 2007, 147(2): 387-393. DOI:10.1016/j.envpol.2006.06.014
[15] Xu X W, Wang P, Zhang J, et al. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction[J]. Environmental Pollution, 2019, 251: 952-960. DOI:10.1016/j.envpol.2019.05.086
[16] Peng W H, Li X M, Liu T, et al. Biostabilization of cadmium contaminated sediments using indigenous sulfate reducing bacteria: efficiency and process[J]. Chemosphere, 2018, 201: 697-707. DOI:10.1016/j.chemosphere.2018.02.182
[17] Muyzer G, Stams A J M. The ecology and biotechnology of sulphate-reducing bacteria[J]. Nature Reviews Microbiology, 2008, 6(6): 441-454. DOI:10.1038/nrmicro1892
[18] 高羽, 刘雨辰, 郭晓方, 等. 硫酸盐还原菌对碱性和酸性农田土壤中重金属的钝化效果及其作用机制[J]. 环境科学, 2022, 43(12): 5789-5797.
Gao Y, Liu Y C, Guo X F, et al. Effect and Mechanism of sulfate-reducing bacteria on the passivation of heavy metals in alkaline and acidic agricultural soils[J]. Environmental Science, 2022, 43(12): 5789-5797.
[19] Deng L Y, Ren W Q, Li M, et al. Photoelectrochemical and energy storage properties for metal sulfides regulated by biomineralization of sulfate reducing bacteria[J]. Journal of Cleaner Production, 2022, 340. DOI:10.1016/J.JCLEPRO.2022.130741
[20] Zhao Q, Li X M, Wang Y, et al. Long-term bioremediation of cadmium contaminated sediment using sulfate reducing bacteria: perspective on different depths of the sediment profile[J]. Chemical Engineering Journal, 2023, 451. DOI:10.1016/J.CEJ.2022.138697
[21] 尹雪斐, 刘玉玲, 伍德, 等. 1株高耐性肠杆菌的筛选及对镉、砷同步钝化[J]. 环境科学, 2023, 44(1): 436-443.
Yin X F, Liu Y L, Wu D, et al. Inactivation of Cd and As by an enterobacter isolated from Cd and As contaminated farmland soil[J]. Environmental Science, 2023, 44(1): 436-443.
[22] 陈灿明, 卫泽斌, 彭建兵, 等. 土壤有效态镉与稻米镉污染风险广东案例研究[J]. 农业环境科学学报, 2022, 41(2): 295-303.
Chen C M, Wei Z B, Peng J B, et al. Risk assessment of cadmium contamination of rice using soil available cadmium in paddy fields: case studies of Guangdong Province, China[J]. Journal of Agro-Environment Science, 2022, 41(2): 295-303.
[23] 黄瑞卿, 王果, 汤榕雁, 等. 酸性土壤有效砷提取方法研究[J]. 农业环境科学学报, 2005, 24(3): 610-615.
Huang R Q, Wang G, Tang R Y, et al. Extraction method for available arsenic in acid soils[J]. Journal of Agro-Environment Science, 2005, 24(3): 610-615. DOI:10.3321/j.issn:1672-2043.2005.03.041
[24] 夏旭, 胡正义, 高明霞, 等. 水稻根表胶膜浸提中根内元素溢出与浸提条件优化研究[J]. 土壤通报, 2009, 40(6): 1288-1291.
Xia X, Hu Z Y, Gao M X, et al. Elements Leakage from roots in extracting iron plaque on the rice root surface and optimization of extraction conditions[J]. Chinese Journal of Soil Science, 2009, 40(6): 1288-1291.
[25] Fulda B, Voegelin A, Kretzschmar R. Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper[J]. Environmental Science & Technology, 2013, 47(22): 12775-12783.
[26] Khaokaew S, Chaney R L, Landrot G, et al. Speciation and release kinetics of cadmium in an alkaline paddy soil under various flooding periods and draining conditions[J]. Environmental Science & Technology, 2011, 45(10): 4249-4255.
[27] Burton E D, Johnston S G, Kocar B D. Arsenic mobility during flooding of contaminated soil: the effect of microbial sulfate reduction[J]. Environmental Science & Technology, 2014, 48(23): 13660-13667.
[28] Fisher J C, Wallschläger D, Planer-Friedrich B, et al. A new role for sulfur in arsenic cycling[J]. Environmental Science & Technology, 2008, 42(1): 81-85.
[29] Qiao J T, Li X M, Li F B, et al. Humic substances facilitate arsenic reduction and release in flooded paddy soil[J]. Environmental Science & Technology, 2019, 53(9): 5034-5042.
[30] Wu S J, Zhao Y P, Chen Y Y, et al. Sulfur cycling in freshwater sediments: a cryptic driving force of iron deposition and phosphorus mobilization[J]. Science of the Total Environment, 2019, 657: 1294-1303.
[31] Saxton M A, Samarkin V A, Madigan M T, et al. Sulfate reduction and methanogenesis in the hypersaline deep waters and sediments of a perennially ice-covered lake[J]. Limnology and Oceanography, 2021, 66(5): 1804-1818.
[32] Zhou C Q, Peng Y, Deng Y, et al. Increasing sulfate concentration and sedimentary decaying cyanobacteria co-affect organic carbon mineralization in eutrophic lake sediments[J]. Science of the Total Environment, 2022, 806. DOI:10.1016/J.SCITOTENV.2021.151260
[33] Yang M D, Liu C Q, Li X D, et al. Carbon-sulfur coupling in a seasonally hypoxic, high-sulfate reservoir in SW China: evidence from stable CS isotopes and sulfate-reducing bacteria[J]. Science of the Total Environment, 2022, 828. DOI:10.1016/j.scitotenv.2022.154537
[34] Huang L J, Hansen H C B, Yang X S, et al. Effects of sulfur application on cadmium accumulation in brown rice under wheat-rice rotation[J]. Environmental Pollution, 2021, 287. DOI:10.1016/j.envpol.2021.117601
[35] Liang T S, Ding H, Wang G D, et al. Sulfur decreases cadmium translocation and enhances cadmium tolerance by promoting sulfur assimilation and glutathione metabolism in Brassica chinensis L.[J]. Ecotoxicology and Environmental Safety, 2016, 124: 129-137.
[36] Mostofa M G, Rahman A, Ansary M U, et al. Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice[J]. Scientific Reports, 2015, 5. DOI:10.1038/srep14078
[37] 王丹, 李鑫, 王代长, 等. 硫素对水稻根系铁锰胶膜形成及吸收镉的影响[J]. 环境科学, 2015, 36(5): 1877-1887.
Wang D, Li X, Wang D C, et al. Influence of sulfur on the formation of Fe-Mn plaque on root and uptake of Cd by rice(Oryza sativa L.)[J]. Environmental Science, 2015, 36(5): 1877-1887.
[38] Wang J B, Yuan R, Zhang Y H, et al. Biochar decreases Cd mobility and rice(Oryza sativa L.) uptake by affecting soil iron and sulfur cycling[J]. Science of the Total Environment, 2022, 836. DOI:10.1016/j.scitotenv.2022.155547
[39] Yang J X, Liu Z Y, Wan X M, et al. Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant[J]. Ecotoxicology and Environmental Safety, 2016, 128: 206-212.
[40] Xu B, Yu J Y, Guo Y Y, et al. Influence of organic fertilizers and brassinosteroids on accumulation and uptake of As and Cd by rice seedlings(Oryza sativa L.) Grown in Soil[J]. Communications in Soil Science and Plant Analysis, 2020, 51(19): 2429-2440.
[41] Sun W M, Xiao E Z, Pu Z L, et al. Paddy soil microbial communities driven by environment- and microbe-microbe interactions: a case study of elevation-resolved microbial communities in a rice terrace[J]. Science of the Total Environment, 2018, 612: 884-893.
[42] 陈伟康. 硫肥对水稻根际中镉的生物有效性与微生物群落结构的影响[D]. 杭州: 浙江大学, 2018.
Chen W K. Effect of sulfur fertilizer on the bioavailability of cadmium in rice rhizosphere and the characteristics of rhizosphere microbial community[D]. Hangzhou: Zhejiang University, 2018.
[43] Sun L J, Zheng C Q, Yang J J, et al. Impact of sulfur(S) fertilization in paddy soils on copper(Cu) accumulation in rice(Oryza sativa L.) plants under flooding conditions[J]. Biology and Fertility of Soils, 2016, 52(1): 31-39.
[44] 吴照祥, 孙小艳, 刘腾云, 等. 中、轻度污染农田杂交水稻对Cd的吸收和累积分布[J]. 江西农业大学学报, 2019, 41(3): 423-430.
Wu Z X, Sun X Y, Liu T Y, et al. Cd accumulation, distribution and transport in varieties of hybrid rice grown in medium to low Cd-polluted farmland[J]. Acta Agriculturae Universitatis Jiangxiensis, 2019, 41(3): 423-430.
[45] 代子雯, 方成, 孙斌, 等. 地质高背景农田土壤下不同水稻品种对Cd的累积特征及影响因素[J]. 环境科学, 2021, 42(4): 2016-2023.
Dai Z W, Fang C, Sun B, et al. Cadmium accumulation characteristics and impacting factors of different rice varieties under paddy soils with high geological backgrounds[J]. Environmental Science, 2021, 42(4): 2016-2023.
[46] 王宇豪, 杨力, 康愉晨, 等. 镉污染大田条件下不同品种水稻镉积累的特征及影响因素[J]. 环境科学, 2021, 42(11): 5545-5553.
Wang Y H, Yang L, Kang Y C, et al. Characteristics and influencing factors of cadmium accumulation in different rice varieties under cadmium contaminated field conditions[J]. Environmental Science, 2021, 42(11): 5545-5553.
[47] 冯爱煊, 贺红周, 李娜, 等. 基于多目标元素的重金属低累积水稻品种筛选及其吸收转运特征[J]. 农业资源与环境学报, 2020, 37(6): 988-1000.
Feng A X, He H Z, Li N, et al. Screening of rice varieties with low accumulation of heavy metals based on multiple target elements and their absorption and transport characteristics in rice plants[J]. Journal of Agricultural Resources and Environment, 2020, 37(6): 988-1000.
[48] 王锋, 张静, 周少余, 等. 水稻土中氮素对微生物固砷的扰动及效应机制[J]. 环境科学, 2022, 43(11): 4876-4887.
Wang F, Zhang J, Zhou S Y, et al. Mechanism and environmental effect on nitrogen addition to microbial process of arsenic immobilization in flooding paddy soils[J]. Environmental Science, 2022, 43(11): 4876-4887.