2. 浙江树人学院交叉科学研究院, 浙江省污染暴露与健康干预重点实验室, 杭州 310015
2. Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
重金属镉(cadmium, Cd)在自然界中难以生物降解, 存留时间久, 且干扰生态系统的正常运转, 严重危害人体健康, 如今Cd已被联合国环境规划署列为全球性危害化学物质之首[1].在Cd污染土壤的修复治理技术中, 植株修复作为一种相对成熟的生态环保型技术逐渐应用于实际的修复工程中, 而东南景天(Sedum alfredii)、拟南芥(Arabidopsis thaliana)和印度芥菜(Brassica juncea)等超积累植株由于生物量较小和生长缓慢等因素, 限制了其实际应用的潜力[2~4].三叶鬼针草(Bidens pilosa L.)作为一种超富集植株, 具有生物量大、生长周期短和积累效率较高等优势, 近年来逐渐受到研究人员的广泛关注[5, 6], 如何有效提高Cd污染土壤植株修复效率成为日前研究的热点问题, 而植株良好的生长状态是保证高效修复效果的前提[7, 8].为了强化植物修复效果, 研究人员通过接种根际促生菌、引入蚯蚓至根部、施加外源人工螯合剂和施加根际微量元素等不同的强化技术, 通过对这些技术的总结发现, 在技术应用的过程中往往存在菌剂难以持久保持、动物收集困难、二次污染风险高和间作实施困难等问题[9~12].
植株体内存在一类浓度极低的化学信使, 被称为植株激素, 其在植株生长发育调节过程中发挥着重要作用[13].在植株面临干旱、高盐和环境污染等胁迫时, 施加外源植株激素可提高植株抗性, 降低外界环境的毒害作用, 随着研究不断深入, 外源植株激素在重金属污染土壤植株修复中应用的可行性和潜在价值逐渐受到重视[14, 15].目前应用于强化植株修复的激素主要有生长素(auxin, IAA)、ABA、乙烯(ethylene)和赤霉素(gibberellin, GA)[16~18], 缺乏针对油菜素甾醇(brassinosteroids, BR)、细胞分裂素(cytokinin, CTK)和水杨酸(salicylic acid, SA)的深入研究, 且多数研究皆以单一种类激素施加为主, 缺乏不同种类激素之间的修复效果对比[19, 20].因此, 本文以三叶鬼针草作为供试植株, 研究了6-苄基腺嘌呤(6-benzylaminopurine, 6-BA)、水杨酸和24-表油菜素甾醇(24-epi-brassinosteroid, 24-EBR)喷施对三叶鬼针草植株Cd分布和富集转运的强化效果, 探究了Cd胁迫下6-BA、SA和24-EBR喷施对三叶鬼针草生长特征、光合特性和抗氧化作用的影响, 分析探讨了Cd胁迫下三叶鬼针草各项指标变化和重金属参数之间的关系, 以期为强化植物修复技术的实际应用提供科学依据.
1 材料与方法 1.1 试验土壤准备试验土壤取自江苏省徐州市铜山区小麦种植园区的表层土壤(0~20 cm), 将土壤在实验室内风干后研磨混匀, 使用2 mm尼龙筛过筛后用作实验土壤, 其理化性质如下: pH值为6.19; ω(总Cd)为0 mg ·kg-1; ω(有机质)为1.39%; ω(速效磷)为15 mg ·kg-1; ω(速效钾)为20 mg ·kg-1.向实验土壤中添加CdCl2 ·2.5H2 O以模拟镉污染, 最终确定土壤ω(Cd)为32 mg ·kg-1, 污染土壤混匀后放置60 d进行陈化平衡[21].
1.2 盆栽试验设计将按1.1节方法制备的土壤用于盆栽试验.将1 kg风干配置的污染土壤放在直径13 cm、高度6 cm的塑料花盆中, 并在其底部放置托盘, 用于渗滤液回流, 以防止Cd和养分的损失.然后将三叶鬼针草种子浸泡并在70%酒精中消毒10 min, 用蒸馏水和无菌水洗净.每盆播种8粒形状和粒径基本相同的种子, 表层覆盖1.5 cm的土壤.在光/暗周期12 h/12 h条件下, 将植株培养在光强为200 μmol ·(m2 ·s)-1的荧光灯生长室中.室内相对空气湿度为65%, 最高和最低培养温度分别为25℃和20℃.种子发芽后2周, 每个盆中保留5株大小相同的幼苗.栽培期间, 土壤含水量保持在60%.
本实验过程中, 6-BA、SA和24-EBR分别选为3种外源植株激素, 6-BA的喷施浓度设置为0.5、1和2 mg ·L-1, SA的喷施浓度设置为3、10和30 mg ·L-1, 24-EBR的喷施浓度设置为0.01、0.1和1 mg ·L-1, 将外源植株激素以水溶液的形式喷施到三叶鬼针草叶片表面.待植株生长20 d后, 将相应浓度的激素溶液和水混合喷施在叶片上.在植株整个生长周期内, 以每隔7 d的频率共喷施3次外源植株激素.此外, 以无Cd自然土壤(CKK)和有Cd污染土壤(CK)作为实验对照组, 实验期间用清水替代外源植株激素进行喷施.本研究共设计11组实验, 每个实验3个重复, 总共生长7周后, 收获植株进行分析.
1.3 植株指标的测定方法植株叶绿素含量采用无水乙醇提取法测定[22]; 植株超氧化物歧化酶(superoxide dismutase, SOD)活性采用核黄素法测定[23]; 过氧化氢酶(catalase, CAT)活性采用紫外吸收法测定[24]; 植株丙二醛(malonic dialdehyde, MDA)含量采用硫代巴比妥酸法测定[25]; 还原型谷胱甘肽(glutathione, GSH)含量采用二硫代硝基苯甲酸(5, 5-dithiobis-2-nitrobenzoic acid, DNTB)法测定[26].
1.4 叶绿素荧光参数测定叶绿素荧光参数和快速光响应曲线采用脉冲幅度调制荧光计(Maxi-version of the Imaging-PAM, Heinz Walz GmbH, 德国)对三叶鬼针草叶片进行测量.首先将实验组植株在黑暗条件下适应20 min, 随后从各实验组的植株中摘取3片叶子, 置于脉冲调幅荧光计中进行测量, 将仪器设置为每20 s增加光强度: 0、1、36、81、146、231、336、461、611和801 μmol ·(m2 ·s)-1, 在实时荧光稳定后, 测定叶片叶绿素荧光参数和快速光响应曲线.期间测量了光合反应中心(potosynthetic reaction center, PSⅡ)的叶绿素荧光参数, 包括: 最小荧光(F0)、最大荧光(Fm)和可变荧光(Fv), 并测定了PSⅡ最大光化学量子产量(Fv/F0)和PSⅡ的最大光合效率(Fv/Fm), 其中各项参数根据如下公式计算:
![]() |
(1) |
![]() |
(2) |
![]() |
(3) |
快速光响应曲线包括实际光化学量子产额(YⅡ)、调节能量耗散的量子产率(YNPQ)、未调节能量耗散的量子产率(YNO)和光合电子转移速率(ETR), 其值随光强度的增加而变化, 取平均值绘制为快速光响应曲线.
1.5 植株生物量和重金属含量的测定三叶鬼针草生长10周后进行收获, 用于测定体内重金属Cd含量.将地上部分和地下部分进行分离、拍照, 植株根部用蒸馏水冲洗表面土壤, 并在去离子水中浸泡10 min, 随后将地上部和根部组织置于干净烧杯中, 120℃杀青1 h, 随后70℃烘干至恒重, 随后取样进行称重.将干燥的植株组织置于10 mL 65%的硝酸中, 在180℃下放在电热板上进行消解[27].消解至液体无色透明时, 用超纯水稀释混合物, 定容10 mL, 随后用0.22 μm滤膜过滤, 最后通过火焰原子吸收光谱法(FAAS)仪器(iCE3300, Thermo Scientific)测定消解液中Cd浓度.本实验中使用的所有玻璃器皿在30%硝酸中浸泡24 h, 并在使用前用超纯水冲洗.Cd生物富集因子(bioconcentration factor, BCF)是三叶鬼针草植株体内Cd含量与土壤Cd含量的比值.转运因子(translocation factor, TF)是三叶鬼针草地上部Cd含量与根部Cd含量的比值.植物提取率(phytoextraction rates, PR)是三叶鬼针草体内Cd含量与土壤中Cd含量的比值[28].
1.6 数据统计分析采用Excel 2020和Origin 2018进行数据计算和作图, 各项数据的统计分析采用SPSS 20(IBM; Armonk, NY, USA)进行单因素方差分析, 通过Student's t检验或Duncan's检验评估处理间的显著性.
2 结果与分析 2.1 外源植株激素喷施对三叶鬼针草重金属分布和富集转运的影响 2.1.1 外源植株激素喷施对植株重金属分布的影响如图 1所示, 外源喷施2 mg ·L-1 6-BA和30 mg ·L-1 SA后三叶鬼针草根部Cd含量分别提高了14.37%和3.38%, 但喷施24-EBR降低了植株根部Cd含量, 施加浓度为0.1 mg ·L-1时下降了17.95%.外源喷施SA能增加植株叶部Cd含量, 施加浓度为30 mg ·L-1时提高了31.79%, 喷施0.1 mg ·L-1 24-EBR时植株叶部Cd含量提高了14.89%.外源喷施6-BA显著提高植株茎部Cd含量, 施加浓度2 mg ·L-1时提高了26.51%, 喷施30 mg ·L-1 SA时植株茎部Cd含量提高了4.59%(图 1).由此可见, 3种外源植株激素对三叶鬼针草根、茎和叶Cd含量作用程度不同, SA和24-EBR喷施显著影响植株叶片Cd含量, 而6-BA喷施对植株茎部和根部Cd含量有显著影响.
![]() |
CK为清水喷施和土壤ω(Cd)为32 mg ·kg-1的对照; 6-BA 0.5、6-BA 1和6-BA 2表示叶片喷施0.5、1和2 mg ·L-1细胞分裂素处理; SA 3、SA 10和SA 30表示叶片喷施3、10和30 mg ·L-1水杨酸处理; EBR 0.01、EBR 0.1和EBR 1表示叶片喷施0.01、0.1和1 mg ·L-1 24-表油菜素甾醇处理; 通过相互之间的比较重叠情况来体现差异性(P<0.05), 不同小写字母表示相互间有显著差异 图 1 外源植株激素喷施对三叶鬼针草植株Cd分布特征的影响 Fig. 1 Effects of exogenous plant hormone spraying on Cd concentration in Bidens pilosa L. |
外源喷施低浓度6-BA能提升TF和PR值, 喷施0.5 mg ·L-1时两者分别提高了9.67%和15.36%.TF、BCF和PR值随着外源SA喷施浓度的逐渐增加呈上升趋势, 施加浓度为3 mg ·L-1时三者分别提高了18.83%、11.01%和32.33%, 施加浓度为30 mg ·L-1时分别提高了17.85%、20.51%和63.01%.外源喷施0.1 mg ·L-1 24-EBR后TF、PR和BCF分别提高了14.73%、64.38%和0.73%(表 1).由此可见, 外源SA喷施后显著促进Cd从三叶鬼针草根部向地上部的转运和富集, 而6-BA和24-EBR喷施对Cd的转运和富集没有显著影响.此外, 3种外源植株激素喷施均能提高三叶鬼针草对土壤中Cd的提取效率.
![]() |
表 1 外源植株激素喷施对三叶鬼针草BCF、TF和PR的影响1) Table 1 Effects of exogenous plant hormones on BCF, TF, and PR of Bidens pilosa L. under Cd stress |
2.2 镉胁迫下外源植株激素喷施对三叶鬼针草生长特征的影响
镉胁迫下三叶鬼针草长势较矮并在叶片中出现红斑, 外源植株激素喷施后显著改善了胁迫程度, 叶片茂密并呈现翠绿色.Cd胁迫导致植株生物量显著下降, 适当浓度外源植株激素的喷施能够显著提高三叶鬼针草生物量(表 2).6-BA在喷施浓度为0.5 mg ·L-1时促进作用最为显著, 叶和根的干重分别提高了37.53%和24.38%, 而6-BA的喷施对植株茎部干重有显著的抑制作用, 在喷施浓度为2 mg ·L-1时茎部干重下降了19.14%.随着SA喷施浓度的升高, 三叶鬼针草叶和根干重逐渐增加, 在喷施浓度为30 mg ·L-1时分别增加了74.50%和48.14%, 而对于茎部干重则是低浓度(3 mg ·L-1)SA喷施的促进效果最佳, 增加了47.46%.24-EBR喷施对三叶鬼针草的作用效果和SA基本相似, 在喷施浓度为1 mg ·L-1时叶、根和茎干重分别增长了104.02%、45.06%和73.95%.由此可见, 适当浓度外源植株激素的喷施可显著增加三叶鬼针草生物量, 但不同类型外源植株激素对植株根茎叶的作用程度不同, 6-BA能显著提高植株根和叶生物量, 而对茎的作用效果不明显, SA和24-EBR则对植株根茎叶的作用效果均较显著.
![]() |
表 2 镉胁迫下外源植株激素喷施对三叶鬼针草生物量的影响/mg ·plant-1 Table 2 Effects of exogenous plant hormone spraying on the biomass of Bidens pilosa L. under Cd stress/mg ·plant-1 |
2.3 镉胁迫下外源植株激素喷施对三叶鬼针草光合特性的影响 2.3.1 镉胁迫下外源植株激素喷施对叶绿素含量的影响
镉胁迫可使三叶鬼针草叶绿素a(chlorophyll b, Chla)、叶绿素b(chlorophyll b, Chlb)和类胡萝卜素(carotenoids, Caro)含量分别下降为CKK的37%、40%和47%.外源植株激素喷施能显著提高三叶鬼针草叶绿素含量, 6-BA喷施促使叶绿素含量逐渐上升, 浓度为2 mg ·L-1时植株Chla、Chlb和Caro含量分别为CK的1.79、1.81和1.42倍.随着外源SA喷施浓度的增加, 植株叶绿素含量先上升后下降, 浓度为10 mg ·L-1时, 三者分别为CK的1.92、1.98和1.52倍.外源24-EBR喷施后低浓度对叶绿素有促进作用, 而高浓度有抑制效果, 浓度为0.01 mg ·L-1时, 三者分别为CK的1.51、1.34和1.28倍, 浓度为1 mg ·L-1时三者分别为CK的0.79、0.73和0.90倍(图 2).由此可见, 外源植株激素喷施可显著改变三叶鬼针草叶绿素含量, 不同植株激素作用效果不同.
![]() |
CK为清水喷施和土壤ω(Cd)为32 mg ·kg-1的对照; 6-BA 0.5、6-BA 1和6-BA 2表示叶片喷施0.5、1和2 mg ·L-1细胞分裂素的处理; SA 3、SA 10和SA 30表示叶片喷施3、10和30 mg ·L-1水杨酸的处理; EBR 0.01、EBR 0.1和EBR 1表示叶片喷施0.01、0.1和1 mg ·L-124-表油菜素甾醇的处理, 下同 图 2 镉胁迫下外源植株激素喷施对三叶鬼针草叶绿素含量的影响 Fig. 2 Effects of exogenous plant hormone spraying on the chlorophyll concentration of Bidens pilosa L. under Cd stress |
叶绿素荧光参数(F0、Fm、Fv/Fm和Fv/F0)对外界环境胁迫十分敏感, 常用于评估PSⅡ活性.和CKK相比, Cd胁迫下导致F0和Fm值分别增加了97.70%和26.07%, 外源植株激素喷施后显著降低F0和Fm值(表 3).和CK相比, 随着6-BA喷施浓度逐渐上升, F0和Fm值降低幅度呈下降趋势, 喷施0.5 mg ·L-1时两者分别降低了45.01%和43.26%, 喷施2 mg ·L-1时两者分别降低了19.23%和26.70%.随着SA喷施浓度逐渐上升, F0和Fm值呈下降趋势, 并在30 mg ·L-1时分别降低了36.39%和21.55%. 24-EBR喷施后F0和Fm显著下降, 但喷施浓度对两者影响不显著, 并在0.01 mg ·L-1时分别降低了27.32%和35.35%.由此可见, 外源植株激素喷施后降低重金属Cd对三叶鬼针草叶绿体的损害, 减轻光合反应中心损伤.
![]() |
表 3 镉胁迫下外源植株激素喷施对三叶鬼针草叶绿素荧光参数的影响 Table 3 Effects of exogenous plant hormone spraying on the chlorophyll fluorescence parameters of Bidens pilosa L. under Cd stress |
Fv/Fm值表示光合转换效率, 用来评估环境胁迫对植株最大光合能力的影响程度. Fv/F0值表示光合反应中心的光合潜力, 在胁迫下会呈现更高的幅度.和CKK相比, Cd胁迫导致三叶鬼针草Fv/Fm图像呈淡黄色, 外源植株激素喷施后Fv/Fm图像呈现绿色, 且SA喷施后图像呈现显著亮蓝色(图 3).通过分析发现, Cd胁迫导致Fv/Fm和Fv/F0值分别降低了20.11%和49.19%.外源6-BA喷施浓度为0.5 mg ·L-1时两者分别提高了2.03%和5.59%, 喷施30 mg ·L-1 SA后两者分别提高了13.14%和40.48%, 而24-EBR喷施则降低了Fv/Fm和Fv/F0值, 在1 mg ·L-1时分别降低了10.64%和22.30%(表 3).由此可见, 外源植株激素喷施可改变光合反应中心最大光合能力, 其中SA喷施的促进效果最为显著, 24-EBR喷施则呈现轻微抑制作用.
![]() |
色柱的颜色接近数值0对应颜色表示光合作用逐渐受到抑制, 叶片受到强胁迫; 接近数值1对应的颜色表示叶片胁迫条件越低, 健康状况逐渐良好, 光合作用增强; 色柱上数据表示喷施浓度 图 3 镉胁迫下外源植株激素喷施对三叶鬼针草Fv/Fm图像的影响 Fig. 3 Effects of exogenous plant hormone spraying on the Fv/Fm image of Bidens pilosa L. under Cd stress |
qP和qL是反映光合反应中心开放性的光化学淬灭系数, NPQ是评估植株耗散多余光能缓解ROS产生和降低细胞损伤的重要参数, qN则在植株面对胁迫时变化敏感.在Cd胁迫下三叶鬼针草光合反应中心qP、qL、qN和NPQ值分别下降为CKK的78%、65%、71%和32%, 喷施外源植株激素可在不同程度上提高各值.在喷施0.5 mg ·L-1 6-BA时, qP、qL、qN和NPQ数值分别为CK的1.11、1.69、1.24和1.52倍, 但各值随着6-BA喷施浓度的增加呈现下降趋势.随着SA喷施浓度的逐渐增加, qP、qL、qN和NPQ数值呈上升趋势, 喷施浓度为30 mg ·L-1时分别为CK的1.89、2.24、1.44和3.41倍.随着24-EBR喷施浓度的逐渐增加, 数值呈先上升后下降趋势, 喷施浓度在0.1 mg ·L-1时分别为CK的1.78、2.38、1.27和1.28倍(图 4).由此可见, Cd胁迫严重破坏了三叶鬼针草叶光合反应中心的运行机制, 外源植株激素喷施后能降低PSⅡ损伤, 提高植株调节能量耗散的能力, 增加光合反应中心电子转移的活性.
![]() |
图 4 镉胁迫下外源植株激素喷施对三叶鬼针草光响应曲线影响 Fig. 4 Effects of exogenous plant hormone spraying on the light response curve of Bidens pilosa L. under Cd stress |
镉胁迫导致三叶鬼针草植株MDA含量提高3倍, 外源植株激素喷施后降低了体内MDA含量.和CK相比, 在喷施2 mg ·L-1 6-BA、30 mg ·L-1 SA和0.01 mg ·L-1 24-EBR后, 三叶鬼针草植株MDA含量分别降低了62.41%、68.67%和46.76%(图 5).
![]() |
图 5 镉胁迫下外源植株激素喷施对三叶鬼针草植株MDA含量的影响 Fig. 5 Effects of exogenous plant hormone spraying on MDA concentration in Bidens pilosa L. under Cd stress |
三叶鬼针草受Cd胁迫后, 由于已超过自身SOD对超氧自由基的反应能力, 导致SOD活性下降30.66%, 喷施2 mg ·L-1 6-BA、30 mg ·L-1 SA和0.01 mg ·L-1 24-EBR后, 植株SOD活性分别为CK的1.68、1.10和1.06倍.植株体内积累的过氧化氢(hydrogen peroxide, H2 O2)可通过CAT作用转化为H2 O, 因此CAT活性的改变也是保护植株免受外界胁迫的主要机制.Cd胁迫导致三叶鬼针草CAT活性下降为CKK的0.73倍, 外源植株激素喷施后能提高植株CAT活性, 喷施2 mg ·L-1 6-BA、30 mg ·L-1 SA和1 mg ·L-1 24-EBR后, 植株CAT活性分别为CK的1.31、1.38和1.37倍(图 6).由此可见, 外源植株激素喷施能提高三叶鬼针草抗氧化酶活性, 增强抗氧化能力, 降低重金属带来的胁迫危害.
![]() |
图 6 镉胁迫下外源植株激素对三叶鬼针草SOD和CAT活性影响 Fig. 6 Effects of exogenous plant hormone spraying on SOD and CAT activity of Bidens pilosa L. under Cd stress |
镉胁迫导致三叶鬼针草GSH浓度为CKK的74%, 外源植株激素喷施后植株GSH浓度显著提高, 喷施1 mg ·L-1 6-BA、10 mg ·L-1 SA和0.1 mg ·L-1 24-EBR后, 植株GSH浓度分别为CK的1.48、1.47和1.57倍, GSH能保护细胞免受ROS的攻击(图 7).由此可见, 外源植株激素喷施可提高植株GSH含量, 以此对抗胁迫产生的氧化损伤.
![]() |
图 7 镉胁迫下外源植株激素喷施对三叶鬼针草GSH含量的影响 Fig. 7 Effects of exogenous plant hormone spraying on GSH concentration in Bidens pilosa L. under Cd stress |
可溶性蛋白是植株体内重要的生理代谢物质, 面临外界胁迫时, 植株可通过提高细胞渗透浓度和可溶性蛋白含量来维持体内正常渗透压[29].和CKK相比, Cd胁迫导致三叶鬼针草可溶性蛋白浓度下降了41.71%, 外源植株激素喷施后, 三叶鬼针草可溶性蛋白浓度发生显著变化.6-BA喷施后可溶性蛋白含量显著下降, 在喷施浓度为2 mg ·L-1时, 比CK下降了54.81%, 而外源SA和24-EBR喷施后, 可溶性蛋白含量上升, 在喷施浓度分别为10 mg ·L-1和1 mg ·L-1时, 可溶性蛋白浓度为CK的1.83倍和2.01倍(图 8).由此可见, 外源SA和24-EBR通过提高体内可溶性蛋白含量, 维持Cd胁迫下细胞内部渗透平衡, 抵御外界毒害胁迫.
![]() |
图 8 镉胁迫下外源植株激素对三叶鬼针草可溶性蛋白含量的影响 Fig. 8 Effects of exogenous plant hormone spraying on the soluble protein concentration in Bidens pilosa L. under Cd stress |
采用相关性分析探讨了Cd胁迫下三叶鬼针草指标变化和重金属参数之间的关系.结果发现, 三叶鬼针草根茎叶部Cd含量、TF和PR值和根茎叶生物量呈显著正相关, 和植株叶绿素含量、抗氧化酶活性(SOD、CAT)、抗氧化物含量(GSH)和叶绿素荧光参数(Fv/Fm、Fv/F0)有一定正相关性.此外, 三叶鬼针草生物量和叶绿素含量、荧光参数、抗氧化酶活性呈现显著正相关, 在抗氧化系统中MDA和CAT、SOD、GSH、SP呈显著负相关, 在光合系统中叶绿素荧光参数(Fv/Fm、Fv/F0)和植株酶活性呈显著正相关(图 9).
![]() |
A. 根干重, B. 叶干重, C. 茎干重, D. 地上干重, E. Chla, F. Chlb, G. Caro, H. 叶Cd含量, Ⅰ. 植株叶部Cd含量, J. 植株茎部Cd含量, K. 植株茎部Cd含量, L.根Cd含量, M. 根Cd含量, N.TF, O. BCF, P. PR, Q. MDA, R. CAT, S. SOD, T. GSH, U. SP, V. F0, W. Fm, X. Fv/Fm, Y. Fv/F0; 两项指标交点处的颜色是红色表示两者之间呈正相关, 是绿色表示指标之间呈负相关, 接近土黄色(数值0对应的颜色)表示没有相关性; 颜色越接近深红色(数值1对应的颜色)表示正相关性越显著, 越接近深绿色(数值-1对应的颜色)则表示负相关性越显著; 同时圆的面积大小同样反映着相关性的显著程度, 圆面积越大相关性越显著, 圆面积越小越没有相关性 图 9 三叶鬼针草指标变化和重金属参数的相关性分析 Fig. 9 Correlation analysis between indexes of Bidens pilosa L. and heavy metal parameters |
提高超积累植株对重金属的吸收一直是植株修复技术在实际工程应用中的热点问题, 外源植株激素在强化植株修复重金属污染土壤中逐渐发挥着重要作用.本研究发现, 外源植株激素喷施能有效提高三叶鬼针草对Cd的积累能力, 促进植株根部Cd运输到地上部分, 从而提高转运系数.本研究选用的3种外源植株激素中6-BA是常见的人工合成细胞分裂素, 在一定程度上促进植株修复效率提高.Castrillo等[30]在砷胁迫下将细胞分裂素氧化酶/脱氢酶(cytokinin oxidase/dehydrogenase, CKX)过表达突变体作为研究对象, 在CKX过表达时体内CTK含量显著下降, 体内PHT1;1蛋白表达被抑制了2.7倍, 且体内砷含量显著下降.这和本文的研究结果基本一致, 因此外源6-BA的叶片喷施可能提高体内CTK的水平, CTK会促进重金属转运蛋白的表达, 进而促进重金属在植株体内的转运.Marchadier等[31]研究发现, 外源喷施6-BA后拟南芥蒸腾作用显著提高, 植株蒸腾作用产生的向上作用力间接促进植株对土壤中可溶性污染物的吸收.植株作为重金属的重要蓄积体, 植株良性的生长状态和生物量和植株修复效果呈现显著正相关.喷施外源6-BA能显著提高三叶鬼针草根部和叶片的生物量, 因为外源6-BA喷施后会增加叶片内CTK含量, 并转化为内源t-ZR和IP等, 而内源CTK会激活茎尖分生组织活性, 促进叶片幼芽细胞分裂增殖, 调控叶芽和根部生长, 延缓植株叶片衰老, 增加的植株生物量和延长的衰老时间, 为重金属积累提供了更多空间和时间, 从而提高重金属提取效率.
水杨酸在植株激素定义中是作为独立于七大类植株激素之外的其它类植株激素, 但其在植株生长发育中仍有重要的作用[32].由于Cd胁迫导致三叶鬼针草产生大量的活性氧(reactive oxygen species, ROS), 会对植株抗氧化系统、光合反应中心、细胞结构和功能等造成严重的危害[33].本研究结果显示外源SA喷施显著降低植株体内MDA含量, Guo等[34]研究发现外源SA能有效缓解重金属Cd对于番茄的毒害胁迫, 并使体内MDA含量下降39.27%.体内存在大量的ROS会破坏细胞原有平衡, 导致蛋白质降解, 甚至造成DNA损伤; 与此同时ROS还会诱导植株的自身修复机制以此消减损伤[35].外源SA喷施能提高三叶鬼针草抗氧化酶SOD和CAT活性, 增加抗氧化物GSH和Caro含量; Yang等[36]发现铬胁迫下外源SA可使水稻(Oryza sativa L.)抗坏血酸过氧化物酶(ascorbate peroxidase, APX)、脱氢抗坏血酸还原酶(dehydroascorbate reductase, DHAR)和单脱氢抗坏血酸(monodehydroascorbate reductase, MDHAR)活性分别增加23.02%、17.81%和17.57%; Hediji等[37]发现Cd胁迫下外源SA施加促使菜豆(Phaseolus vulgaris L.)胚胎中GSH增加323%, SA已被认为是通过复杂信号通路网络调节植株体内GSH含量的最佳分子之一.植株体内的H2S是植株逃避重金属毒性的重要信号分子[38], Kaya等[39]发现外源SA还可提高内源H2S含量, 进而提高植株对重金属的耐受性.SA作为一种有效的羟基自由基清除剂和铁螯合化合物, 可通过芬顿反应抑制体内自由基的产生, 调节氧化还原平衡, 减轻植株膜损伤[40].本研究的3种外源植株激素中, SA对三叶鬼针草重金属转运富集积累的作用最为显著.此外, 外源SA施加可使促使高羊茅(Festuca arundinacea Schreb.)体内GF14-E、CPN60、HMA3-D1、RABA1F和RGA2等Cd响应基因的表达水平增强, 使枝条中的Cd含量增加11.4倍, 茎中增加2.56倍[41].由此可见, 外源SA能提高植株修复效率, 在提高自身抗氧化能力的同时, 提高植株对重金属的吸收和积累, 在强化植株修复技术中具有较大的应用潜力.
重金属胁迫会严重损害植株光合反应中心, 通过抑制光合作用关键酶合成或减少植株对镁离子的吸收来降低叶绿体的光合作用, 并且ROS过量积累也会导致植株叶片色素损失[42].铅胁迫下外源24-EBR施加增强高羊茅体内SOD、CAT和愈创木酚过氧化物酶(GPX)活性, 减少H2 O2和超氧阴离子(superoxide anion, ·O2-)的积累[43]; 本文结果表明, Cd胁迫下外源24-EBR喷施增加三叶鬼针草叶片Caro含量, 其作为补光色素和抗氧化剂保护着叶绿体免受氧化应激的损伤, 有助于提高叶绿素含量, 且增强体内抗氧化酶(SOD和CAT)活性并降低MDA含量, 显著改善三叶鬼针草叶片光合反应中心的损伤.植株体内的油菜素类固醇可作为受体或是配体复合物, 和细胞核或细胞质位点结合并调节线粒体转录终止因子(mTERF)相关蛋白、富含甘氨酸的蛋白22(GRP22)和3-酮酰基-CoA硫解酶等特定应激基因的表达, 进而提高应激能力和胁迫耐受性[44].Cd胁迫可导致蛋白质发生一定程度的断裂[45], 显著降低可溶性蛋白含量, 而外源24-EBR喷施后提高三叶鬼针草可溶性蛋白含量, 这说明外源24-EBR会通过调节胞内外渗透压, 改善细胞受到的氧化应激.此外, 油菜素内酯可能通过影响蛋白质构象或维持蛋白质-甾醇相互作用来改变膜内蛋白质和其它酶活性, 本研究的结果更加证实了这些假设[46].外源24-EBR的喷施虽然提高了三叶鬼针对Cd的提取效率, 但其对Cd在三叶鬼针草根茎叶中的分布影响不显著.Zhong等[43]研究发现外源24-EBR施加后高羊茅中Pb的转运因子保持稳定, 但Pb的总量增加了24%, 这可能更大程度归因于24-EBR施用植株生物量的增加, 为植株吸收Cd提供了更多的蓄积空间, 进而促进Cd提取率的提高.
4 结论采用叶面喷施6-苄基腺嘌呤(0.1、1、2 mg ·L-1)、水杨酸(3、10、30 mg ·L-1)和24-表油菜素甾醇(0.01、0.1、1 mg ·L-1)能够在不同程度促进三叶鬼针草对Cd的吸收, 叶片喷施外源植株激素提高了TF、BCF和PR等重金属吸收相关的参数.其中, 30 mg ·L-1的水杨酸叶面喷施的作用效果最为显著, 使三叶鬼针草根、茎和叶Cd含量分别提高了3.38%、4.59%和31.79%, 使PR、TF和BCF值分别提高了63.01%、17.85%和20.51%. 3种外源植物激素叶面喷施在不同程度提高了植物抗氧化酶(CAT、SOD、POD)、抗氧化物(GSH)和渗透调节物(可溶性蛋白)的活性与含量.相关分析发现, BCF、TF、PR值和植物生物量、光合参数、抗氧化参数和渗透调节等呈现正相关.因此, 叶面喷施适宜浓度的外源植物激素可显著提高植株修复效率.外源植物激素通过增强光合作用促进生物量增加, 为重金属富集提升了更多的空间; 通过提高抗氧化物质的含量, 增强了植株对重金属的耐受性, 促进了植株对重金属的积累.
[1] | Shahriar S, Rahman M M, Naidu R. Geographical variation of cadmium in commercial rice brands in Bangladesh: human health risk assessment[J]. Science of the Total Environment, 2020, 716. DOI:10.1016/j.scitotenv.2020.137049 |
[2] | Chen Z Q, Liu Q Z, Chen S N, et al. Roles of exogenous plant growth regulators on phytoextraction of Cd/Pb/Zn by Sedum alfredii Hance in contaminated soils[J]. Environmental Pollution, 2022, 293. DOI:10.1016/j.envpol.2021.118510 |
[3] | Zhang X, Li M, Yang H H, et al. Physiological responses of Suaeda glauca and Arabidopsis thaliana in phytoremediation of heavy metals[J]. Journal of Environmental Management, 2018, 223: 132-139. |
[4] | Re na, Machhirake N P, Yadav S, et al. Toxicity-removal efficiency of Brassica juncea, Chrysopogon zizanioides and Pistia stratiotes to decontaminate biomedical ash under non-chelating and chelating conditions: a pilot-scale phytoextraction study[J]. Chemosphere, 2022, 287. DOI:10.1016/j.chemosphere.2021.132416 |
[5] | Dai H P, Wei S H, Twardowska I, et al. Hyperaccumulating potential of Bidens pilosa L. for Cd and elucidation of its translocation behavior based on cell membrane permeability[J]. Environmental Science and Pollution Research, 2017, 24(29): 23161-23167. DOI:10.1007/s11356-017-9962-9 |
[6] |
张云霞, 周浪, 肖乃川, 等. 鬼针草(Bidens pilosa L.)对镉污染农田的修复潜力[J]. 生态学报, 2020, 40(16): 5805-5813. Zhang Y X, Zhou L, Xiao N C, et al. Remediation potential of B. pilosa L. in cadmium-contaminated farmland[J]. Acta Ecologica Sinica, 2020, 40(16): 5805-5813. |
[7] | Latif J, Akhtar J, Ahmad I, et al. Unraveling the effects of cadmium on growth, physiology and associated health risks of leafy vegetables[J]. Brazilian Journal of Botany, 2020, 43(4): 799-811. DOI:10.1007/s40415-020-00653-0 |
[8] | Du B Y, Zhou J, Lu B X, et al. Environmental and human health risks from cadmium exposure near an active lead-zinc mine and a copper smelter, China[J]. Science of the Total Environment, 2020, 720. DOI:10.1016/j.scitotenv.2020.137585 |
[9] | Yang Q, Yang C, Yu H, et al. The addition of degradable chelating agents enhances maize phytoremediation efficiency in Cd-contaminated soils[J]. Chemosphere, 2021, 269. DOI:10.1016/j.chemosphere.2020.129373 |
[10] |
高羽, 刘雨辰, 郭晓方, 等. 硫酸盐还原菌对碱性和酸性农田土壤中重金属的钝化效果及其作用机制[J]. 环境科学, 2022, 43(12): 5789-5797. Gao L, Liu Y C, Guo X F, et al. Effect and mechanism of sulfate-reducing bacteria on the passivation of heavy metals in alkaline and acidic agricultural soils[J]. Environmental Science, 2022, 43(12): 5789-5797. DOI:10.13227/j.hjkx.202202095 |
[11] |
帅祖苹, 刘汉燚, 崔浩, 等. 磷、锌和镉交互作用对小白菜生长和锌镉累积的影响[J]. 环境科学, 2022, 43(11): 5234-5243. Shuai Z P, Liu H Y, Cui H, et al. Effects of interaction of zinc and cadmium on growth and cadmium accumulation of Brassica campestris L.[J]. Environmental Science, 2022, 43(11): 5234-5243. DOI:10.13227/j.hjkx.202201202 |
[12] | Li X Z, Wang M E, Jiang R, et al. Evaluation of joint toxicity of heavy metals and herbicide mixtures in soils to earthworms (Eisenia fetida)[J]. Journal of Environmental Sciences, 2020, 94: 137-146. DOI:10.1016/j.jes.2020.03.055 |
[13] | Sytar O, Kumari P, Yadav S, et al. Phytohormone priming: regulator for heavy metal stress in plants[J]. Journal of Plant Growth Regulation, 2019, 38(2): 739-752. DOI:10.1007/s00344-018-9886-8 |
[14] |
方治国, 杨青, 谢俊婷, 等. 重金属污染土壤植物修复中细胞分裂素的作用与机制[J]. 生态学报, 2022, 42(8): 3056-3065. Fang Z G, Yang Q, Xie J T, et al. The role and mechanism of cytokinin in phytoremediation of heavy metal contaminated soil[J]. Acta Ecologica Sinica, 2022, 42(8): 3056-3065. |
[15] | Emamverdian A, Ding Y L, Mokhberdoran F, et al. Mechanisms of selected plant hormones under heavy metal stress[J]. Polish Journal of Environmental Studies, 2020, 30(1): 497-507. DOI:10.15244/pjoes/122809 |
[16] | Kamran M, Danish M, Saleem M H, et al. Application of abscisic acid and 6-benzylaminopurine modulated morpho-physiological and antioxidative defense responses of tomato (Solanum lycopersicum L.) by minimizing cobalt uptake[J]. Chemosphere, 2021, 263. DOI:10.1016/j.chemosphere.2020.128169 |
[17] | Tepe H D. Effect of gibberellic acid (GA3) addition on physiological parameters and metal uptake in Phaseolus vulgaris seedlings under cadmium and lead stress[J]. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 2022, 156(5): 1096-1106. DOI:10.1080/11263504.2021.2013331 |
[18] | Zhou M X, Ghnaya T, Dailly H, et al. The cytokinin trans-zeatine riboside increased resistance to heavy metals in the halophyte plant species Kosteletzkya pentacarpos in the absence but not in the presence of NaCl[J]. Chemosphere, 2019, 233: 954-965. DOI:10.1016/j.chemosphere.2019.06.023 |
[19] | Shi W G, Liu W Z, Yu W J, et al. Abscisic acid enhances lead translocation from the roots to the leaves and alleviates its toxicity in Populus ×canescens[J]. Journal of Hazardous Materials, 2019, 362: 275-285. DOI:10.1016/j.jhazmat.2018.09.024 |
[20] | Hadia-e-Fatima, Ahmed A. Indole-3-acetic acid synthesizing chromium-resistant bacteria can mitigate chromium toxicity in Helianthus annuus L.[J]. Plant, Soil and Environment, 2020, 66(5): 216-221. DOI:10.17221/581/2019-PSE |
[21] |
孙约兵, 周启星, 王林, 等. 三叶鬼针草幼苗对镉污染的耐性及其吸收积累特征研究[J]. 环境科学, 2009, 30(10): 3028-3035. Sun Y B, Zhou Q X, Wang L, et al. Characteristics of cadmium tolerance and bioaccumulation of Bidens pilosa L. Seedlings[J]. Environmental Science, 2009, 30(10): 3028-3035. DOI:10.3321/j.issn:0250-3301.2009.10.036 |
[22] | Jeffrey S W, Humphrey G F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton[J]. Biochemie und Physiologie der Pflanzen, 1975, 167(2): 191-194. DOI:10.1016/S0015-3796(17)30778-3 |
[23] | Lu Y, Li X R, He M Z, et al. Seedlings growth and antioxidative enzymes activities in leaves under heavy metal stress differ between two desert plants: a perennial (Peganum harmala) and an annual (Halogeton glomeratus) grass[J]. Acta Physiologiae Plantarum, 2010, 32(3): 583-590. DOI:10.1007/s11738-009-0436-7 |
[24] | Aebi H. Catalase in vitro[J]. Methods in Enzymology, 1984, 105: 121-126. |
[25] | Heath R L, Packer L. Photoperoxidation in isolated chloroplasts. Ⅰ. Kinetics and stoichiometry of fatty acid peroxidation[J]. Archives of Biochemistry and Biophysic, 1968, 125(1): 189-198. DOI:10.1016/0003-9861(68)90654-1 |
[26] | Anderson M E. Determination of glutathione and glutathione disulfide in biological samples[J]. Methods in Enzymology, 1985, 113: 548-555. |
[27] | Lu Q, Weng Y N, You Y, et al. Inoculation with abscisic acid (ABA)-catabolizing bacteria can improve phytoextraction of heavy metal in contaminated soil[J]. Environmental Pollution, 2020, 257. DOI:10.1016/j.envpol.2019.113497 |
[28] | Yang L Q, Liu B L, Lu Y Y, et al. Bioavailability of cadmium to celery (Apium graveolens L.) grown in acidic and Cd-contaminated greenhouse soil as affected by the application of hydroxyapatite with different particle sizes[J]. Chemosphere, 2020, 240. DOI:10.1016/j.chemosphere.2019.124916 |
[29] |
李红霞. 根外追肥对紫丁香叶片几种渗透调节物质含量的影响[J]. 江苏林业科技, 2019, 46(3): 6-9, 13. Li H X. Effect of topdressing on osmotic substance content of Syringa oblata Lindl[J]. Journal of Jiangsu Forestry Science and Technology, 2019, 46(3): 6-9, 13. DOI:10.3969/j.issn.1001-7380.2019.03.002 |
[30] | Castrillo G, Sánchez-Bermejo E, De Lorenzo L, et al. WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis[J]. The Plant Cell, 2013, 25(8): 2944-2957. DOI:10.1105/tpc.113.114009 |
[31] | Marchadier E, Hetherington A M. Involvement of two-component signalling systems in the regulation of stomatal aperture by light in Arabidopsis thaliana[J]. New Phytologist, 2014, 203(2): 462-468. DOI:10.1111/nph.12813 |
[32] | Lv Z Y, Sun W J, Jiang R, et al. Phytohormones jasmonic acid, salicylic acid, gibberellins, and abscisic acid are key mediators of plant secondary metabolites[J]. World Journal of Traditional Chinese Medicine, 2021, 7(3): 307-325. DOI:10.4103/wjtcm.wjtcm_20_21 |
[33] | Zhang H H, Xu Z S, Guo K W, et al. Toxic effects of heavy metal Cd and Zn on chlorophyll, Carotenoid metabolism and photosynthetic function in tobacco leaves revealed by physiological and proteomics analysis[J]. Ecotoxicology and Environmental Safety, 2020, 202. DOI:10.1016/j.ecoenv.2020.110856 |
[34] | Guo J K, Zhou R, Ren X H, et al. Effects of salicylic acid, Epi-brassinolide and calcium on stress alleviation and Cd accumulation in tomato plants[J]. Ecotoxicology and Environmental Safety, 2018, 157: 491-496. DOI:10.1016/j.ecoenv.2018.04.010 |
[35] | Teng Y, Yu A, Tang Y M, et al. Visualization and quantification of cadmium accumulation, chelation and antioxidation during the process of vacuolar compartmentalization in the hyperaccumulator plant Solanum nigrum L.[J]. Plant Science, 2021, 310. DOI:10.1016/j.plantsci.2021.110961 |
[36] | Yang S, Ulhassan Z, Shah A M, et al. Salicylic acid underpins silicon in ameliorating chromium toxicity in rice by modulating antioxidant defense, ion homeostasis and cellular ultrastructure[J]. Plant Physiology and Biochemistry, 2021, 166: 1001-1013. DOI:10.1016/j.plaphy.2021.07.013 |
[37] | Hediji H, Kharbech O, Massoud M B, et al. Salicylic acid mitigates cadmium toxicity in bean (Phaseolus vulgaris L.) seedlings by modulating cellular redox status[J]. Environmental and Experimental Botany, 2021, 186. DOI:10.1016/j.envexpbot.2021.104432 |
[38] | Siddiqui M H, Alamri S, Mukherjee S, et al. Molybdenum and hydrogen sulfide synergistically mitigate arsenic toxicity by modulating defense system, nitrogen and cysteine assimilation in faba bean (Vicia faba L.) seedlings[J]. Environmental Pollution, 2021, 290. DOI:10.1016/j.envpol.2021.117953 |
[39] | Kaya C. Salicylic acid-induced hydrogen sulphide improves lead stress tolerance in pepper plants by upraising the ascorbate-glutathione cycle[J]. Physiologia Plantarum, 2020, 173(1): 8-19. |
[40] | Ghori N H, Ghori T, Hayat M Q, et al. Heavy metal stress and responses in plants[J]. International Journal of Environmental Science and Technology, 2019, 16(3): 1807-1828. DOI:10.1007/s13762-019-02215-8 |
[41] | Zhu H H, Chen L, Xing W, et al. Phytohormones-induced senescence efficiently promotes the transport of cadmium from roots into shoots of plants: a novel strategy for strengthening of phytoremediation[J]. Journal of Hazardous Materials, 2020, 388. DOI:10.1016/j.jhazmat.2020.122080 |
[42] | Zhu T T, Li L Y, Duan Q X, et al. Progress in our understanding of plant responses to the stress of heavy metal cadmium[J]. Plant Signaling & Behavior, 2021, 16(1). DOI:10.1080/15592324.2020.1836884 |
[43] | Zhong W X, Xie C C, Hu D, et al. Effect of 24-epibrassinolide on reactive oxygen species and antioxidative defense systems in tall fescue plants under lead stress[J]. Ecotoxicology and Environmental Safety, 2020, 187. DOI:10.1016/j.ecoenv.2019.109831 |
[44] | Surgun-Acar Y, Zemheri-Navruz F. 24-Epibrassinolide promotes arsenic tolerance in Arabidopsis thaliana L. by altering stress responses at biochemical and molecular leve[J]. Journal of Plant Physiology, 2019, 238: 12-19. DOI:10.1016/j.jplph.2019.05.002 |
[45] | Zheng S W, Liu S B, Feng J H, et al. Overexpression of a stress response membrane protein gene OsSMP1 enhances rice tolerance to salt, cold and heavy metal stress[J]. Environmental and Experimental Botany, 2021, 182. DOI:10.1016/j.envexpbot.2020.104327 |
[46] | Alam M M, Hayat S, Ali B, et al. Effect of 28-homobrassinolide treatment on nickel toxicity in Brassica juncea[J]. Photosynthetica, 2007, 45(1): 139-142. DOI:10.1007/s11099-007-0022-4 |