环境科学  2023, Vol. 44 Issue (7): 4091-4099   PDF    
沼液还田对土壤-作物系统重金属累积的影响: Meta分析
赵奇志1,2, 杨志敏1,2, 孔凡靖1,2, 熊海灵3, 朱康文4, 陈玉成1,2     
1. 西南大学资源环境学院, 重庆 400716;
2. 农村清洁工程重庆市工程研究中心, 重庆市农用地土壤污染风险管控重点实验室, 重庆 400716;
3. 西南大学电子信息工程学院, 重庆 400715;
4. 重庆市生态环境科学研究院, 重庆 401147
摘要: 为探讨沼液还田方式、还田时长和重金属带入量等对土壤-作物重金属累积的影响, 明确重金属累积影响因素的重要性, 对41篇文献和1 972对数据进行整合分析.结果表明, 单施沼液使土壤As、Cd、Cr、Cu、Zn和作物As、Cr的累积显著提高20.5%、15.2%、25.6%、18.7%、26.3%和14.6%、39.5%, 对作物其它重金属累积作用不明显.沼液与化肥混施可显著提高8.05%和4.70%的土壤Cr和Zn的累积且降低作物对As的累积.相关分析表明, 土壤As、Cd和Cr的累积速率与沼液还田时长和土壤有机质(SOM)含量呈极显著正相关(P < 0.01), 相关系数分别为0.30、0.15、0.13和0.22、0.27、0.22, 而与土壤pH值呈极显著负相关(P < 0.01), 相关系数分别为0.16、0.13和0.11.沼液还田带入的重金属会促进土壤As、Cd、Cr和作物As、Cd、Cr、Zn的累积, 而土壤Cd、Cu和Zn的累积又会促进作物Cd、Cu和Zn的累积, 其间相关系数分别为0.45、0.58和0.42.因子重要性分析表明, 沼液还田对土壤-作物系统中重金属累积的主要因素是还田时长、SOM和土壤pH值.
关键词: 沼液      还田      土壤      作物      重金属     
Effect of Biogas Slurry Return to Field on Heavy Metal Accumulation in Soil-crop System: A Meta-analysis
ZHAO Qi-zhi1,2 , YANG Zhi-min1,2 , KONG Fan-jing1,2 , XIONG Hai-ling3 , ZHU Kang-wen4 , CHEN Yu-cheng1,2     
1. College of Resources and Environment, Southwest University, Chongqing 400716, China;
2. Key Laboratory of Agriculture Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing Engineering Research Center of Rural Cleaning, Chongqing 400716, China;
3. College of Electronic Information Engineering, Southwest University, Chongqing 400715, China;
4. Chongqing Academe of Eco-environmental Science, Chongqing 401147, China
Abstract: To investigate the effects of biogas slurry return-to-field methods, the duration of biogas slurry return to field and the amount of heavy metals brought in from biogas slurry on the accumulation of heavy metals in soil-crop systems, and the importance of factors influencing heavy metal accumulation, 41 papers and 1 972 pairs of data were integrated and analyzed. The results showed that the application of biogas slurry alone significantly increased the accumulation of As, Cd, Cr, Cu, and Zn in soil and As and Cr in crops by 20.5%, 15.2%, 25.6%, 18.7%, and 26.3% and 14.6% and 39.5%, respectively, and it had no significant effect on the accumulation of other heavy metals in crops. The combined application of biogas slurry and chemical fertilizers significantly increased the accumulation of soil Cr and Zn by 8.05% and 4.70% and decreased the accumulation of As by crops. Correlation analysis showed that the accumulation rates of soil As, Cd, and Cr were highly significantly and positively correlated (P < 0.01) with the duration of biogas slurry return to field and soil organic matter (SOM) content, with correlation coefficients of 0.30, 0.15, and 0.13 and 0.22, 0.27, and 0.22, respectively; they were highly significantly and negatively correlated (P < 0.01) with soil pH, with correlation coefficients of 0.16, 0.13, and 0.11, respectively. The heavy metals brought in by biogas slurry return to field promoted the accumulation of As, Cd, and Cr in soil and As, Cd, Cr, and Zn in crops, whereas the accumulation of Cd, Cu, and Zn in soil promoted the accumulation of Cd, Cu, and Zn in crops, with correlation coefficients of 0.45, 0.58, and 0.42, respectively. The main factors of heavy metal accumulation in the soil-crop systems were the duration of biogas slurry return to field, SOM, and soil pH.
Key words: biogas slurry      return to field      soil      crops      heavy metals     

沼气工程作为畜禽养殖业的配套设施, 既可利用畜禽粪便产气提供大量能源, 又可将其沼液、沼渣等副产物还田利用[1].沼液作为粪便厌氧发酵所得到的液态混合物, 含有丰富的N、P等营养元素和氨基酸等微生物代谢产物[2, 3].沼液还田不仅能改善土壤理化性质、提高土壤肥力、增加作物产量, 还可以减少化肥的使用[4, 5].然而, 重金属在养殖过程中随着饲料的添加进入畜禽体内, 再通过粪便排出, 造成大量重金属(As、Cd、Cr、Cu和Zn等)富存于沼液中[4, 6, 7].许多研究报道了沼液还田会导致土壤中重金属含量的累积, 进而增加土壤重金属污染风险[2, 8, 9].同时, 沼液中含有大量溶解性有机质, 长期施用沼液会降低土壤结合重金属的能力[10], 增强重金属在土壤和作物中的迁移性[11], 从而使得土壤重金属更容易被作物吸收利用, 最后通过食物链进入人体造成健康危害[12, 13].因此, 沼液安全利用是可持续畜牧业养殖和循环农业的关键.关于沼液还田方式对于土壤和作物重金属累积影响的报道发现, 沼液与化肥混施提高了作物中的Cu累积[14], 相比于沼液单施, 沼液与化肥混施降低了作物中重金属As、Cu和Zn的累积[15].高杰云等[16]研究发现, 与沼液单施相比, 沼液与化肥混施增强了土壤重金属Cr的累积, 而有研究却显示出与之相反的现象[17].一项为期8a的田间试验发现长期施用沼肥显著增强了稻田土壤和作物中重金属Cd的累积[18], 也有学者发现长期沼液灌溉没有对土壤重金属Cd含量的累积造成影响, 却导致了作物中重金属Cd的含量提高[1].对于沼液短期灌溉下的稻田土壤和作物的研究发现, 其重金属含量并无显著差异[19], 但有研究显示沼液短期灌溉下土壤和作物中重金属Cd和Zn含量显著增加, 其含量平均值超过了我国污染限制[20].另外, Wan等[21]发现施用禽粪便提高了水稻土中Cd和Pb的含量, 降低了水稻籽粒中Cd和Pb的含量.施用沼液对于不同土地利用类型下所种植的作物重金属含量影响也有差异, 有研究报道沼液施用下的小麦籽粒中Cd含量显著增加, 而水稻籽粒中Cd含量并无显著变化[1].目前存在许多关于沼液还田对土壤和作物重金属累积影响的报道, 但关于沼液还田方式、土地利用类型、还田时长、土壤性质和重金属带入量等因素对于土壤-作物重金属累积影响仍不清楚.

为此, 本文拟对沼液还田下土壤-作物系统中重金属含量已发表数据进行整合分析, 探究沼液还田方式、还田时长、土地利用类型、土壤性质和重金属带入量对土壤和作物重金属含量变化的影响, 同时分析重金属带入量、土壤重金属含量和作物重金属含量变化的相关关系, 最后通过因子重要性分析明确土壤和作物重金属累积的重要影响因素, 以期为沼液还田安全利用提供参考依据.

1 材料与方法 1.1 数据收集

通过“中国知网”与“Web of Science”两个数据库检索了截至2022年4月发表的经同行评议相关论文.在搜索文献时, 研究使用了以下关键词:沼液(biogas slurry; anaerobic digest)、土壤(soil)、作物(crop)、重金属(heavy metal; As、Cd、Cr、Cu和Zn).纳入整合分析中的研究必须满足以下标准:①数据来自大田试验且研究区域内没有工业污染.②试验处理至少应包含单施沼液、混施沼液与化肥和不施肥(CK)等3种情形.③各处理应有明确的施氮量或沼液重金属量.④舍弃无作物, 或无土壤pH值、有机质的研究.⑤表层土壤和作物中As、Cd、Cu、Cr和Zn含量中至少有一个目标变量被量化.⑥同一地点和同一年限中所观测到的数据只纳入一次, 避免数据叠加和权重加大.

数据提取时采用GetData 2.2软件用来识别图片中的数值; 由于部分研究没有报道变量的标准差(standard deviation, SD), 将给定值的10%作为SD[22], 对应于数据库中各自给定的SD均值.基于以上标准, 总共筛选出41篇经同行评议文献以及1 972个相关数据对用于整合分析, 其中8篇来自Web of Science, 33篇来自中国知网.

1.2 数据分析

通过还田方式、还田时长(土壤施用沼液开始至研究结束所用时间)和重金属带入量(沼液还田带入土壤的重金属量)对沼液还田下土壤和作物重金属累积的影响进行评估, 为了满足最大程度的组内均质化, 还田方式分为沼液单施和沼液与化肥混施, 土地利用方式分为旱地和水田.沼液还田对变量(X)的影响通过自然对数进行量化, 以表示响应比(lnRR), 其计算公式如下[23]

(1)

式中, XeXc分别表示变量X的处理组和对照组(不施肥)的均值.为了更好地显示变量的响应大小, 将响应比值转化为百分数形式[(RR-1)×100%][22], 其中, 百分数为正值时表示在沼液施用条件下目标变量增加, 反之减小.

采用Metawin 2.1软件进行随机效应Meta分析, 加权平均效应值和偏差矫正的95%置信区间(CI)是通过bootstrapping过程产生的.经过5 000次迭代[23], 得到效应值95%置信区间.计算公式如下:

(2)
(3)
(4)
(5)

式中, SeSc分别表示处理组的标准差和对照组的标准差; nenc分别表示处理组和对照组样本量; ω表示权重; meanES表示权重响应比; S(meanES)为meanES的标准误.

如果95%置信区间没有与0相交, 则认为沼液还田对目标变量(X)促进或抑制效果显著.通过分类随机效应分析比较了沼液还田方式对土壤和作物重金属含量影响的效应大小.经卡方检验P < 0.05, 则认为各组间变量的效应值均数有显著差异.同时运用SPSS 26软件分析沼液重金属带入量、土壤重金属和作物重金属变化效应值的相关性.运用Origin 2018软件在沼液还田时长对土壤重金属变化效应值进行线性拟合.

1.3 重金属影响因子重要性分析

依据袋装决策树算法以及多元无序回归理论, 利用Matlab 2016软件实现土壤和作物(蔬菜、谷物)重金属累积的影响因子重要性分析.影响因子的重要性程度越高, 其数值越大.模型拟合度(R2)越高表示重要性分析结果越可靠.其表达公式如下:

(6)

式中, x1x2x3x4x5x6x7分别表示施肥方式、作物种类、土地利用方式、土壤pH、沼液还田时长、SOM和重金属带入量, k1k2k3k4k5k6k7分别为对应变量系数, k0为常数项.其中, 将土地利用方式(水田和旱地)、施肥方式(单施和混施)和作物类型(蔬菜和谷物)进行赋值, 利用袋装决策树算法将变量与效应值进行多元回归拟合.

2 结果与讨论 2.1 还田方式和土地利用类型对土壤-作物重金属累积的影响

沼液还田方式对土壤中5种重金属含量的影响均达到了显著水平[P < 0.05, 图 1(a)].沼液单施明显促进了土壤重金属的累积, 这与之前研究的结果一致[18, 24~26].土壤As、Cd、Cr、Cu和Zn含量分别提高了20.5%、15.2%、25.6%、18.7%和26.3%, 这可能是由于沼液中的大量重金属导致.沼液混施使土壤中Cr和Zn含量分别提高8.05%和4.70%, 而As、Cd和Cu含量变化具有异质性, 说明相对于沼液单施, 沼液混施能够在一定程度上降低土壤对重金属的累积.同样, 施肥方式对于作物中As和Cr的含量的影响显著[P < 0.01, 图 1(c)].沼液单施对作物中As和Cr的累积分别提高14.6%和39.5%.有研究显示, 在不同的蔬菜系统中, 沼液灌溉使其Cr含量超过参考标准, 其中苋菜中As含量最高[27], 表明沼液灌溉会促进作物对As和Cr的吸收和累积, 这与分析结果一致.而沼液混施对作物As的累积具有一定抑制作用, 效应均值为-26.1%.这是因为沼液与化肥混施会提高土壤中有效磷的含量[28], 而土壤有效磷磷能有效地抑制作物对As的累积和吸收, 减弱As对作物的毒性[29].其次, 磷与As在作物细胞中的竞争吸附行为会降低作物对As的吸收和转运能力[30].

图 1 还田方式和土地利用方式对土壤重金属累积的影响 Fig. 1 Effects of methods of biogas slurry return to field and land use practices on soil heavy metal accumulation

土地利用类型对土壤重金属累积影响显著[P < 0.05, 图 1(b)].水田中As、Cd和Cr累积效应值分别为28.1%、20.7%和32.9%, 而旱地效应值分别为14.4%、10.6%和19.5%, 这说明与旱地相比, 沼液的施用对于水田土壤As、Cd和Cr累积效应更为明显.这主要是在淹水条件下, 土壤氧化还原电位下降, 在厌氧微生物和有机质、铁锰氧化物等的作用下, 使得土壤对重金属的固定能力增强[21, 31, 32], 从而使得土壤重金属的累积效应增强.土地利用类型对于沼液还田过程中土壤Cu和Zn含量的变化具有异质性.而其对于作物中Cu和Zn含量的变化具有显著差异[P < 0.01, 图 1(d)].沼液还田使旱地作物中Zn含量提高了28.6%, 高于水田(17.3%), 而水田作物中, Cu含量提高了81.9%, 远高于旱地(24.5%).有研究显示, 沼液长期灌溉的小麦中Zn含量的增加高于水稻中Zn含量的增加, 而Cu在水稻中含量的增加高于小麦中Cu的增加[1], 这与本研究的结果一致.

2.2 沼液还田时长和土壤有机质、pH值对土壤重金属累积的影响

沼液还田时长对于土壤As、Cd和Cr含量均具有显著影响[P < 0.01, 图 2(a)图 2(d)图 2(g)].其中, As、Cd和Cr的累积效应值随着沼液还田时长的增加呈现递增趋势, 表明沼液还田时长的增加会提高土壤中这3种金属的累积量.有研究显示, 长期施用沼液会导致土壤中重金属的累积[18], Duan等[24]研究也发现施用沼液第2年土壤中的重金属比第1年显著增加, 这与分析结果一致.

图 2 沼液还田时长、SOM和土壤pH值对土壤重金属累积的影响 Fig. 2 Effects of duration of biogas slurry return to field, SOM, and soil pH on the accumulation of heavy metals in soil

土壤有机质(SOM)含量对于土壤As、Cd和Cr累积具有显著影响[P < 0.01, 图 2(b)图 2(e)图 2(h)].SOM含量与土壤As、Cd和Cr累积效应具有正相关性, 表明SOM含量越大, 土壤As、Cd和Cr的累积量越高, 这与先前所报道的结论一致[33, 34].这是因为土壤中含有的有机质可以通过吸附和与腐殖质形成了稳定的复合物从而增强了土壤对重金属的吸附能力[27, 35, 36].而对于Cu和Zn而言, SOM含量对其在土壤中的累积并不显著, 且相关性较低[图 2(k)图 2(n)], 这可能是因为SOM是以可交换性形式保留重金属的能力的主要贡献者, 随着SOM含量的提高, 作物对土壤重金属的利用率也随之增加[37], 作物对Cu和Zn的大量吸收与土壤固定和吸附Cu和Zn的行为共同作用所导致.

土壤pH值对土壤As、Cd、Cr、Cu和Zn含量累积均有着显著影响[P < 0.05, 图 2(c)图 2(f)图 2(i)图 2(l)图 2(o)].土壤中的As、Cd和Cr含量累积变化效应值与土壤pH值具有负相关性(相关系数分别为0.16、0.13和0.11), 表明在一定pH值范围内, 土壤pH值越大, 土壤重金属相对累积量越低.一方面可能是因为随着pH值的提高, 土壤对于重金属的保持和固定能力随之提高[37], 前人研究发现, 土壤中As、Cd和Cr的含量与pH值呈正相关[27], 因此土壤受到外界影响的(大气沉降和灌溉水等)差异性降低; 另外, 在一定条件下, 随着土壤pH值的提高, 土壤中的溶解性有机质含量也会随之增加[38], 与之结合的土壤重金属的流动性和迁移性增强, 使植物更容易从土壤中吸收重金属.而As、Cd和Cr在其综合作用下导致累积量减小.尽管土壤pH值与土壤Cu和Zn的累积相关系数较低, 分别为0.03和0.07, 但仍显现负相关趋势.

2.3 沼液重金属带入量对土壤-作物系统重金属累积的影响

沼液中含有大量重金属, 还田过程中会附带其进入土壤, 导致土壤重金属含量提高[27].有研究证实, 这与带入土壤的重金属的量相关[39, 40], 通过对沼液还田量和沼液中含有的对应重金属含量计算得出沼液重金属带入量.分析结果显示, 重金属带入量与土壤As、Cd和Cr含量的变化呈现出显著正相关(P < 0.05, 图 3), 相关系数分别为0.60、0.20和0.17, 说明沼液As、Cd和Cr带入量的增加会促进土壤As、Cd和Cr的累积.而沼液还田时长的增加会导致沼液重金属带入量的增加, 这与上述还田时长的增加与土壤中As、Cd和Cr累积量呈正相关性的结论一致; 对于土壤Cu和Zn影响并不显著(P=0.54, P=0.17), 这同样与上述分析结果一致.可能由于Cu和Zn是作物所必须的营养元素[41], 土壤中沼液重金属的输入与作物的大量吸收相互作用, 对土壤中Cu和Zn的累积产生了一定的影响.

计算相关系数时,土壤和作物中重金属累积程度均用响应比表示 图 3 沼液重金属带入量对土壤-作物系统重金属累积的影响 Fig. 3 Effects of the amount of heavy metals brought in from biogas slurry on the accumulation of heavy metals in soil-crop systems

沼液重金属(As、Cd、Cr、Cu和Zn)带入量对作物中对应重金属含量均具有显著影响(P < 0.05, 图 3).随着沼液还田量的增加, 沼液As、Cd、Cr和Zn带入量提高, 作物中对应的重金属含量增加效应也随之提高, 相关系数分别为0.27、0.28、0.32和0.19, 说明沼液中As、Cd、Cr和Zn带入量的增大会促进作物中对应重金属的累积.这可能是因为沼液重金属带入量的增加的同时为土壤提供了大量无机氮源, 加速了土壤中有机质矿化作用[42], 使吸附在土壤的重金属重新释放, 导致重金属有效态的提高, 这会使作物更容易从土壤中吸收重金属, 加速在其体内的累积, 从而有利于作物从土壤中提取重金属.沼液也会向土壤提供有机化学物质, 从而影响重金属的活性, 促进作物对重金属的吸收, 有研究表明土壤重金属有效态与作物中重金属含量呈正相关[37, 43, 44].而沼液重金属带入量与作物中Cu含量变化效应值相关系数为-0.24, 表明沼液还田量的增加导致沼液重金属带入量提高的同时, 会对作物中Cu含量累积效应起到一定的抑制作用.有研究显示, 沼液施用会使土壤-水稻系统中As、Cd和Zn的迁移活性显著提高, 而Cu显著降低[24].可能是由于Cu更倾向于和稳定部分有机物结合, 大部分到达土壤中的Cu都会被土壤中的有机物保留, 流动性低, 生物有效性低[45~49].

As、Cd、Cu和Zn在土壤中含量的变化量和作物中含量的变化量呈极显著正相关(P < 0.01, 图 3), 相关系数降序排列为:Cu(0.58)>Cd(0.45)>Zn(0.42)>As(0.28).有研究显示, 施用沼肥会使土壤As、Cd、Cu和Zn的累积量提高, 进一步提高了作物中的重金属累积量[24].Tang等[1]和Zhou等[50]的研究也显示出同样的规律; 而土壤-作物系统中Cr的变化效应值相关性并不显著, 可能是相较于另外4种重金属, Cr在土壤-作物系统中的累积因子低[51, 52], Cr的迁移能力低所致[37, 53].

从沼液Cd带入量与土壤Cd含量变化效应到土壤Cd含量变化效应与作物Cd含量变化效应的相关系数呈现出增加的趋势, 说明作物Cd累积效应受土壤Cd含量变化更为敏感, Cu和Zn也是如此, 而As和Cr没有表现出同样的规律.

2.4 重金属累积影响因子重要性分析

为了解土壤和作物中重金属累积的影响因素重要性, 对土壤和作物累积重金属的影响因素进行因子重要性程度分析(表 1).沼液还田量和重金属带入量决定了土壤中重金属的累积量[2, 54], 沼液还田时间增加, 还田量提高, 重金属带入量也随之提高.在沼液还田过程中会影响SOM含量和土壤pH值[39, 55], 二者是影响土壤中的重金属固定和迁移的关键因素[27, 34, 37].结果表明, SOM对土壤重金属Cd、Cu和Zn累积的影响最大, 沼液还田时长对土壤As和Cr的累积影响最大.其次, 影响土壤As和Zn累积的因素重要性依次为土壤pH值和重金属带入量, 影响土壤Cu的依次为土壤pH值和沼液还田时长, 影响土壤Cd的依次为重金属带入量和土壤pH值, 影响土壤Cr的依次为SOM和土壤pH值.对作物重金属As和Cu的累积影响最大的是土壤pH值, 对作物Cd、Cr和Zn的累积影响最大的是沼液还田时长.长期大量施用沼液可能导致土壤重金属大量累积[2], 显著提高作物重金属累积量[24].有研究也报道了沼肥施用时间增加导致土壤和作物重金属含量增加这一现象[56, 57].通过研究太湖流域沼液灌溉下的土壤和作物中重金属含量发现, SOM和土壤pH值与土壤重金属累积有着显著的相关性, 对作物中重金属含量进行主成分分析, 发现SOM和土壤pH值对其重金属含量的影响贡献率达71.7%, 其他研究也证实了SOM和土壤pH值对于土壤和作物重金属累积的影响[58], 而长期施用沼液会影响SOM含量和土壤pH值[59~61].因此, 沼液还田时长、SOM、土壤pH值和重金属带入量对土壤和作物中重金属的累积影响至关重要.

表 1 土壤-作物系统中重金属累积影响因子重要性分析 Table 1 Analysis of the importance of factors influencing heavy metal accumulation in soil-crop systems

3 结论

(1) 沼液还田方式会影响土壤和作物重金属的累积, 沼液化肥混施相比沼液单施减缓了土壤-作物系统中重金属的累积.

(2) 沼液还田时长直接和间接地影响了土壤-作物系统重金属的累积.还田时长对土壤-作物系统中重金属As、Cd和Cr的直接影响更为明显, 而对土壤-作物系统中重金属Cu和Zn的间接影响更为明显.

(3) SOM、沼液还田时长、土壤pH值和重金属带入量是影响土壤-作物系统中重金属累积的重要因素.土壤重金属累积主要受SOM和沼液还田时长影响, 作物重金属累积主要受土壤pH值和沼液还田时长影响.

参考文献
[1] Tang Y F, Wang L Y, Carswell A, et al. Fate and transfer of heavy metals following repeated biogas slurry application in a rice-wheat crop rotation[J]. Journal of Environmental Management, 2020, 270. DOI:10.1016/j.jenvman.2020.110938
[2] Liu Q Y, Zhao Z X, Xue Z P, et al. Comprehensive risk assessment of applying biogas slurry in peanut cultivation[J]. Frontiers in Nutrition, 2021, 8. DOI:10.3389/fnut.2021.702096
[3] Bernal M P, Roig A. Nitrogen transformations in calcareous soils amended with pig slurry under aerobic incubation[J]. The Journal of Agricultural Science, 1993, 120(1): 89-97. DOI:10.1017/S0021859600073639
[4] Chang Y J, Zhao H J, Sun L H, et al. Resource utilization of biogas waste as fertilizer in China needs more inspections due to the risk of heavy metals[J]. Agriculture, 2022, 12(1). DOI:10.3390/agriculture12010072
[5] Xu W Z, Zhu Y Q, Wang X, et al. The effect of biogas slurry application on biomass production and forage quality of lolium multiflorum[J]. Sustainability, 2021, 13(7). DOI:10.3390/su13073605
[6] Nicholson F A, Chambers B J, Williams J R, et al. Heavy metal contents of livestock feeds and animal manures in England and Wales[J]. Bioresource Technology, 1999, 70(1): 23-31. DOI:10.1016/S0960-8524(99)00017-6
[7] Wang Q, Chen Z M, Zhao J, et al. Fate of heavy metals and bacterial community composition following biogas slurry application in a single rice cropping system[J]. Journal of Soils and Sediments, 2022, 22(3): 968-981. DOI:10.1007/s11368-021-03117-4
[8] Gunkel-Grillon P, Roth E, Laporte-Magoni C, et al. Effects of long term raw pig slurry inputs on nutrient and metal contamination of tropical volcanogenic soils, Uvéa Island (South Pacific)[J]. Science of the Total Environment, 2015, 533: 339-346. DOI:10.1016/j.scitotenv.2015.06.110
[9] Drescher G L, Moura-Bueno J M, Dantas M K L, et al. Copper and zinc fractions and adsorption in sandy soil with long-term pig manure application[J]. Archives of Agronomy and Soil Science, 2021. DOI:10.1080/03650340.2021.1941904
[10] Hernández D, Plaza C, Senesi N, 等. Detection of copper(Ⅱ) and zinc(Ⅱ) binding to humic acids from pig slurry and amended soils by fluorescence spectroscopy[J]. Environmental Pollution, 2006, 143(2): 212-220.
[11] Antoniadis V, Alloway B J. The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils[J]. Environmental Pollution, 2002, 117(3): 515-521. DOI:10.1016/S0269-7491(01)00172-5
[12] Ashraf S, Ali Q, Zahir Z A, et al. Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils[J]. Ecotoxicology and Environmental Safety, 2019, 174: 714-727. DOI:10.1016/j.ecoenv.2019.02.068
[13] De La Fuente C, Clemente R, Martinez J, et al. Optimization of pig slurry application to heavy metal polluted soils monitoring nitrification processes[J]. Chemosphere, 2010, 81(5): 603-610. DOI:10.1016/j.chemosphere.2010.08.026
[14] Win A T, Toyota K, Ito D, et al. Effect of two whole-crop rice (Oryza sativa L.) cultivars on methane emission and Cu and Zn uptake in a paddy field fertilized with biogas slurry[J]. Soil Science and Plant Nutrition, 2016, 62(1): 99-105. DOI:10.1080/00380768.2015.1126795
[15] 王桂良, 寇祥明, 张家宏, 等. 沼液替代化肥氮对水稻生长发育及稻米品质的影响[J]. 生态学杂志, 2018, 37(9): 2672-2679.
Wang G L, Kou X M, Zhang J H, et al. Effect of chemical fertilizer nitrogen substitution by biogas slurry on the growth and quality of rice[J]. Chinese Journal of Ecology, 2018, 37(9): 2672-2679.
[16] 高杰云, 康凌云, 严正娟, 等. 沼肥替代化肥对设施蔬菜产量和土壤养分及重金属累积的影响[J]. 农业工程学报, 2017, 33(17): 200-207.
Gao J Y, Kang L Y, Yan Z J, et al. Effects of biogas manure replacing chemical fertilizer on accumulation of nutrient and heavy metal in greenhouse vegetable soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 200-207.
[17] 宋丽芬, 孙丽英, 邵蕾, 等. 沼肥施用对油菜生长及土壤环境影响研究[J]. 中国沼气, 2017, 35(6): 83-88.
Song L F, Sun L Y, Shao L, et al. Effects of biogas manure application on rape growth and soil environment[J]. China Biogas, 2017, 35(6): 83-88.
[18] Chen Z M, Wang Q, Ma J W, et al. Fungal community composition change and heavy metal accumulation in response to the long-term application of anaerobically digested slurry in a paddy soil[J]. Ecotoxicology and Environmental Safety, 2020, 196. DOI:10.1016/j.ecoenv.2020.110453
[19] Lu J, Jiang L N, Chen D J, et al. Decontamination of anaerobically digested slurry in a paddy field ecosystem in Jiaxing region of China[J]. Agriculture, Ecosystems & Environment, 2012, 146(1): 13-22.
[20] Bian B, Lin C, Lv L. Health risk assessment of heavy metals in soil-plant system amended with biogas slurry in Taihu basin, China[J]. Environmental Science and Pollution Research, 2016, 23(17): 16955-16964. DOI:10.1007/s11356-016-6712-3
[21] Wan Y N, Huang Q Q, Wang Q, et al. Accumulation and bioavailability of heavy metals in an acid soil and their uptake by paddy rice under continuous application of chicken and swine manure[J]. Journal of Hazardous Materials, 2020, 384. DOI:10.1016/j.jhazmat.2019.121293
[22] Liu B, Wang X Z, Ma L, et al. Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China's vegetable systems: a meta-analysis[J]. Environmental Pollution, 2021, 269. DOI:10.1016/j.envpol.2020.116143
[23] Cao Y B, Wang X, Bai Z H, et al. Mitigation of ammonia, nitrous oxide and methane emissions during solid waste composting with different additives: a meta-analysis[J]. Journal of Cleaner Production, 2019, 235: 626-635. DOI:10.1016/j.jclepro.2019.06.288
[24] Duan G L, Zhang H M, Liu Y X, et al. Long-term fertilization with pig-biogas residues results in heavy metal accumulation in paddy field and rice grains in Jiaxing of China[J]. Soil Science and Plant Nutrition, 2012, 58(5): 637-646. DOI:10.1080/00380768.2012.726597
[25] Xie J Y, Li F C, Mei B. Pollution and health risk assessment of heavy metals following repeated biogas slurry application in two vegetable fields[J]. IOP Conference Series: Earth and Environmental Science, 2021, 647. DOI:10.1088/1755-1315/647/1/012209
[26] Bian B, Zhou L J, Li L, et al. Risk assessment of heavy metals in air, water, vegetables, grains, and related soils irrigated with biogas slurry in Taihu Basin, China[J]. Environmental Science and Pollution Research, 2015, 22(10): 7794-7807. DOI:10.1007/s11356-015-4292-2
[27] Bian B, Lv L, Yang D H, et al. Migration of heavy metals in vegetable farmlands amended with biogas slurry in the Taihu Basin, China[J]. Ecological Engineering, 2014, 71: 380-383. DOI:10.1016/j.ecoleng.2014.07.026
[28] 刘敏, 纪立东, 王锐, 等. 沼液配施化肥对土壤质量及作物生长的影响[J]. 中国土壤与肥料, 2022(5): 68-76.
Liu M, Ji L D, Wang R, et al. Effects of biogas slurry combined with chemical fertilizer on soil quality and crop growth[J]. Soil and Fertilizer Sciences in China, 2022(5): 68-76.
[29] Zvobgo G, Lwalabawalwalaba J, Sagonda T, et al. Phosphate alleviates arsenate toxicity by altering expression of phosphate transporters in the tolerant barley genotypes[J]. Ecotoxicology and Environmental Safety, 2018, 147: 832-839. DOI:10.1016/j.ecoenv.2017.09.043
[30] 马瑞, 王海芳, 卢静, 等. 砷对小麦苗期生长的影响及降低砷毒性的措施[J]. 农业环境科学学报, 2022, 41(8): 1660-1670.
Ma R, Wang H F, Lu J, et al. Effects of arsenic on wheat seedling growth and corresponding agronomic measures for toxicity mitigation[J]. Journal of Agro-Environment Science, 2022, 41(8): 1660-1670.
[31] Kashem M A, Singh B R. Transformations in solid phase species of metals as affected by flooding and organic matter[J]. Communications in Soil Science and Plant Analysis, 2004, 35(9-10): 1435-1456. DOI:10.1081/CSS-120037556
[32] 王亚丹, 乔冬梅, 陆红飞. 水分管理对重金属污染土壤植物修复效果的影响研究[J]. 土壤通报, 2022, 53(6): 1499-1505.
Wang Y D, Qiao D M, Lu H F. Effects of water management on phytoremediation of heavy mental Contaminated Soils[J]. Chinese Journal of Soil Science, 2022, 53(6): 1499-1505.
[33] Hettiarachchi G M, Ryan J A, Chaney R L, et al. Sorption and desorption of cadmium by different fractions of biosolids-amended soils[J]. Journal of Environmental Quality, 2003, 32(5): 1684-1693. DOI:10.2134/jeq2003.1684
[34] Antoniadis V, Robinson J S, Alloway B J. Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field[J]. Chemosphere, 2008, 71(4): 759-764. DOI:10.1016/j.chemosphere.2007.10.015
[35] Liu L N, Chen H S, Cai P, et al. Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost[J]. Journal of Hazardous Materials, 2009, 163(2-3): 563-567. DOI:10.1016/j.jhazmat.2008.07.004
[36] Zhou W X, Han G L, Liu M, et al. Vertical distribution and controlling factors exploration of Sc, V, Co, Ni, Mo and Ba in six soil profiles of the Mun River Basin, Northeast Thailand[J]. International Journal of Environmental Research and Public Health, 2020, 17(5). DOI:10.3390/ijerph17051745
[37] Zeng F R, Ali S, Zhang H T, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J]. Environmental Pollution, 2011, 159(1): 84-91. DOI:10.1016/j.envpol.2010.09.019
[38] You S J, Yin Y J, Allen H E. Partitioning of organic matter in soils: effects of pH and water/soil ratio[J]. Science of the Total Environment, 1999, 227(2-3): 155-160. DOI:10.1016/S0048-9697(99)00024-8
[39] Bian B, Wu H S, Zhou L J. Contamination and risk assessment of heavy metals in soils irrigated with biogas slurry: a case study of Taihu basin[J]. Environmental Monitoring and Assessment, 2015, 187(4). DOI:10.1007/s10661-015-4377-x
[40] 王飞, 秦方锦, 王先挺, 等. 基于MicroRespTM不同施肥方式对土壤微生物群落的影响[J]. 生态与农村环境学报, 2018, 34(7): 622-629.
Wang F, Qin F J, Wang X T, et al. Study on effects of different fertilization regimes on soil microbial community based on MicroRespTM method[J]. Journal of Ecology and Rural Environment, 2018, 34(7): 622-629.
[41] Wang X L, Sato T, Xing B S, et al. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish[J]. Science of the Total Environment, 2005, 350(1-3): 28-37. DOI:10.1016/j.scitotenv.2004.09.044
[42] Insam H, Gómez-Brandón M, Ascher J. Manure-based biogas fermentation residues-friend or foe of soil fertility?[J]. Soil Biology and Biochemistry, 2015, 84: 1-14. DOI:10.1016/j.soilbio.2015.02.006
[43] Meng J, Zhong L B, Wang L, et al. Contrasting effects of alkaline amendments on the bioavailability and uptake of Cd in rice plants in a Cd-contaminated acid paddy soil[J]. Environmental Science and Pollution Research, 2018, 25(9): 8827-8835. DOI:10.1007/s11356-017-1148-y
[44] Wang S Y, Wu W Y, Liu F, et al. Accumulation of heavy metals in soil-crop systems: a review for wheat and corn[J]. Environmental Science and Pollution Research, 2017, 24(18): 15209-15225. DOI:10.1007/s11356-017-8909-5
[45] Fernández-Calviño D, Soler-Rovira P, Polo A, et al. Influence of humified organic matter on copper behavior in acid polluted soils[J]. Environmental Pollution, 2010, 158(12): 3634-3641. DOI:10.1016/j.envpol.2010.08.005
[46] Nomeda S, Valdas P, Chen S Y, et al. Variations of metal distribution in sewage sludge composting[J]. Waste Management, 2008, 28(9): 1637-1644. DOI:10.1016/j.wasman.2007.06.022
[47] Ogiyama S, Sakamoto K, Suzuki H, et al. Accumulation of zinc and copper in an arable field after animal manure application[J]. Soil Science and Plant Nutrition, 2005, 51(6): 801-808. DOI:10.1111/j.1747-0765.2005.tb00114.x
[48] Lu D A, Wang L X, Yan B X, et al. Speciation of Cu and Zn during composting of pig manure amended with rock phosphate[J]. Waste Management, 2014, 34(8): 1529-1536.
[49] Clemente R, Escolar á, Bernal M P. Heavy metals fractionation and organic matter mineralisation in contaminated calcareous soil amended with organic materials[J]. Bioresource Technology, 2006, 97(15): 1894-1901.
[50] Zhou D M, Hao X Z, Wang Y J, et al. Copper and Zn uptake by radish and pakchoi as affected by application of livestock and poultry manures[J]. Chemosphere, 2005, 59(2): 167-175.
[51] Bian B, Wu H S, Lv L, et al. Health risk assessment of metals in food crops and related soils amended with biogas slurry in Taihu Basin: perspective from field experiment[J]. Environmental Science and Pollution Research, 2015, 22(18): 14358-14366.
[52] Hu B F, Xue J, Zhou Y, et al. Modelling bioaccumulation of heavy metals in soil-crop ecosystems and identifying its controlling factors using machine learning[J]. Environmental Pollution, 2020, 262. DOI:10.1016/j.envpol.2020.114308
[53] Luo X S, Yu S, Zhu Y G, et al. Trace metal contamination in urban soils of China[J]. Science of the Total Environment, 2012, 421.
[54] Zhou S W, Su S, Meng L, et al. Potentially toxic trace element pollution in long-term fertilized agricultural soils in China: a meta-analysis[J]. Science of the Total Environment, 2021, 789. DOI:10.1016/j.scitotenv.2021.147967
[55] Hu X, Liu H Y, Xu C Y, et al. Effect of digestate and straw combined application on maintaining rice production and paddy environment[J]. International Journal of Environmental Research and Public Health, 2021, 18(11). DOI:10.3390/ijerph18115714
[56] Hough R L, Breward N, Young S D, et al. Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations[J]. Environmental Health Perspectives, 2004, 112(2): 215-221.
[57] Brus D J, Jansen M J W. Uncertainty and sensitivity analysis of spatial predictions of heavy metals in wheat[J]. Journal of Environment Quality, 2004, 33(3): 882-890.
[58] Halim M, Conte P, Piccolo A. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances[J]. Chemosphere, 2003, 52(1): 265-275.
[59] Major J, Rondon M, Molina D, et al. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol[J]. Plant and Soil, 2010, 333(1-2): 117-128.
[60] Du Z J, Xiao Y T, Qi X B, et al. Peanut-shell biochar and biogas slurry improve soil properties in the North China Plain: a four-year field study[J]. Scientific Reports, 2018, 8. DOI:10.1038/s41598-018-31942-0
[61] Zhu Y L, Yuan G, Zhao Z H, et al. Pig farm biogas slurry can effectively reduce the pH of saline-alkali soils[J]. Environmental Technology, 2021. DOI:10.1080/09593330.2021.2003440