环境科学  2023, Vol. 44 Issue (3): 1528-1536   PDF    
高比表面硫脲改性花生壳炭的制备及对四环素和铜的吸附
闵炳坤, 李坤权     
南京农业大学工学院, 南京 210031
摘要: 以硫脲和磷酸为改性剂,通过一步碳化制备了高活性氮硫共掺杂高比表面改性花生壳炭PBC-NS.探讨了改性花生壳炭PBC-NS吸附单一与混合体系中TC/Cu(Ⅱ)吸附特性,并研究了改性对TC/Cu(Ⅱ)吸附的增强作用及机制.结果表明,改性花生壳炭PBC-NS成功引入了砒啶氮、石墨氮、C—S—C和—SH等氮硫官能团,且改性后比表面积高达1437 m2 ·g-1,比改性前提升了2.6倍.改性花生壳炭PBC-NS对单一体系TC和Cu(Ⅱ)的最大吸附量分别为585 mg ·g-1和21.2 mg ·g-1,较改性前提升2.6倍和2.7倍;且PBC-NS对混合体系中的TC和Cu(Ⅱ)的饱和吸附量较单一体系提升13 mg ·g-1和6.8 mg ·g-1.PBC-NS在4次重复使用后对TC和Cu(Ⅱ)的吸附容量仍能达到初始吸附量的66%和70%.等温拟合与现代光谱分析表明,改性使PBC-NS对TC/Cu(Ⅱ)吸附量的大幅提高主要归因于氮硫活性官能位的化学络合和高比表面引起的孔填充共同作用.结果表明硫脲/磷酸化学改性能有效提升花生壳炭对TC/Cu(Ⅱ)的吸附性能,可为混合污染高吸附性能生物炭结构调控和TC/Cu(Ⅱ)水污染吸附处理提供新思路.
关键词: 氮硫掺杂      高比表面      混合吸附      养殖废水      增强作用     
Preparation of High Specific Surface Thiourea Modified Peanut Shell Carbon and Adsorption of Tetracycline and Copper
MIN Bing-kun , LI Kun-quan     
College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
Abstract: High activity nitrogen and sulfur co-doping high specific surface-modified peanut shell carbon PBC-NS was prepared through one-step carbonization using thiourea and phosphoric acid as modifiers. The TC/Cu(Ⅱ) adsorption characteristics of peanut shell carbon in single and mixed-adsorption systems were discussed, and the enhancement effect and mechanism of modification on TC/Cu(Ⅱ) adsorption were studied. The results showed that the modified peanut shell carbon PBC-NS successfully introduced nitrogen-sulfur functional groups such as Pyridinic N, Graphitic N, C- S-C, and -SH, and the modified specific surface area was as high as 1437 m2·g-1, which was 2.6 times higher than that before modification. The maximum adsorption capacities of modified peanut shell carbon PBC-NS for single-system TC and Cu(Ⅱ) were 585 mg·g-1 and 21.2 mg·g-1, respectively, which were 2.6 times and 2.7 times higher than those before modification. The saturated adsorption capacities of TC and Cu(Ⅱ) in the system were increased by 13 mg·g-1 and 6.8 mg·g-1 compared with that in the single system. The adsorption capacity of PBC-NS for TC and Cu(Ⅱ) could still reach 66% and 70% of the initial adsorption capacity after four times of repeated use. Isotherm fitting and modern spectroscopic analysis indicated that the substantial increase in the adsorption capacity of TC/Cu(Ⅱ) on PBC-NS by modification was mainly attributed to the combined effect of chemical chelation of nitrogen-sulfur active functional sites and pore filling caused by high specific surface area. These results indicated that thiourea/phosphoric acid chemical modification could effectively improve the adsorption capacity of peanut shell carbon for TC/Cu(Ⅱ), which can provide a new idea for the structural regulation of mixed-pollution biochar with high adsorption capacity and adsorption treatment of TC/Cu(Ⅱ) water pollution.
Key words: nitrogen and sulfur co-doping      high specific surface      mixed adsorption      aquaculture wastewater      enhancement     

近年来, 随着经济水平的提高和人们对畜禽产品需求量的大幅提高, 我国规模化畜禽养殖获得了快速发展.然而, 源于规模化养殖饲料重金属添加剂和抗生素兽药残留污染的畜禽粪尿大量产生, 使养殖废水污染问题日益突出[1].四环素(TC)常用于预防和治疗畜禽疾病, 重金属铜(Cu)因具有预防畜禽疾病和促进畜禽生长的作用, 两者是畜禽饲料中常用的疾病预防和生长调节剂添加物[2, 3].然而, 饲料中的TC和Cu在进入畜禽体后, 大部分以原药或者代谢物形式通过粪尿排泄入环境[4], 造成土壤或水体污染.因而, 如何有效治理畜禽养殖废水TC和Cu污染已成为规模化绿色养殖的重要问题之一.

生物炭是一种优良的吸附剂, 原料来源广泛, 制备方法与吸附工艺简单易行, 在抗生素和重金属污染的同时治理方面具有广阔的应用潜力[5, 6].然而, 当前市售普通生物炭存在比表面积不大、孔隙结构小、孔径分布不够集中等缺陷, 利用效率较低[7]; 另一方面, 生物炭表面活性官能团是以含氧官能团为主, 化学活性位选择吸附性不强.此外, Cu离子极性强、易溶于水[8], 而TC属于疏水性弱极性有机物, 在水中溶解性极低[9], 两者理化性质截然相反, 因而, 难以实现对同一体系中共存的理化性质截然相反的抗生素和铜离子的同时高效吸附.磷酸(H3PO4)高温活化与氮硫掺杂是获得高活性孔结构和化学活性位的有效方法[10, 11]. H3PO4活化不仅能显著提高生物炭的比表面积并可优化孔径分布[12, 13].李坤权等[14, 15]研究表明, 通过磷酸活化可以制备出孔径集中在10 nm以内而比表面积高于1 500 m2·g-1的棉秆和互花米草等生物炭.氮/硫原子半径略大于碳原子, 电负性强, 掺杂于碳框架后可以有效调节多孔炭的电子性质, 赋予多孔炭更丰富的活性吸附位点[16, 17], 从而提升其对污染物的吸附性能.例如, Zhu等[18]制备氮硫共掺杂炭在60 min内对TC的去除率达到94.5%, 氮和硫的引入调节了碳晶格的电子密度, 促进生物炭对TC的吸附.汪存石等[19]研究表明, 氮硫改性可有效改善生物炭的表面特性, 使单一体系下Pb(Ⅱ)和Cd(Ⅱ)吸附量分别提高了265%和740%.然而, 关于氮硫共掺杂前后花生壳炭对于TC和Cu(Ⅱ)的单一以及混合吸附特性的比较研究还未见报道, 对TC和Cu(Ⅱ)的混合吸附机制也有待进一步探究.

花生是我国三大油料作物之一, 花生壳副产物约占花生产量的30%, 目前主要用作饲料和肥料, 高值化利用率低.基于以上分析, 以花生壳为原料, 以磷酸和硫脲为改性剂, 通过一步高温活化制备了富含氮硫官能团的高比表面花生壳生物炭吸附剂, 以静态吸附测定了TC和Cu(Ⅱ)单一与混合吸附特性, 并探讨了改性对花生壳炭吸附TC和Cu(Ⅱ)的增强作用及机制, 以期为花生壳炭高值利用和该类生物炭吸附处理四环素和重金属共存废水提供数据支持.

1 材料与方法 1.1 实验材料与主要设备

花生壳来源于江苏农场.本实验所用化学试剂均为分析纯, 购自阿拉丁试剂(上海)有限公司.pH计(PHS-25, 上海雷磁仪器)、高温管式炉(BLMT-1200, 合肥科晶有限公司)、原子吸收仪(SP-3520AA, 上海光谱仪器)、紫外-可见光分光光度计(UV-5000B, 上海精密仪器仪表有限公司)、扫描电子显微镜(Hitachi Regulus8100, 日立科学仪器)和孔径分析仪(3H-2000PM2, 北京贝士德仪器科技有限公司).

1.2 生物炭的制备

将清洗晾干的花生壳在105℃下烘干后粉碎过50目筛, 按1∶3的质量比将花生壳粉浸入浓磷酸中浸渍24 h后在105℃下烘干, 取上述烘干样20 g加入0.600 g硫脲, 搅拌均匀后放入管式炉, 在80 mL·min-1的氮气流保护下, 以2℃·min-1的升温速率升高至800℃后保温2 h, 而后冷却至室温后用去离子水反复冲洗至滤液中性, 干燥后得改性生物炭PBC-NS.未加磷酸和硫脲以纯花生壳为原料制备的花生壳炭记作PBC.

1.3 生物炭物化结构表征

比表面积(SBET)、介孔孔容(Vmes)、微孔孔容(Vmicro)和孔径分布根据低温氮气吸附等温线通过BET、BJH、H-K和DFT模型计算获得.表面化学通过红外光谱分析仪(Scientific Nicolet iS5, 美国赛默飞科技公司)和X射线光电子能谱仪(Scientific K-Alpha, 美国赛默飞科技公司)测定分析.

1.4 花生壳炭对单一溶液体系中TC和Cu(Ⅱ)的吸附实验

准确称取0.030 g烘干后的PBC和PBC-NS样品分别置入盛有50 mL初始浓度为50、100、200、250、300、400和500 mg·L-1(pH=6) TC溶液和50 mL初始浓度为3、5、10、15、20、25和30 mg·L-1 (pH=6) Cu(Ⅱ)溶液的100 mL锥形瓶中, 在30℃下以150 r·min-1振荡24 h, 立即过滤并测定滤液中剩余TC和Cu(Ⅱ)浓度, 实验重复3次.TC采用紫外-可见光分光光度法在波长355 nm处测定浓度, Cu(Ⅱ)采用火焰原子吸收光谱法在324.8 nm处测定浓度.平衡吸附量根据式(1)计算, 采用Langmuir[式(2)]和Freundlich[式(3)][20]等温吸附模型分析平衡吸附量和浓度间的关系.

(1)
(2)
(3)

式中, c0ce分别为溶液中吸附质的初始浓度和吸附平衡浓度, mg·L-1; V为溶液体积, L; m为吸附剂质量, g; qm为Langmuir最大吸附量, mg·g-1; KL为Langmuir常数, L·mg-1; KF为Freundlich吸附系数, (mg·g-1)(L·mg-1)1/n; n为Freundlich平衡常数.

1.5 花生壳炭对混合溶液体系中TC和Cu(Ⅱ)的吸附实验

取0.030 g PBC-NS加入50 mL不同初始浓度的TC (100~500 mg·L-1)和Cu(Ⅱ) (3~30 mg·L-1)的混合溶液中, 置于30℃的磁力搅拌气浴中, 在150 r·min-1下振荡24 h, 用0.45 μm滤膜过滤分离, 测定滤液中TC和Cu(Ⅱ)剩余浓度.

2 结果与讨论 2.1 改性对花生壳炭物化结构的影响 2.1.1 改性对花生壳炭孔结构的影响

改性前后花生壳炭PBC和PBC-NS的SEM如图 1所示.从中可见, PBC表面比较光滑, 存在少量的孔结构, 但比较稀疏; 而硫脲改性花生壳炭PBC-NS表面较PBC粗糙, 其表面不仅含有丰富排列紧密的圆形小颗粒堆积物, 并可以观察到大量的孔隙.由此可见, 氮硫改性后, 花生壳炭的表面特性特别是孔隙结构发生了明显变化, 改性后孔结构更发达, 这与下文通过等温氮吸脱附线表征获得的孔参数数据相吻合.

(a)PBC, (b)PBC-NS 图 1 PBC和PBC-NS的SEM照片 Fig. 1 SEM images of PBC and PBC-NS

图 2为改性前后花生壳炭的低温氮吸、脱附线和DFT孔径分布.从中可见, 在低压段(p/p0 < 0.01, 相对压力, 下同)时改性前后PBC和PBC-NS的氮吸附容量均迅速上升, 但PBC-NS的氮吸附量远高于PBC; 在p/p0>0.4时, 2种炭的氮吸附线快速升高, 且改性后的花生壳炭PBC-NS吸附升速更快, 并出现吸、脱附线分离, 说明PBC和PBC-NS中均含有微孔和介孔结构[21], 且后者的微孔和介孔含量更高.通过BET、BJH和H-K模型计算出的PBC和PBC-NS比表面积、微孔孔容、介孔孔容、孔径分别为: 389 m2·g-1、0.109 cm3·g-1、0.313 cm3·g-1、3.723 nm和1 437 m2·g-1、0.378 cm3·g-1、1.038 cm3·g-1、3.216 nm.相比于改性前, 改性花生壳炭PBC-NS比表面积、微孔和介孔分别提升了2.69、2.47和2.32倍, 这可能是由于活化剂H3PO4在高温时促进了花生壳中生物质纤维素和木质素等高分子键的断裂反应[22], 过量的磷酸通过交联反应在生物炭中形成磷酸盐和多磷酸盐键[23], 在洗涤脱除后在生物炭中形成大量孔隙; 同时, 改性剂硫脲在高温下分解产生氨气和硫化氢, 可与炭框架边缘缺陷碳或氧原子反应, 在生物炭中嵌入氮硫官能位的同时, 也形成了更多的孔隙[24].从图 2(b)中PBC和PBC-NS的DFT全孔分布可以看出, PBC-NS含有更为丰富的微孔和介孔, 并且孔径主要集中在0.5~4.0 nm范围内, 这和氮吸脱附曲线结果一致.

图 2 PBC和PBC-NS氮气吸、脱附等温线和孔径分布 Fig. 2 PBC and PBC-NS nitrogen adsorption and desorption isotherms and pore size distributions

2.1.2 改性对花生壳炭表面化学的影响

图 3为改性前后花生壳炭PBC和PBC-NS的FTIR红外光谱图.从中可见, PBC和PBC-NS在3 430、2 899、1 720、1 420和1 079 cm-1处存在明显的特征吸收峰, 其中3 430 cm-1处的强吸收峰对应于炭样品中的游离O—H和N—H拉伸振动[25], 2 917 cm-1处的对称吸附特征峰归因于脂肪族结构中的C—H伸缩振动所致[26], 1 720 cm-1处吸收峰可能由酮、醛、内酯或羧基中的C=O伸缩振动造成[27], 1 420 cm-1处吸收峰可以归因于C—H拉伸[28], 而1 079 cm-1处的特征峰可能由C—O伸缩振动引起[29].相比于PBC, 改性炭PBC-NS在1 079 cm-1处吸收峰的谱带较窄, 可能是改性后花生壳炭中的缺陷氧原子被氮原子取代所致[30]. 在1 145、1 587和1 560 cm-1处, 改性炭PBC-NS出现了新的吸收峰, 且1 587 cm-1处吸收峰较强, 说明改性在花生壳炭中引入了新的官能团:其中1 145 cm-1和1 587 cm-1处峰的谱带较宽, 可能是硫脲引入后掺杂的C—S或C—N基团特征峰[31, 32]; 1 560 cm-1处的吸收峰可能是由C=N伸缩振动引起[33].这些新生成的N/S特征吸附峰的出现, 说明经硫脲改性后, 氮硫活性位成功键入花生壳炭的碳结构框架中.

图 3 PBC和PBC-NS的FTIR分析 Fig. 3 FTIR analysis of PBC and PBC-NS

图 4为改性前后花生壳炭的XPS全谱图.从中可见改性后花生壳炭PBC-NS在163.5 eV和400.1 eV处出现明显的S 2p和N 1s峰, 经计算可得PBC-NS表面氮和硫原子占比分别为2.97%和0.3%, 进一步表明改性后硫脲中的氮硫原子已掺杂入花生壳炭的碳晶框架结构中, 这与红外光谱表征结果一致.

图 4 PBC和PBC-NS的XPS全谱图 Fig. 4 XPS full spectrum of PBC and PBC-NS

2.2 改性对花生壳炭吸附溶液中TC和Cu(Ⅱ)的影响 2.2.1 改性对花生壳炭吸附单一溶液体系中TC和Cu(Ⅱ)的影响

改性前后花生壳炭对溶液中单一TC和Cu(Ⅱ)的吸附等温线如图 5所示.从中可见, 改性后花生壳炭PBC-NS对TC的平衡吸附量为585 mg·g-1, 较改性前花生壳炭PBC提高了3.6倍; 改性花生壳炭对Cu(Ⅱ)的平衡吸附量为21.2 mg·g-1[图 5(b)], 较改性前提高3.7倍, 这说明改性显著提升了花生壳炭对TC和Cu(Ⅱ)吸附性能.结合前述比表面积, 可以计算出改性前后PBC和PBC-NS对TC单位面积吸附量为0.422 mg·m-2和0.407 mg·m-2, 对Cu(Ⅱ)单位面积吸附量为0.014 mg·m-2和0.015 mg·m-2, 改性后花生壳炭PBC-NS对TC单位面积吸附变小, 而对Cu(Ⅱ)单位面积吸附量变大, 表明改性后氮硫官能团的掺入有利于增强Cu(Ⅱ)的吸附而不利于TC的吸附.综上分析, 可以推测改性花生壳炭PBC-NS对TC的吸附主要是由于改性后比表面积的增大, 而对Cu(Ⅱ)吸附作用增强来源于比表面积的增大和化学官能团的掺入.

图 5 PBC和PBC-NS吸附TC和Cu(Ⅱ)的吸附等温线 Fig. 5 Adsorption isotherms of TC and Cu(Ⅱ) adsorbed on PBC and PBC-NS

进一步采用Langmuir和Freundlich等温线模型对吸附数据进行拟合, 结果如表 1所示.从中可见, 改性花生壳炭PBC-NS对溶液中单一TC的Langmuir和Freundlich拟合系数R2值超过0.95, 说明TC在PBC-NS上的吸附既有多分子层的物理吸附, 也存在单分子层的化学吸附[34].而改性花生壳炭PBC-NS对溶液中纯Cu(Ⅱ)吸附的Langmuir拟合系数为0.993, 略大于其Freundlich拟合系数, 说明PBC-NS对单一体系中TC的吸附更倾向于Langmuir的均质单分子层吸附, 而不是非均质的Freundlich吸附.

表 1 PBC-NS单一吸附TC和Cu(Ⅱ)的拟合等温线模型参数 Table 1 Fitting isotherm model parameters of single adsorption of TC and Cu(Ⅱ) on PBC-NS

2.2.2 改性花生壳炭对单一/混合TC/Cu(Ⅱ)体系中TC和Cu(Ⅱ)的吸附性能比较

图 6为改性花生壳炭PBC-NS吸附TC/Cu(Ⅱ)混合体系中TC和Cu(Ⅱ)的吸附等温线.从中可见, 在TC/Cu(Ⅱ)混合溶液中, PBC-NS对TC/Cu(Ⅱ)的吸附量随初始浓度的增加而增加, 并能较好地符合Langmuir和Freundlich等温线模型.与单一体系吸附相比, PBC-NS对TC/Cu(Ⅱ)混合吸附体系中Cu(Ⅱ)的饱和吸附量高达28 mg·g-1, 较单一体系中Cu(Ⅱ)吸附量增长了32%, 这可能归因于PBC-NS对TC/Cu(Ⅱ)吸附的增强作用存在协同机制, 即TC的存在使Cu(Ⅱ)吸附在PBC-NS表面上, 这可能是因为TC分子结构中包含有许多与金属阳离子结合的位点[35], 其中TC分子较低层处的1, 3-二酮的两个单烯醇最易与Cu(Ⅱ)螯合形成六元环从而促进对Cu(Ⅱ)的吸附[36]; 对TC的饱和吸附量也从单一体系中的585 mg·g-1升高到混合体系中的598 mg·g-1, 这可能是由于Cu(Ⅱ)能够在两个TC分子或TC分子与花生壳炭间形成“离子桥”从而促进PBC-NS对TC的吸附, Zhou等[37]在研究TC和Cu(Ⅱ)在木屑生物炭上的吸附行为时也发现了类似的结果.上述结果表明, 本研究制备的改性花生壳炭PBC-NS对单一和混合体系中的TC和Cu(Ⅱ)均有高的吸附量, 表明该花生壳炭在单一和混合TC/Cu(Ⅱ)废水吸附处理中均有良好的应用潜力.

图 6 PBC-NS混合吸附TC和Cu(Ⅱ)的吸附等温线 Fig. 6 Mixed adsorption isotherms of TC and Cu(Ⅱ) on PBC-NS

改性花生壳炭PBC-NS对TC/Cu(Ⅱ)混合体系中TC和Cu(Ⅱ)的Langmuir和Freundlich等温线模型拟合参数如表 2所示.PBC-NS对混合体系中TC的Langmuir拟合相关系数(R2)小于Freundlich, 而对混合体系中Cu(Ⅱ)的Langmuir拟合相关系数(R2)大于Freundlich, 这意味着在TC/Cu(Ⅱ)混合体系下, PBC-NS对Cu(Ⅱ)的吸附以均质的单分子层吸附为主, 而对TC的吸附更倾向于非均质的多分子层吸附.

表 2 PBC-NS混合吸附TC和Cu(Ⅱ)的拟合等温线模型参数 Table 2 Fitting isotherm model parameters of PBC-NS mixed adsorption of TC and Cu(Ⅱ)

2.2.3 再生性能

为了研究PBC-NS在TC/Cu(Ⅱ)混合体系中吸附的可重复使用性, 依次使用0.1 mol·L-1 HNO3溶液和0.2 mol·L-1 NaOH溶液解析Cu(Ⅱ)/TC吸附饱和的PBC-NS.结果表明, PBC-NS对Cu(Ⅱ)和TC的饱和吸附量随着循环次数的增加而略有降低, 但经过4次循环后, PBC-NS对Cu(Ⅱ)和TC的饱和吸附量仍然达到初始饱和吸附量的66%和70%(图 7), 表明该材料具有良好的再生性能.而且, 该部分不可逆的物理解吸附主要是由于PBC-NS对TC的化学吸附造成的, 可通过过硫酸盐催化氧化降解实现完全再生[38, 39], 课题组正在开展对Cu(Ⅱ)和TC饱和吸附PBC-NS材料通过前述的物理与过硫酸盐催化氧化联合再生, 该研究数据另文发表.

图 7 PBC-NS的再生性能 Fig. 7 Regeneration performance of PBC-NS

2.3 改性对花生壳炭TC和Cu(Ⅱ)吸附的增强作用分析

结合改性前后花生壳炭的比表面积及其对单一/混合吸附体系中TC和Cu(Ⅱ)的饱和吸附量, 可以计算出花生壳炭PBC对单一体系中TC和Cu(Ⅱ)单位面积吸附量为0.422 mg·m-2和0.014 4 mg·m-2, 而改性后花生壳炭PBC-NS对单一/混合吸附体系中TC的单位面积吸附量为0.407 mg·m-2和0.416 mg·m-2, 对Cu(Ⅱ)的单位面积吸附量为0.015 mg·m-2和0.019 mg·m-2.改性后, 花生壳炭PBC-NS对单一/混合体系中TC单位面积吸附量变小, 而对Cu(Ⅱ)单位面积吸附量变大, 表明改性后花生壳炭PBC-NS对TC吸附能力的增大主要归因于比表面积的增大, 而对Cu(Ⅱ)的吸附量的增强由比表面积的增大和氮硫官能活性位引入的共同作用所致.

采用FTIR和XPS进一步分析改性花生壳炭PBC-NS中氮/硫官能团的引入对Cu(Ⅱ)增强吸附的可能化学机制.与未吸附TC/Cu(Ⅱ)的PBC-NS的FTIR红外光谱图相比(图 8), 吸附TC/Cu(Ⅱ)饱和后的PBC-NS的FTIR红外光谱图存在如下变化:2 899 cm-1处的峰偏移至2 917 cm-1处, 表明PBC-NS对TC的吸附过程中可能存在着疏水作用[40]; 1 587和1 145 cm-1处的峰分别偏移至1 597和1 153 cm-1, 意味着氮、硫基团可能与Cu(Ⅱ)之间发生了络合反应[41]; 1 153和1 597 cm-1处吸附峰变强, 可能归因于改性花生壳炭中引入的含氮基团与TC形成了氢键所致[42], 吸附TC/Cu(Ⅱ)后的材料在580~620 cm-1处的峰应为Cu—N和Cu—S的特征峰[43].

图 8 PBC-NS及其吸附TC和Cu(Ⅱ)后的FTIR光谱 Fig. 8 PBC-NS and its FTIR spectra after adsorption of TC and Cu(Ⅱ)

对吸附TC/Cu(Ⅱ)前后改性花生壳炭PBC-NS的XPS光谱进行分析, 图 9(a)为吸附Cu(Ⅱ)/TC后的PBC-NS的Cu 2p谱图, 新出现的两Cu 2p峰位于933.3和953.1 eV处, 分别对应Cu—N和Cu—S, 经分峰拟合可知Cu—N和Cu—S的含量分别为81.37%和18.63%, 说明改性花生壳炭PBC-NS中的氮官能团相比于硫官能团, 在Cu(Ⅱ)增强吸附中发挥更关键的作用.进一步分析图 9(b)图 9(c)中的N 1s精细谱图, 吸附Cu(Ⅱ)后的PBC-NS样品砒啶氮占比从17.16%降至9.81%, 可能是由于Cu(Ⅱ)的空轨道共享了PBC-NS砒啶官能团中氮原子的孤对电子, 形成了稳定的Cu—N配合物所致[44].在先前的研究中, Meng等[45]也指出Cu(Ⅱ)可能与砒啶氮产生配位作用.如图 9(d)图 9(e)中的S 2p精细谱图所示, 吸附Cu(Ⅱ)后的PBC-NS的C—S—C官能团占比从73.67%降至68.45%, 意味着C—S—C在PBC-NS的Cu(Ⅱ)增强吸附中也可能发挥了作用.

百分数为每个官能团所占比例 图 9 改性花生壳炭吸附TC/Cu(Ⅱ)前后的XPS谱图 Fig. 9 XPS spectra of modified peanut shell carbon before and after adsorption of TC/Cu(Ⅱ)

综合上述分析, 改性花生壳炭PBC-NS对Cu(Ⅱ)的增强吸附来源于比表面积增大产生的物理吸附和氮硫官能团活性位嵌入化学吸附的共同作用所致, 且化学吸附力主要归因于砒啶氮和C—S—C与Cu(Ⅱ)的络合配位作用.PBC-NS对TC和Cu(Ⅱ)吸附可能的主要机制如图 10所示.

图 10 改性花生壳炭PBC-NS对TC/Cu(Ⅱ)可能的主要吸附机制 Fig. 10 Possible main adsorption mechanism of modified peanut shell PBC-NS on TC/Cu(Ⅱ)

3 结论

(1) 硫脲改性成功在花生壳炭上引入了砒啶氮、石墨氮、C—S—C和—SH等氮硫官能团, 且改性后比表面积比改性前提升了2.6倍, 高达1 437 m2·g-1.

(2) 静态吸附实验表明, 改性花生壳炭PBC-NS对单一体系中TC和Cu(Ⅱ)的最大吸附量分别为585 mg·g-1和21.2 mg·g-1, 是未改性花生壳炭PBC吸附量的3.6倍和3.7倍.特别值得注意的是, 改性花生壳炭PBC-NS对TC和Cu(Ⅱ)混合体系中的TC和Cu(Ⅱ)最大吸附量没有降低反而增大, 特别是Cu(Ⅱ)的吸附量相比于单一体系中有明显提高(约32%).

(3) PBC-NS在4次重复使用后对TC和Cu(Ⅱ)的吸附容量仍能达到初始吸附量的66%和70%, 表现出很高的可再生性.

(4) 改性对花生壳炭PBC-NS吸附TC和Cu(Ⅱ)的增强作用不同, 对TC是来自于比表面积增大的孔填充机制, 而对Cu(Ⅱ)是来自于氮硫活性官能位嵌入的化学络合和比表面积增大的孔填充作用.

参考文献
[1] 赵伟, 范增增, 杨新萍. 水平潜流人工湿地对畜禽养殖废水中特征污染物的去除[J]. 环境科学, 2021, 42(12): 5865-5875.
Zhao W, Fan Z Z, Yang X P. Removal of characteristic pollutants in livestock wastewater by horizontal subsurface flow constructed wetlands[J]. Environmental Science, 2021, 42(12): 5865-5875.
[2] 徐晋, 马一凡, 姚国庆, 等. KOH活化小麦秸秆生物炭对废水中四环素的高效去除[J]. 环境科学, 2022, 43(12): 5635-5646.
Xu J, Ma Y F, Yao G Q, et al. Effect of KOH activation on the properties of biochar and its adsorption behavior on tetracycline removal from aqueous solution[J]. Environmental Science, 2022, 43(12): 5635-5646. DOI:10.13227/j.hjkx.202201253
[3] Li H M, Zhang N, Guo X, et al. Summary of the treatment technology of heavy metals in livestock and poultry breeding waste[J]. IOP Conference Series: Earth and Environmental Science, 2020, 508. DOI:10.1088/1755-1315/508/1/012018
[4] Tian R Q, Li C X, Xie S Y, et al. Preparation of biochar via pyrolysis at laboratory and pilot scales to remove antibiotics and immobilize heavy metals in livestock feces[J]. Journal of Soils and Sediments, 2019, 19(7): 2891-2902. DOI:10.1007/s11368-019-02350-2
[5] Ajiboye T O, Oyewo O A, Onwudiwe D C. Simultaneous removal of organics and heavy metals from industrial wastewater: a review[J]. Chemosphere, 2020, 262. DOI:10.1016/j.chemosphere.2020.128379
[6] Hu B W, Ai Y J, Jin J, et al. Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials[J]. Biochar, 2020, 2(1): 47-64. DOI:10.1007/s42773-020-00044-4
[7] Li Y C, Xing B, Wang X L, et al. Nitrogen-doped hierarchical porous biochar derived from corn stalks for phenol-enhanced adsorption[J]. Energy & Fuels, 2019, 33(12): 12459-12468.
[8] Khademian E, Saleh E, Sanaeepur H, et al. A systematic review on carbohydrate biopolymers for adsorptive remediation of copper ions from aqueous environments-Part B: isotherms, thermokinetics and reusability[J]. Science of the Total Environment, 2021, 754. DOI:10.1016/j.scitotenv.2020.142048
[9] Dai Y J, Liu M, Li J J, et al. A review on pollution situation and treatment methods of tetracycline in groundwater[J]. Separation Science and Technology, 2020, 55(5): 1005-1021. DOI:10.1080/01496395.2019.1577445
[10] Ren X H, Guo H H, Ma X X, et al. Improved interfacial floatability of superhydrophobic and compressive S, N co-doped graphene aerogel by electrostatic spraying for highly efficient organic pollutants recovery from water[J]. Applied Surface Science, 2018, 457: 780-788. DOI:10.1016/j.apsusc.2018.06.289
[11] Boudrahem N, Aissani-Benissad F, Boudrahem F, et al. Preparation and characterization of activated carbon developed from cotton cloth residue activated with phosphoric acid: adsorption of clofibric acid[J]. Water Science & Technology, 2020, 82(11): 2513-2524.
[12] Li X P, Wang C B, Tian J N, et al. Comparison of adsorption properties for cadmium removal from aqueous solution by Enteromorpha prolifera biochar modified with different chemical reagents[J]. Environmental Research, 2020, 186. DOI:10.1016/j.envres.2020.109502
[13] Meng Q M, Zhang Y L, Meng D, et al. Removal of sulfadiazine from aqueous solution by in-situ activated biochar derived from cotton shell[J]. Environmental Research, 2020, 191. DOI:10.1016/j.envres.2020.110104
[14] 李坤权, 郑正, 张继彪, 等. 磷酸活化植物基活性炭对水溶液中铅的吸附[J]. 环境工程学报, 2010, 4(6): 1238-1242.
Li K Q, Zheng Z, Zhang J B, et al. Adsorption of lead ions onto activated carbon prepared from bio-plant stems activation with H3PO4[J]. Chinese Journal of Environmental Engineering, 2010, 4(6): 1238-1242.
[15] 李坤权, 李烨, 郑正, 等. 窄孔径中孔棉秆活性炭的制备与性能表征[J]. 环境化学, 2013, 32(11): 2134-2141.
Li K Q, Li Y, Zheng Z, et al. Preparation characterization and adsorption performance of mesoporous cotton stalk activated carbon with narrow pore size distribution[J]. Environmental Chemistry, 2013, 32(11): 2134-2141. DOI:10.7524/j.issn.0254-6108.2013.11.017
[16] Park J H, Wang J J, Zhou B Y, et al. Removing mercury from aqueous solution using sulfurized biochar and associated mechanisms[J]. Environmental Pollution, 2019, 244: 627-635. DOI:10.1016/j.envpol.2018.10.069
[17] Leng L J, Liu R F, Xu S Y, et al. An overview of sulfur-functional groups in biochar from pyrolysis of biomass[J]. Journal of Environmental Chemical Engineering, 2022, 10(2). DOI:10.1016/j.jece.2022.107185
[18] Zhu K, Shen Y Q, Hou J M, et al. One-step synthesis of nitrogen and sulfur co-doped mesoporous graphite-like carbon nanosheets as a bifunctional material for tetracycline removal via adsorption and catalytic degradation processes: performance and mechanism[J]. Chemical Engineering Journal, 2021, 412. DOI:10.1016/j.cej.2021.128521
[19] 汪存石, 何敏霞, 周峰, 等. 胺硫改性生物炭对水溶液中不同重金属离子的吸附特性及吸附稳定性[J]. 环境科学, 2021, 42(2): 874-882.
Wang C S, He M X, Zhou F, et al. Heavy metal ion adsorption properties and stability of amine-sulfur modified biochar in aqueous solution[J]. Environmental Science, 2021, 42(2): 874-882.
[20] Alafnan S, Awotunde A, Glatz G, et al. Langmuir adsorption isotherm in unconventional resources: Applicability and limitations[J]. Journal of Petroleum Science and Engineering, 2021, 207. DOI:10.1016/j.petrol.2021.109172
[21] Lan D W, Chen M Y, Liu Y C, et al. Preparation and characterization of high value-added activated carbon derived from biowaste walnut shell by KOH activation for supercapacitor electrode[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(21): 18541-18553. DOI:10.1007/s10854-020-04398-0
[22] 左宋林. 磷酸活化法活性炭孔隙结构的调控机制[J]. 新型炭材料, 2018, 33(4): 289-302.
Zuo S L. A review of the control of pore texture of phosphoric acid-activated carbons[J]. New Carbon Materials, 2018, 33(4): 289-302.
[23] Yang H P, Chen P A, Chen W, et al. Insight into the formation mechanism of N, P co-doped mesoporous biochar from H3PO4 activation and NH3 modification of biomass[J]. Fuel Processing Technology, 2022, 230. DOI:10.1016/j.fuproc.2022.107215
[24] Xing B, Dong J W, Yang G, et al. An insight into N, S-codoped activated carbon for the catalytic persulfate oxidation of organic pollutions in water: effect of surface functionalization[J]. Applied Catalysis A: General, 2020, 602. DOI:10.1016/j.apcata.2020.117714
[25] Fan Y H, Wang H, Deng L Y, et al. Enhanced adsorption of Pb(Ⅱ) by nitrogen and phosphorus co-doped biochar derived from Camellia oleifera shells[J]. Environmental Research, 2020, 191. DOI:10.1016/j.envres.2020.110030
[26] Jiang S Y, Yan L L, Wang R K, et al. Recyclable nitrogen-doped biochar via low-temperature pyrolysis for enhanced lead(Ⅱ) removal[J]. Chemosphere, 2022, 286. DOI:10.1016/j.chemosphere.2021.131666
[27] Li X N, Zhu X B, Zhu Y C, et al. Porous nitrogen-doped carbon vegetable-sponges with enhanced lithium storage performance[J]. Carbon, 2014, 69: 515-524. DOI:10.1016/j.carbon.2013.12.059
[28] Pan J, Deng H W, Du Z Y, et al. Design of nitrogen-phosphorus-doped biochar and its lead adsorption performance[J]. Environmental Science and Pollution Research, 2022, 29(19): 28984-28994. DOI:10.1007/s11356-021-17335-3
[29] Feng Y P, Huynh K A, Xie Z J, et al. Heteroaggregation and sedimentation of graphene oxide with hematite colloids: influence of water constituents and impact on tetracycline adsorption[J]. Science of the Total Environment, 2019, 647: 708-715. DOI:10.1016/j.scitotenv.2018.08.046
[30] Yu W C, Lian F, Cui G N, et al. N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution[J]. Chemosphere, 2018, 193: 8-16. DOI:10.1016/j.chemosphere.2017.10.134
[31] Mood S H, Ayiania M, Cao H L, et al. Nitrogen and magnesium co-doped biochar for phosphate adsorption[J]. Biomass Conversion and Biorefinery, 2021. DOI:10.1007/S13399-021-01404-1
[32] Tian H, Guo J R, Pang Z L, et al. A sulfur, nitrogen dual-doped porous graphene nanohybrid for ultraselective Hg(Ⅱ) separation over Pb(Ⅱ) and Cu(Ⅱ)[J]. Nanoscale, 2020, 12(31): 16543-16555.
[33] Yu J H, Li X, Cui Z X, et al. Tailoring in-situ N, O, P, S-doped soybean-derived porous carbon with ultrahigh capacitance in both acidic and alkaline media[J]. Renewable Energy, 2021, 163: 375-385.
[34] Guo R S, Yan L L, Rao P H, et al. Nitrogen and sulfur co-doped biochar derived from peanut shell with enhanced adsorption capacity for diethyl phthalate[J]. Environmental Pollution, 2020, 258. DOI:10.1016/j.envpol.2019.113674
[35] Feng Y P, Chen G, Zhang Y J, et al. Superhigh co-adsorption of tetracycline and copper by the ultrathin g-C3N4 modified graphene oxide hydrogels[J]. Journal of Hazardous Materials, 2022, 424. DOI:10.1016/j.jhazmat.2021.127362
[36] 林陆健, 汤帅, 孙璇, 等. 铅离子和四环素在微塑料表面的吸附机理与协同效应[J]. 环境科学学报, 2021, 41(10): 4022-4031.
Lin L J, Tang S, Shu X, et al. Adsorption of Pb(Ⅱ) ions and tetracycline onto microplastics: Interaction mechanisms and synergistic effects[J]. Acta Scientiae Circumstantiae, 2021, 41(10): 4022-4031.
[37] Zhou Y Y, Liu X C, Xiang Y J, et al. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling[J]. Bioresource Technology, 2017, 245: 266-273.
[38] Pi Z J, Hou K J, Yao F B, et al. In-situ regeneration of tetracycline-saturated hierarchical porous carbon by peroxydisulfate oxidation process: Performance, mechanism and application[J]. Chemical Engineering Journal, 2022, 427. DOI:10.1016/j.cej.2021.131749
[39] Zeng S Q, Kan E. Thermally enhanced adsorption and persulfate oxidation-driven regeneration on FeCl3-activated biochar for removal of microcystin-LR in water[J]. Chemosphere, 2022, 286. DOI:10.1016/j.chemosphere.2021.131950
[40] Lin L J, Tang S, Wang X S, et al. Accumulation mechanism of tetracycline hydrochloride from aqueous solutions by nylon microplastics[J]. Environmental Technology & Innovation, 2020, 18. DOI:10.1016/j.eti.2020.100750
[41] 毕景望, 单锐, 韩静, 等. 改性西瓜皮生物炭的制备及其对Pb(Ⅱ)的吸附特性[J]. 环境科学, 2020, 41(4): 1770-1778.
Bi J W, Shan R, Han J, et al. Preparation of modified watermelon biochar and its adsorption properties for Pb(Ⅱ)[J]. Environmental Science, 2020, 41(4): 1770-1778.
[42] Nguyen V T, Nguyen T B, Chen C W, et al. Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground[J]. Bioresource Technology, 2019, 284: 197-203.
[43] Mousavi S A, Mehrpooya M. Fabrication of copper centered metal organic framework and nitrogen, sulfur dual doped graphene oxide composite as a novel electrocatalyst for oxygen reduction reaction[J]. Energy, 2021, 214. DOI:10.1016/j.energy.2020.119053
[44] Deng Y C, Tang L, Zeng G M, et al. Insight into highly efficient simultaneous photocatalytic removal of Cr(Ⅵ) and 2, 4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: performance and reaction mechanism[J]. Applied Catalysis B: Environmental, 2017, 203: 343-354.
[45] Meng X, Hu R. Nitrogen/phosphorus enriched biochar with enhanced porosity activated by guanidine phosphate for efficient passivation of Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ)[J]. Journal of Molecular Liquids, 2021, 323. DOI:10.1016/j.molliq.2020.115071