2. 中北大学化学工程与技术学院, 太原 030051
2. School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
抗生素过量使用与处理不当极易导致其在水、土壤和大气环境中残留[1, 2], 进入自然环境后发生生物和非生物转化(如光解和水解等)并引发生态与健康风险[3~5].理解抗生素及其衍生物在环境中的化学归趋和生物效应显得尤为重要[6, 7].甲氧苄啶(trimethoprim, TMP)是一种与磺胺类药物联用的抗生素[8], 据报道饮用水、市政污水和活性污泥中均检测出TMP残留, 地表水样本中ρ(TMP)可达10 ng·L-1以上[9~11], 在海水养殖场中甚至达到6 044.36 ng·L-1[12], 同时土壤和沉积物中亦检出不同程度TMP残留[13, 14].抗生素进入各种环境介质, 不仅残留水平有差异, 相应的环境行为也有很大不同[15], 所经历的光降解过程不完全一致.例如, Sirtori等[16]比较了TMP在海水和纯水中的光降解, 发现与纯水相比, 海水中TMP的降解路径不同, 矿化速率和降解产物种类数量显著降低.Michael等[17]考察了TMP在不同水质(去离子水、天然淡水、模拟废水和实际废水)中的降解, 结果表明4种体系中TMP光解途径和产物存在明显差异.Koba等[18]研究了3种抗生素在12种不同类型土壤中的降解行为, 发现抗生素的降解速率取决于土壤性质, 土壤类型与抗生素环境降解行为之间存在高度依赖性.到目前为止, 尽管已确认环境介质对污染物光解行为有较大影响, 但对TMP在不同环境介质中光化学行为及其毒性效应变化仍缺乏足够认识.
进入环境的抗生素药物在太阳光等可见光照射下半衰期普遍较长, 例如TMP在水中半衰期约为30 d[19], 土壤中的半衰期甚至长达半年[20, 21], 考虑到自然环境下光解容易受光照强度、温度和湿度等气候因素的干扰, 因此如何模拟自然环境快速评价TMP在不同介质中光解行为是该研究领域的难点.近年来石墨相氮化碳(g-C3N4)作为一种非金属和生物相容性半导体, 被用于可见光驱动分解水、环境净化与抑肿瘤等[22, 23].同时, g-C3N4也是一种温和的光催化剂, 可用于促进TMP等抗生素的降解, 铁、银和钨等掺杂有利于提高降解速率[24, 25]. Ding等[26]基于高岭土和作者前期基于金属氧化物[27]设计的恒温恒湿模拟可见光环境, 已用于快速考察土壤和颗粒物体系中砷的光化学转化行为.基于此, 本研究在恒温恒湿和氙灯模拟自然可见光环境, 借助g-C3N4加速TMP在水、大气颗粒物和土壤中的光降解行为研究, 揭示TMP光解前后的毒性变化, 以期为抗生素进入环境后的生态健康风险评估和污染管控提供基础数据.
1 材料与方法 1.1 材料TMP购自上海阿拉丁生化科技股份有限公司(纯度≥98%); 对苯醌(p-Benzoquinone, PBQ)、叔丁醇(Tert Butyl Alcohol, TBA)、EDTA-Na2和无水乙醇均为分析纯, 购于国药试剂有限责任公司.斜生栅藻购自中国科学院武汉淡水藻种库.SOD、CAT和ROS试剂盒购自南京建成生物工程研究所.实验过程用水由Milli-Q Synergy系统提供.
本实验所用大气颗粒物PM2.5和表层土壤均采集于太原市北郊(N37°59′43″, E112°27′46″). PM2.5采样时间为2020年6月1~15日, 收集每日08:00至次日06:00颗粒物于玻璃纤维滤膜上(KC-120H, 青岛崂山电子), 将采集好的滤膜用铝箔纸包好, 4℃保存, 备用.收集20 cm以下土壤样品, 经干燥、研磨、过筛(2 mm)后备用.所有采集的颗粒物和过筛后土壤样品均于121℃高压蒸汽灭菌2 h, 用于后续光照实验, 经分析上述PM2.5和土壤样本中均未检出TMP.
1.2 g-C3N4制备g-C3N4的制备过程参考文献[28]:首先将尿素研磨粉碎后转入坩埚中, 置于马弗炉(SKGL-1200, 上海矩晶)中升温至550℃, 煅烧2 h后得到g-C3N4粗粉.取1 g上述样品分散于无水甲醇(100 mL)中, 超声4 h(80 MHz), 经离心和过滤, 在60℃真空干燥12 h, 最后得到浅白色超细g-C3N4粉末.
1.3 TMP在水、大气颗粒物和土壤中的光降解TMP的光降解实验装置参考文献[27]:光照过程中保证恒温恒湿[相对湿度RH为(40±2)%, 温度为(25±2)℃], 内置氙灯光源(CEL-HXF300, 中教金源), 使灯管距离TMP水溶液或装有颗粒物、土壤的培养皿30 cm.利用HPLC(LC-5090, 浙江福立)检测光照前后样品中TMP浓度, 色谱柱为XDB-C18柱(250 mm×4.6 mm, 5 μm), 柱温30℃, 流动相为1%甲酸和甲醇(80∶20, 体积比), 流速0.5 mL·min-1, 紫外检测波长设为280 nm.黑暗条件下, 水、颗粒物和土壤样品中TMP的加标实验回收率在95.3%~104.9%.
1.3.1 TMP在水中的光降解准确移取20 mg·L-1 TMP水溶液(200 mL)于烧杯中, 分别加入TMP质量0、5、10、20和30倍的g-C3N4, 暗处静置30 min达到吸附平衡后, 将烧杯放入光降解装置进行光照, 每隔1 h移取4 mL溶液进行过滤(0.22 μm), 收集滤液采用HPLC测定光照前后水溶液中TMP浓度, 计算水相中TMP光降解率.
1.3.2 TMP在大气颗粒物PM2.5上的光降解准确称取1.0 mg TMP, 分别加入TMP质量0、5、10、20和30倍的g-C3N4超声分散于无水乙醇(5 mL)中, 再将混合液涂于PM2.5玻璃纤维滤膜上, 避光干燥3 h以除去溶剂.将上述干燥后的膜平均分成4份, 1份置于暗处, 其余3份放入装置进行光照, 分别于1、2和3 h收集样品膜, 剪碎后用10 mL无水乙醇超声提取30 min, 经0.22 μm滤头过滤, 测定滤液中TMP浓度, 方法同上.
1.3.3 TMP在土壤中的光降解将1.0 mg TMP、g-C3N4(分别为TMP质量的0、10、30、50和80倍)和500 mg灭菌土壤混合均匀, 加入无水乙醇超声分散后, 将悬浮液涂于培养皿(Φ 15 cm)上, 经真空干燥后进行光照实验, 每隔1 h收集样品, 加入无水乙醇超声提取30 min, 过滤后测定提取液中TMP浓度.
1.4 TMP光降解机制与光解产物分析采用自由基捕获实验探究不同介质中TMP的光降解机制[29].分别加入TMP质量100倍的对苯醌、叔丁醇和EDTA-Na2, 作为超氧自由基(·O2-)、羟基自由基(·OH)和空穴(h+)的清除剂, 考察添加自由基清除剂对TMP降解率的影响.
采用UHPLC-MS(Q Exactive-orbitrap, Thermo)分析TMP的光降解产物.色谱参数:C18柱(2.1 mm×100 mm), 25℃柱温, 甲醇流动相(3.0 μL·min-1), 进样量为1 μL, 检测方式为TIC.质谱参数:HESI离子源, 2.5 kV喷雾电压, 毛细管温度为320℃, 鞘气速率35 mL·min-1, 辅助气温度300℃, 速率10 mL·min-1, 采集范围50~750 m/z, 分辨率为70000 FWHM, 采集时间15 min.
1.5 TMP光降解前后对斜生栅藻的生长毒性试验选择斜生栅藻为受试生物, 考察TMP原药与其光降解产物暴露96 h后对斜生栅藻的毒性差异.TMP原药暴露浓度选择20 mg·L-1和50 mg·L-1, 光照5 h后的降解产物作为光降解组测试溶液(降解率均高于90%).
1.5.1 藻细胞密度和叶绿素含量测定斜生栅藻的培养与毒性试验依据OECD Guideline 201[30]进行.向BG11培养液(100 mL)中加入斜生栅藻液, 用无菌封口膜密封瓶口, 置于光照培养箱中进行光暗周期12 h∶12 h培养[光强1600~5000 lx, 温度(24±0.5)℃], 当藻细胞数量达对数生长期后进行TMP原药和光解产物染毒试验, 保证每组初始藻密度约为2.0×104个·mL-1.待暴露96 h后用UV-vis测定650 nm吸光度, 将原药和光降解组数据与对照组进行归一化处理, 计算相对生长率(%).参考Zhou等[31]的方法分别测定不同暴露组藻细胞提取液在649 nm和665 nm处的吸光度, 计算叶绿素a(Chla)和叶绿素b(Chlb)的含量.
1.5.2 抗氧化酶活性和ROS水平分析分别取30 mL不同处理组暴露96 h后藻液, 经离心10 min(5 500 r·min-1)倒掉上清液, 加入PBS缓冲液(pH=7.4)在冰浴研磨3 min, 于4℃离心10 min(12 000 r·min-1), 取上清液用于抗氧化酶SOD和CAT活性检测(参照试剂盒操作说明).参考李哲等[32]藻液处理方法, 利用荧光探针DCFH-DA检测藻细胞内ROS水平.
1.6 统计分析所有光降解和藻毒性试验均重复3次, 结果以平均值±SE表示, 并利用SPSS 18.0对试验组与对照组数据进行单因素方差分析和Tukey事后检验, P < 0.05时差异具有统计学意义.
2 结果与讨论 2.1 水、大气颗粒物和土壤介质中TMP的光降解速率比较在模拟恒温恒湿环境中, 考察加入g-C3N4后TMP在水、PM2.5和土壤等介质中的光降解效率.结果如图 1(a)所示, 当TMP与g-C3N4质量比从1∶5增加到1∶20, 水中TMP降解率与光照时间、g-C3N4用量呈显著正相关, TMP光照3 h的降解率从17.6%增加到89.2%, 但随g-C3N4用量继续增加, 由于溶液中固体粉末过多阻碍光线传播导致TMP降解率反而有所下降.与水介质相比, TMP在土壤和颗粒物上的降解则较为缓慢.TMP在颗粒物上的降解率也随光照时间延长而升高, 当TMP与g-C3N4质量比为1∶30时, 光照3 h降解率为35.8% [图 1(b)].与上述两种介质相比, 土壤中TMP光降解率最低, 当体系中TMP与g-C3N4质量比从1∶10增加到1∶50时, 光照3 h降解率从1.4%增加到16.9% [图 1(c)], 随后继续增加g-C3N4用量, TMP的光降解率无显著提高.上述利用g-C3N4辅助加速光降解的过程, TMP在水中的降解速率均高于其他两种介质, 水中g-C3N4与TMP能充分接触, 相对颗粒物和土壤来说具有较好的传热传质条件, 表现出较佳的加速降解效果, 而对于后两种介质来说, 由于g-C3N4与TMP的接触效率以及能量传递的局限性, 导致其降解效果略差.除此之外, 大气颗粒物/土壤(包含有机质和黏土等成分)和污染物之间可能发生相互作用影响其扩散, 进而导致TMP光降解率下降[33, 34].
![]() |
g-C3N4处理组与对照组间差异显著性水平:* P < 0.05, **P < 0.01, ***P < 0.001 图 1 g-C3N4存在下不同介质中TMP的可见光降解 Fig. 1 Photodegradation of TMP in different media under the presence of g-C3N4 |
TMP在水、大气颗粒物和土壤中光降解速率存在差异, 因此推测不同环境介质中的光降解机制可能不尽相同.通常环境污染物的光降解过程与·O2-、·OH和h+等自由基直接相关, 选择对苯醌(PBQ)、叔丁醇(TBA)和EDTA-Na2分别作为上述自由基的捕获剂, 比较不同介质中添加捕获剂对TMP降解率的影响, 结果见图 2.Wen等[22]系统总结了g-C3N4的光催化原理, 当石墨相g-C3N4吸收可见光(>420 nm)的能量, 从价带激发跃迁到导带形成还原性的光生电子(e-), 而价带形成氧化性的光生空穴(h+)[式(1)], 光生电子(e-)可将表面吸附的O2还原为·O2-[式(2)].此外, g-C3N4表面结合的水分子能捕获光生空穴转化为·OH和H+[式(3)], 经由·O2-H2O2·OH亦可产生·OH[式(4)和式(5)].
![]() |
(1) |
![]() |
(2) |
![]() |
(3) |
![]() |
(4) |
![]() |
(5) |
![]() |
自由基捕获剂处理组与对照组间差异显著性水平: *P<0.05,**P<0.01 图 2 不同介质中自由基捕获剂对TMP光降解的影响 Fig. 2 Effects of free radical scavengers on photodegradation rate of TMP in different media |
由图 2(a)可知, 在水介质自由基捕获实验中, PBQ一定程度上捕获了光生电子, 抑制了超氧自由基生成, 但也有利于光生空穴的分离、延长光量子寿命, 反而加速了TMP降解, 降解率与对照组相比增加了6.1%; 加入EDTA-Na2和TBA分别捕获h+和·OH, TMP的光降解则受到不同程度的抑制, ·OH是水相介质起主要作用的活性物种, 抑制最明显, 降解率下降了15.7%, 而h+次之.Evgenidou等[35]分别使用异丙醇和碘离子(KI)捕获·OH和h+, TMP的光降解效率也受到明显抑制.但是从图 2(b)和图 2(c)来看, 颗粒物和土壤中加入TBA捕获羟基自由基时, TMP降解率并没有受到显著抑制, 加入PBQ捕获氧自由基后TMP的降解率分别下降了13.3%和22.7%; 而加入EDTA-Na2后有利于捕获h+, 将促使价带上h+和导带上e-得到有效分离, 进而生成更多的·O2-提高了TMP降解率, 与对照组相比, 颗粒物和土壤中的降解率分别提高了16.7%和7.0%.因此在大气颗粒物和土壤介质中, ·O2-可有效地作用于有机污染物, 并参与其他ROS(如·OH和H2O2)的形成[36].
不同环境介质中TMP降解速率表现为:水>大气颗粒物>土壤, 对光照3 h后的降解产物进行液相色谱分析, 发现水相中TMP存在明显的降解产物, 而在颗粒物和土壤介质中并没有发现明显的降解产物, 这可能与TMP在颗粒物和土壤中降解率不高、产物浓度较低有关.为探究TMP在水中的光降解路径, 进一步利用UHPLC-MS对其光解产物进行分析, 推测TMP在水介质中的光解路径如图 3所示.其中光解产物P1的占比最高, 经分析为2, 4-二氨-5-(3, 4, 5-三甲氧基苯甲酰基)-嘧啶, 分子式为C14H17N4O4, 该产物也曾在Moreira等[37]的研究结果中被检出, 是甲氧苄啶自然条件下光解初期的主要转化产物.鉴于降解产物具有对光敏感的二苯甲酮结构, 可作为自由基引发剂促进TMP与其中间产物发生进一步降解, P1会转化为产物P3和P5, 再经去甲基化作用和高级氧化等过程逐步矿化[38].
![]() |
图 3 水介质中TMP光降解路径 Fig. 3 Photodegradation pathway of TMP in water |
有研究表明一定浓度TMP会引起淡水中月芽藻(Pseudokirchneriella subcapitata)、浮萍(Lemna minor)、大型蚤(Daphnia magna)和孔雀鱼(Poecilia reticulata)等水生生物的亚致死效应, 如抑制生长率、繁殖率和运动活性等[39].本文利用斜生栅藻(Scendesmus obliquus)作为受试生物, 比较了TMP原药与光解产物暴露对其生长发育的毒性.由图 4(a)可知, 与空白对照组相比, TMP原药组藻细胞生长率随浓度升高而降低, TMP浓度为20 mg·L-1时对藻生长无显著抑制, 但TMP光解产物可显著抑制藻细胞密度, 低浓度TMP(20 mg·L-1)光降解暴露组细胞生长抑制率为18.7%, 高浓度TMP(50 mg·L-1)经光照处理后抑制率可达到42.1%, 表明TMP的光解产物比原药对藻细胞生长的抑制作用更强.
![]() |
TMP降解前后暴露组与对照组间差异显著性水平:*P < 0.05, **P < 0.01, ***P < 0.001 图 4 TMP光降解前后对斜生栅藻生长率、叶绿素a和叶绿素b浓度的影响 Fig. 4 Effects of TMP and photodegradation products on growth rate, Chla, and Chlb contents of Scendesmus obliquus |
叶绿素是植物光合过程中的重要色素, 其中叶绿素a(Chla)是估算光合速率和呼吸速率的基础, 而叶绿素b(Chlb)是Chla的互补性次生叶绿素.当细胞叶绿素受到破坏时会直接影响生物的光合能力, 降低植物生长速率[40].由图 4(b)和图 4(c)可知, 与空白对照组相比, TMP原药对藻细胞叶绿素含量影响不显著, 仅在高浓度暴露组(50 mg·L-1)Chla含量降低了16.9%; 而无论高低浓度, TMP光降解产物暴露组均显著抑制叶绿素水平, 高浓度TMP(50 mg·L-1)经光照处理后Chla和Chlb含量分别为对照组的59.7%和68.5%.上述结果表明:与TMP原药相比, 光照后的降解产物可显著抑制藻细胞叶绿素的合成, 这一结果通常是由于生物体合成和代谢失衡后而引起的[41].
2.4 TMP光解前后对斜生栅藻氧化损伤的影响为探究TMP降解前后对斜生栅藻的毒性差异, 分别对染毒96 h斜生栅藻进行抗氧化酶活性(SOD、CAT酶)和活性氧(ROS)水平检测.如图 5(a)和5(b)所示, 与空白对照组相比, 低浓度TMP不会引起藻细胞SOD和CAT酶活性显著变化, 而高浓度TMP可显著诱导酶活性升高.同时发现两种浓度的TMP原药, 经过光照后的降解产物均可显著诱导藻细胞抗氧化酶活性, 并呈浓度依赖性升高趋势.高浓度TMP光解产物暴露组中藻细胞的SOD和CAT酶活性, 分别是空白对照组的1.93倍和2.31倍.生物受到污染物胁迫时, 机体内会应激产生ROS, 正常情况下生物体自身抗氧化防御系统会清除生成的ROS, 但是当细胞内氧化应激平衡被打破, 胞内不断积累的ROS会进一步诱导细胞膜、DNA和蛋白质等发生氧化损伤[42].由图 5(c)可知, 当Scendesmus obliquus暴露于TMP光降解产物96 h后, 低浓度和高浓度降解产物暴露组ROS含量均显著升高, 分别是对照组的1.74倍和2.12倍.但是在TMP光降解之前, 只有高浓度原药才会引起藻细胞氧化胁迫, 导致胞内ROS水平升高.
![]() |
TMP降解前后暴露组与对照组间差异显著性水平:*P < 0.05, **P < 0.01, ***P < 0.001 图 5 TMP光降解前后对斜生栅藻SOD、CAT酶活性和ROS水平的影响 Fig. 5 Effects of TMP and photodegradation products on SOD, CAT activity and ROS level of Scendesmus obliquus |
TMP结构中亚甲基(—CH2—)连接两个芳环, 在光照和自由基作用下容易受相邻芳烃活化而生成羰基化产物, 对斜生栅藻表现出较原药更强的毒性.Arvaniti等[43]研究发现, TMP经过声化学降解会产生部分羰基化和羟基化产物, 而这些中间产物对大型蚤(Daphnia magna)和黑头鲦鱼(Pimephales promelas)的急性毒性高于原药.Zhang等[44]研究发现TMP经过UV/PDS(过氧二硫酸盐)工艺处理后, 中间产物对青海弧菌(Vibrio qinghaiensis)的急性毒性高于原药, 同时也检出降解过程中羰基化中间产物TP 305(m/z, 305)的存在; Shim等[45]和Kang等[46]发现酚类物质经过γ射线照射后, 也会发生羰基化得到苯醌和氯氢醌等中间产物, 与原药相比其毒性也会升高.因此, 在评估环境残留TMP生态安全性时不能忽视光致羰基化产物的毒性效应.
3 结论(1) 恒温恒湿模拟可见光环境下, 基于g-C3N4快速评估了不同介质中TMP光降解行为特征, 发现水相中TMP降解最快, 其次是大气颗粒物和土壤.
(2) 自由基捕获实验结果表明, 水介质中TMP光降解主要受·OH影响, 而·O2-则是大气颗粒物和土壤介质中的主要活性物种.不同环境介质中TMP光降解路径略有差异, 水相中TMP光解可生成稳定的羰基化中间产物P1(m/z, 305), 但大气颗粒物和土壤介质中未发现该中间产物.
(3) 斜生栅藻毒性试验表明, TMP在水相中的光解产物表现出比原药更强的毒性, 可显著抑制藻细胞生长, 引起氧化胁迫.提示环境残留TMP的生态风险评估应考虑其光降解行为导致的毒性变化.
[1] | Shi J Y, Dong Y B, Shi Y Y, et al. Groundwater antibiotics and microplastics in a drinking-water source area, northern China: Occurrence, spatial distribution, risk assessment, and correlation[J]. Environmental Research, 2022, 210. DOI:10.1016/j.envres.2022.112855 |
[2] | Cecinato A, Romagnoli P, Perilli M, et al. Pharmaceutical substances in ambient particulates: a preliminary assessment[J]. Chemosphere, 2017, 183: 62-68. DOI:10.1016/j.chemosphere.2017.05.100 |
[3] | Kong M, Xing L Q, Yan R M, et al. Spatiotemporal variations and ecological risks of typical antibiotics in rivers inflowing into Taihu Lake, China[J]. Journal of Environmental Management, 2022, 309. DOI:10.1016/j.jenvman.2022.114699 |
[4] |
吴天宇, 李江, 杨爱江, 等. 赤水河流域水体抗生素污染特征及风险评价[J]. 环境科学, 2022, 43(1): 210-219. Wu T Y, Li J, Yang A J, et al. Characteristics and risk assessment of antibiotic contamination in Chishui River basin, Guizhou province, China[J]. Environmental Science, 2022, 43(1): 210-219. |
[5] | Nieto-Juárez J I, Torres-Palma R A, Botero-Coy A M, et al. Pharmaceuticals and environmental risk assessment in municipal wastewater treatment plants and rivers from Peru[J]. Environment International, 2021, 155. DOI:10.1016/j.envint.2021.106674 |
[6] |
李伟明, 鲍艳宇, 周启星. 四环素类抗生素降解途径及其主要降解产物研究进展[J]. 应用生态学报, 2012, 23(8): 2300-2308. Li W M, Bao Y Y, Zhou Q X. Degradation pathways and main degradation products of tetracycline antibiotics: research progress[J]. Chinese Journal of Applied Ecology, 2012, 23(8): 2300-2308. DOI:10.13287/j.1001-9332.2012.0312 |
[7] | Abramović B F, Uzelac M M, Armaković S J, et al. Experimental and computational study of hydrolysis and photolysis of antibiotic ceftriaxone: degradation kinetics, pathways, and toxicity[J]. Science of the Total Environment, 2021, 768. DOI:10.1016/j.scitotenv.2021.144991 |
[8] | Huovinen P, Sundstrom L, Swedberg G, et al. Trimethoprim and sulfonamide resistance[J]. Antimicrobial Agents and Chemotherapy, 1995, 39(2): 279-289. DOI:10.1128/AAC.39.2.279 |
[9] | Le T H, Ng C, Tran N H, et al. Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems[J]. Water Research, 2018, 145: 498-508. DOI:10.1016/j.watres.2018.08.060 |
[10] | Yang X, Flowers R C, Weinberg H S, et al. Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant[J]. Water Research, 2011, 45(16): 5218-5228. DOI:10.1016/j.watres.2011.07.026 |
[11] | Gumbi B P, Moodley B, Birungi G, et al. Detection and quantification of acidic drug residues in South African surface water using gas chromatography-mass spectrometry[J]. Chemosphere, 2017, 168: 1042-1050. DOI:10.1016/j.chemosphere.2016.10.105 |
[12] | Han Q F, Zhang X R, Xu X Y, et al. Antibiotics in marine aquaculture farms surrounding Laizhou Bay, Bohai Sea: distribution characteristics considering various culture modes and organism species[J]. Science of the Total Environment, 2021, 760. DOI:10.1016/j.scitotenv.2020.143863 |
[13] | Zhou L J, Ying G G, Liu S, et al. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China[J]. Science of the Total Environment, 2013, 444: 183-195. DOI:10.1016/j.scitotenv.2012.11.087 |
[14] |
唐才明, 黄秋鑫, 余以义, 等. 污泥和沉积物中微量大环内酯类、磺胺类抗生素、甲氧苄胺嘧啶和氯霉素的测定[J]. 分析化学, 2009, 37(8): 1119-1124. Tang C M, Huang Q X, Yu Y Y, et al. Multiresidue determination of sulfonamides, macrolides, trimethprim, and chloramphenicol in sewage sludge and sediment using ultrasonic extraction coupled with solid phase extraction and liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2009, 37(8): 1119-1124. DOI:10.3321/j.issn:0253-3820.2009.08.005 |
[15] | Yun S H, Jho E H, Jeong S, et al. Photodegradation of tetracycline and sulfathiazole individually and in mixtures[J]. Food and Chemical Toxicology, 2018, 116: 108-113. DOI:10.1016/j.fct.2018.03.037 |
[16] | Sirtori C, Agüera A, Gernjak W, et al. Effect of water-matrix composition on trimethoprim solar photodegradation kinetics and pathways[J]. Water Research, 2010, 44(9): 2735-2744. DOI:10.1016/j.watres.2010.02.006 |
[17] | Michael I, Hapeshi E, Osorio V, et al. Solar photocatalytic treatment of trimethoprim in four environmental matrices at a pilot scale: transformation products and ecotoxicity evaluation[J]. Science of the Total Environment, 2012, 430: 167-173. DOI:10.1016/j.scitotenv.2012.05.003 |
[18] | Koba O, Golovko O, Kodešová R, et al. Antibiotics degradation in soil: a case of clindamycin, trimethoprim, sulfamethoxazole and their transformation products[J]. Environmental Pollution, 2017, 220: 1251-1263. DOI:10.1016/j.envpol.2016.11.007 |
[19] | Giang C N D, Sebesvari Z, Renaud F, et al. Occurrence and dissipation of the antibiotics sulfamethoxazole, sulfadiazine, trimethoprim, and enrofloxacin in the Mekong Delta, Vietnam[J]. PLoS One, 2015, 10(7). DOI:10.1371/journal.pone.0131855 |
[20] | Lin K D, Gan J. Sorption and degradation of wastewater-associated non-steroidal anti-inflammatory drugs and antibiotics in soils[J]. Chemosphere, 2011, 83(3): 240-246. DOI:10.1016/j.chemosphere.2010.12.083 |
[21] | Zhang Y L, Lin S S, Dai C M, et al. Sorption-desorption and transport of trimethoprim and sulfonamide antibiotics in agricultural soil: effect of soil type, dissolved organic matter, and pH[J]. Environmental Science and Pollution Research, 2014, 21(9): 5827-5835. DOI:10.1007/s11356-014-2493-8 |
[22] | Wen J Q, Xie J, Chen X B, et al. A review on g-C3N4-based photocatalysts[J]. Applied Surface Science, 2017, 391: 72-123. DOI:10.1016/j.apsusc.2016.07.030 |
[23] | Zhang S, Gu P C, Ma R, et al. Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: a critical review[J]. Catalysis Today, 2019, 335: 65-77. DOI:10.1016/j.cattod.2018.09.013 |
[24] | Li R B, Huang J S, Cai M X, et al. Activation of peroxymonosulfate by Fe doped g-C3N4/graphene under visible light irradiation for trimethoprim degradation[J]. Journal of Hazardous Materials, 2020, 384. DOI:10.1016/j.jhazmat.2019.121435 |
[25] | Fan G D, Ning R S, Yan Z S, et al. Double photoelectron-transfer mechanism in Ag-AgCl/WO3/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for trimethoprim degradation[J]. Journal of Hazardous Materials, 2021, 403. DOI:10.1016/j.jhazmat.2020.123964 |
[26] | Ding W, Wang Y J, Yu Y T, et al. Photooxidation of arsenic(Ⅲ) to arsenic(V) on the surface of kaolinite clay[J]. Journal of Environmental Sciences, 2015, 36: 29-37. DOI:10.1016/j.jes.2015.03.017 |
[27] | Zhu N, Li Y, Jiao J H, et al. Investigating photo-driven arsenics' behavior and their glucose metabolite toxicity by the typical metallic oxides in ambient PM2.5[J]. Ecotoxicology and Environmental Safety, 2020, 191. DOI:10.1016/j.ecoenv.2020.110162 |
[28] | Zhu N, Li R Y, Zhang J, et al. Photo-degradation behavior of seven benzoylurea pesticides with C3N4 nanofilm and its aquatic impacts on Scendesmus obliquus[J]. Science of the Total Environment, 2021, 799. DOI:10.1016/j.scitotenv.2021.149470 |
[29] |
宋亚丽, 田家宇, 齐晶瑶, 等. Ag/g-C3N4可见光催化降解磺胺甲恶唑的性能及机理[J]. 环境工程学报, 2018, 12(11): 3079-3089. Song Y L, Tian J Y, Qi J Y, et al. Performance and mechanism of visible-light photodegradation of sulfamethoxazole by Ag/g-C3N4[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3079-3089. DOI:10.12030/j.cjee.201803220 |
[30] | OECD. Test No. 201: Freshwater alga and cyanobacteria, growth inhibition test, OECD Guidelines for the Testing of Chemicals, Section 2[EB/OL]. https://www.oecd.org/env/test-no-201-alga-growth-inhibition-test-9789264069923-en.htm, 2011-07-28. |
[31] | Zhou G J, Peng F Q, Zhang L J, et al. Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus[J]. Environmental Science and Pollution Research, 2012, 19(7): 2918-2929. DOI:10.1007/s11356-012-0800-9 |
[32] |
李哲, 李海波, 李英华, 等. 黑磷纳米片制备、表征及其对斜生栅藻的毒性效应[J]. 环境科学学报, 2021, 41(6): 2448-2456. Li Z, Li H B, Li Y H, et al. Preparation and characterization of black phosphorus nanosheets (BPNSs) and its toxic effects on Scenedesmus Obliquus[J]. Acta Scientiae Circumstantiae, 2021, 41(6): 2448-2456. DOI:10.13671/j.hjkxxb.2020.0430 |
[33] | El-Temsah Y S, Sevcu A, Bobcikova K, et al. DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil[J]. Chemosphere, 2016, 144: 2221-2228. DOI:10.1016/j.chemosphere.2015.10.122 |
[34] | Rachna, Rani M, Shanker U. Degradation of tricyclic polyaromatic hydrocarbons in water, soil and river sediment with a novel TiO2 based heterogeneous nanocomposite[J]. Journal of Environmental Management, 2019, 248. DOI:10.1016/j.jenvman.2019.109340 |
[35] | Evgenidou E, Chatzisalata Z, Tsevis A, et al. Photocatalytic degradation of a mixture of eight antibiotics using Cu-modified TiO2 photocatalysts: Kinetics, mineralization, antimicrobial activity elimination and disinfection[J]. Journal of Environmental Chemical Engineering, 2021, 9(4). DOI:10.1016/j.jece.2021.105295 |
[36] | Cai Z Q, Song Y G, Jin X B, et al. Highly efficient AgBr/h-MoO3 with charge separation tuning for photocatalytic degradation of trimethoprim: Mechanism insight and toxicity assessment[J]. Science of the Total Environment, 2021, 781. DOI:10.1016/j.scitotenv.2021.146754 |
[37] | Moreira F C, Garcia-Segura S, Boaventura R A R, et al. Degradation of the antibiotic trimethoprim by electrochemical advanced oxidation processes using a carbon-PTFE air-diffusion cathode and a boron-doped diamond or platinum anode[J]. Applied Catalysis B: Environmental, 2014, 160. |
[38] | Canonica S, Jans U, Stemmler K, et al. Transformation kinetics of phenols in water: photosensitization by dissolved natural organic material and aromatic ketones[J]. Environmental Science & Technology, 1995, 29(7): 1822-1831. |
[39] | De Liguoro M, Di Leva V, Bona M D, et al. Sublethal effects of trimethoprim on four freshwater organisms[J]. Ecotoxicology and Environmental Safety, 2012, 82: 114-121. DOI:10.1016/j.ecoenv.2012.05.016 |
[40] | Ashraf M, Harris P J C. Photosynthesis under stressful environments: an overview[J]. Photosynthetica, 2013, 51(2): 163-190. DOI:10.1007/s11099-013-0021-6 |
[41] | Wen Y Z, Chen H, Shen C S, et al. Enantioselectivity tuning of chiral herbicide dichlorprop by copper: roles of reactive oxygen species[J]. Environmental Science & Technology, 2011, 45(11): 4778-4784. |
[42] | Chen H, Sheng X L, Wen Y Z, et al. New insights into the effects of the herbicide imazethapyr on Cu(Ⅱ) ecotoxicity to the aquatic unicellular alga Scenedesmus obliquus[J]. Aquatic Toxicology, 2013, 140. |
[43] | Arvaniti O S, Frontistis Z, Nika M C, et al. Sonochemical degradation of trimethoprim in water matrices: effect of operating conditions, identification of transformation products and toxicity assessment[J]. Ultrasonics Sonochemistry, 2020, 67. DOI:10.1016/j.ultsonch.2020.105139 |
[44] | Zhang R C, Yang Y K, Huang C H, et al. UV/H2O2 and UV/PDS treatment of trimethoprim and sulfamethoxazole in synthetic human urine: Transformation products and toxicity[J]. Environmental Science & Technology, 2016, 50(5): 2573-2583. |
[45] | Shim S B, Jo H J, Jung J. Toxicity identification of gamma-ray treated phenol and chlorophenols[J]. Journal of Radioanalytical and Nuclear Chemistry, 2009, 280(1): 41-46. DOI:10.1007/s10967-008-7388-z |
[46] | Kang S W, Shim S B, Yoo J, et al. Effect of titanium dioxide nanoparticles on gamma-ray treatment of phenol in different matrices: implications in toxicity toward Daphnia magna[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 89(4): 893-897. DOI:10.1007/s00128-012-0759-8 |