环境科学  2022, Vol. 43 Issue (12): 5769-5777   PDF    
微碱性土壤施用烟秆生物炭与磷酸盐降低小麦籽粒镉积累
杨艳征, 张银鸽, 李畅, 扶海超, 秦世玉, 王龙, 刘亥扬, 刘红恩, 睢福庆, 赵鹏     
河南农业大学资源与环境学院, 河南省土壤污染防控与修复重点实验室, 郑州 450000
摘要: 为探究烟秆生物炭(TSB)和磷酸氢二铵(DHP)对微碱性土壤镉(Cd)迁移转化机制,通过盆栽试验调查了其施用对土壤pH、有效态Cd、Cd赋存形态和小麦Cd积累的影响.结果表明:① TSB和DHP显著降低了土壤有效态Cd含量,10.12 t·hm-2TSB可降低微碱性土壤(pH 7.8)有效态Cd含量的44%.② TSB和DHP显著改变了土壤Cd的赋存形态,6.75 t·hm-2和10.12 t·hm-2TSB分别降低可交换态Cd含量的48%和42%,分别增加铁锰氧化物结合态Cd和有机结合态Cd含量的47%~67%和22%~38%.所有处理均增加了残渣态Cd含量,以TSB和DHP配施增幅最大,为115%~217%.③ TSB和DHP显著降低小麦根系、叶片、叶鞘、茎秆、颖壳和籽粒Cd含量.10.12 t·hm-2 TSB小麦籽粒Cd含量降低56%,产量不受影响.10.12 t·hm-2TSB和DHP配施小麦可增产32%,籽粒Cd含量降低53%.结果说明在微碱性土壤上施用TSB和DHP可促进土壤Cd的形态转化,降低土壤Cd的生物有效性,降低小麦籽粒Cd积累.
关键词: 镉(Cd)      小麦      改良剂      弱碱性土壤      烟杆生物炭(TSB)      磷酸氢二铵(DHP)     
Tobacco Stem Biochar and Phosphate Application Decrease Wheat Grain Cadmium Accumulation in Alkalescent Soils
YANG Yan-zheng , ZHANG Yin-ge , LI Chang , FU Hai-chao , QIN Shi-yu , WANG Long , LIU Hai-yang , LIU Hong-en , SUI Fu-qing , ZHAO Peng     
Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resource and Environment, Henan Agricultural University, Zhengzhou 450000, China
Abstract: Soil cadmium (Cd) contamination has become a worldwide concern, and the remediation of contaminated soil is now an urgent task. Usually, the remediation of acid-contaminated soil is relatively easier than that of alkaline soils, and the remediation technologies used for acid-contaminated soil is also more developed. However, remediation technologies suitable for alkaline Cd-contaminated soil are still underdeveloped in northern China, which is also the main wheat producing area. In the present study, a pot experiment was set up to investigate the mechanism of Cd migration and transformation in alkalescent soil (pH 7.8), as affected by tobacco stem biochar (TSB) and diammonium hydrogen phosphate (DHP). TSB (6.75 t·hm-2, 10.12 t·hm-2, calculated as 2250 t soil hm-2), DHP (2.88 t·hm-2), and their combination together with the control treatment were implemented in an artificial Cd-contaminated soil (5.0 mg·kg-1), and their effects on soil pH, available Cd, Cd speciation, and Cd accumulation in wheat were investigated. The results showed that: ① the application of TSB and DHP significantly reduced soil available Cd content, and the 10.12 t·hm-2 TSB application reduced the available Cd content by 44%. ② TSB and DHP changed Cd speciation markedly; 6.75 t·hm-2/10.12 t·hm-2 TSB application decreased exchangeable Cd content by 48%-42% and increased iron manganese oxide-binding Cd content by 47%-67% and organic binding-Cd by 22%-38%, respectively. All treatments increased residual form Cd content, among which, the TSB and DHP combination treatment showed the highest increase (115%-217%). ③ All treatments significantly reduced Cd content in wheat roots, leaves, leaf sheaths, stems, glume, and grains. The 10.12 t·hm-2 TSB treatment decreased wheat grain Cd content by 56% without yield penalty. Further, combined with DHP, wheat grain Cd content was decreased by 53% with a 32% grain yield increase. Taken together, all these results showed that the application of TSB and DHP in alkalescent soils promotes Cd transformation and decreases its bioavailability and Cd accumulation in wheat grain.
Key words: Cd      wheat      amendments      alkalescent soils      tobacco stem biochar(TSB)      diammonium hydrogen phosphate(DHP)     

根据2014年调查公报显示, 全国土壤总的污染点位超标率为16.1%, 其中镉(Cd)以7.0%的点位超标率排在无机污染物的首位, 土壤污染问题不容乐观[1, 2]. 情况更糟糕的是, 调查表明土壤ω(Cd)仍以每年0.004 mg·kg-1的速度递增[3], 如果这个趋势保持不变, 仅需50 a就可使土壤平均Cd含量翻倍[1]. Cd通过植物进入食物链引起健康风险[4~6]. Chaney[7]于1980年提出了有毒元素进入食物链的“土壤-植物屏障”, 即元素本身的溶解性、向地上部分转运特性和植物毒性.与其他元素相比, 土壤中Cd有较高的溶解性和可移动性, 在植物中向地上部转运活性较高和较低的植物毒性, 使得Cd非常容易穿越“土壤-植物屏障”积累在作物可食部分, 造成健康风险[5, 8, 9].

由于Cd不是植物的必需营养元素, 植物并没有进化出专门吸收Cd的机制, Cd以搭“顺风车”的方法进入植物体内[4, 5, 10, 11]. 近年来引起广泛关注的“Cd大米”和“Cd小麦”就是Cd超标导致的.与水稻籽粒Cd超标问题同样值得关注的是[12, 13], 小麦向地上部分转运Cd的能力比水稻更高, 造成籽粒Cd容易超标[14]. 小麦对北方人群Cd暴露贡献较高, 达到11.8%以上[15]. 对于非吸烟人群来说, 超过90%的Cd都是通过食物链进入人体[4], 因此降低作物可食部分的Cd含量对保障人体健康意义重大.

通过污染土壤修复安全利用是保障我国粮食和卫生安全的重要手段[16]. 钝化剂修复具有较高的可操作性在Cd污染土壤修复中应用较好[17~21]. 常用的修复剂主要有生物炭、含磷修复剂和黏土矿物等材料[22, 23]. 生物炭可以改善土壤结构, 增加土壤养分和微生物多样性, 还可以吸附固定重金属, 是一种最有潜力的改良剂[24, 25]. 磷酸盐可以促进Cd从活性较高的弱酸提取态向活性低的残渣态转变, 增加Cd的固定, 减少植物吸收[26~28]. 生物炭和磷酸盐修复土壤重金属污染已有报道, 然而, 生物炭和磷酸盐对中国北方微碱性Cd污染土壤修复研究较少, 仍需加大研究力度. 本文在已有研究的基础上通过盆栽试验, 选用较为经济的烟秆生物炭(tobacco stem biochar, TSB)和磷酸氢二铵(diammonium hydrogen phosphate, DHP)为钝化剂, 分析不同钝化剂对土壤pH, 土壤有效态Cd含量, 小麦生物量及Cd含量的影响, 通过筛选出治理效果较好的改良剂, 以期为我国北方Cd污染土壤安全利用提供技术依据.

1 材料与方法 1.1 试验材料

供试土壤取自河南农业大学原阳县科教实践基地农田表层土壤(0~20 cm), 风干, 粉碎, 过2 mm筛. 供试土壤的基本理化性质为: pH 7.56, ω(有机质)14.54 g·kg-1, ω(碱解氮) 56.18 mg·kg-1, ω(有效磷)41.00 mg·kg-1, ω(速效钾)169.00 mg·kg-1, 总Cd未检出. 试验位于郑州市河南农业大学科教园区基地日光温室中(113.60°E, 34.87°N). 暖温带亚湿润季风气候. 年平均气温14.4℃, 7月最热, 平均27℃, 1月最冷, 平均0.1℃, 年平均降雨量632 mm, 无霜期220 d, 全年日照时间约2 400 h.

1.2 试验处理

本文采用盆栽试验, 容器选择聚乙烯塑料花盆, 高为25 cm, 直径30 cm, 每盆装土8 kg, 共6个处理(表 1), 3个重复. 其中TSB 24 g·盆-1和36 g·盆-1的用量分别相当于大田6.75 t·hm-2和10.12 t·hm-2, DHP的用量相当于大田2.88 t·hm-2.(以20 cm耕层土壤2 250 t·hm-2计).

表 1 不同处理试验设计 Table 1 Experimental treatment designing

为更好地评估改良剂的修复效果, 参照《土壤环境质量农用地土壤污染风险管控标准》(GB 15618-2018)pH>7.5时土壤的风险管控值ω(Cd)为4 mg·kg-1, 本文采用人为污染土壤ω(Cd)为5.0 mg·kg-1. 以分析纯试剂3CdSO4·8H2O (CAS号: 7790-84-3)为Cd源并以溶液形式加入土壤, 混匀, 稳定熟化30 d之后加入改良剂. 改良剂选用DHP (分析纯, CAS号: 7783-28-0, 购于国药集团)和TSB(限氧裂解法制备, 热解温度400℃, 炭化2 h). TSB的基础理化性质见表 2. 改良剂加入之后稳定14 d施入基础肥料(尿素、磷酸二氢钾和氯化钾, 均为分析纯), 用量为每kg土壤0.1 g N、0.15 g P2O5和0.15 g K2O. 磷和钾一次性施入, 氮一半基施, 一半在拔节期追施. 稳定3 d后于2019年10月4日播种小麦, 每盆20粒, 3叶期定苗6株. 小麦品种为百农207, 由河南科技学院提供.

表 2 TSB理化性质 Table 2 Physicochemical properties of biochar

1.3 测定指标与方法 1.3.1 土壤样品的处理测定

将土壤样品放在洁净牛皮纸上, 清除根系等杂物, 阴凉处风干. 研磨, 分别过10目和100目尼龙筛. 土壤基本理化性质参照土壤农化分析方法测定[29]:土壤pH测定水土质量比2.5∶1, 用FE28型号pH计(梅特勒-托利多仪器公司)测定; 土壤有机质采用重铬酸钾外加热法测定; 土壤速效磷用c(NaHCO3)0.5 mol·L-1浸提-比色法测定; 速效钾用c(NH4OAc)1 mol·L-1浸提-火焰光度计法测定; 碱解氮用c(NaOH)1 mol·L-1碱解扩散法测定.

土壤Cd形态分级采用Tessier连续提取法测定[30]; 土壤有效态Cd含量用c(DTPA) 0.005 mol·L-1+c(CaCl2)0.01 mol·L-1+c(TEA)0.1 mol·L-1混合溶液(pH, 7.30)浸提, 用原子吸收分光光度计(ZEEnit700, 德国耶拿)测定.

1.3.2 植株样品的处理与测定

小麦成熟后采集根、茎、叶、叶鞘、颖壳和籽粒样品, 70℃烘干3 d, 称重, 粉碎, 过2 mm筛. 称取0.25 g左右样品放入石墨消解管, 加入混酸(HNO3-HClO4, 87∶13, 体积比)5 mL置于石墨电热消解炉(ED54, Lab TEC)上, 按以下程序消解: 升温至60℃, 保持1 h; 升温至120℃, 保持1 h; 升温至150℃, 保持1 h; 升温至190℃, 保持1~2 h赶酸, 定容. 用原子吸收分光光度计测定Cd浓度(ZEEnit700, 德国耶拿).

1.3.3 标准品的加入与质量控制

所有样品测试过程中, 分别添加土壤成分分析标准物质(GBW07427)和小麦粉成分分析标准物质[GBW(E)100496]进行质量控制. 总体加标回收率为95%~105%, 表明测试结果准确可靠.

1.4 数据分析

采用Microsoft office 2010整理数据, Sigma plot 14绘图, 利用R进行相关性分析绘图, 利用Canoco5进行主成分分析(principal component analysis, PCA). 图中数据展示的是平均值±SD.

2 结果与分析 2.1 不同改良剂对土壤pH的影响

土壤pH可显著影响重金属的形态和有效性[1, 24~26]. 不同改良剂对土壤pH的影响如图 1所示. T2处理土壤pH显著降低, 与T1相比降低了0.43个单位; TSB T3和T4处理分别使土壤pH增加了0.08和0.23个单位, 土壤pH随着TSB用量的增加而增加, 处理间无显著性差异. T5和T6使土壤pH减少0.08~0.22个单位, 说明DHP对土壤pH值影响较大, DHP降低了土壤pH, 配合施用TSB可缓解土壤pH的下降.

不同小写字母表示统计学显著性差异, Tukey's test,P<0.05, n =3 图 1 不同改良剂处理对土壤pH的影响 Fig. 1 Effects of different treatments on soil pH

2.2 不同改良剂对土壤Cd形态的影响

所有处理均能降低土壤EX-Cd和CB-Cd含量, 其中T6降低幅度较大(图 2). T1(对照处理)中EX-Cd和CB-Cd所占比例较高, 其和为65%. 施加改良剂之后EX-Cd含量下降, OX-Cd、OC-Cd和RE-Cd含量上升.与T1相比, T3和T4降低了48%和42%的EX-Cd, 同时分别比T1增加47%~67%和22%~38%的OX-Cd和OC-Cd.与T1相比所有处理都使RE-Cd增加, T2残渣态增加68%, T3和T4均增加72%, T5和T6增加115%~217%.

EX表示可交换态, CB表示碳酸盐结合态, OX表示铁锰氧化物结合态, OC表示有机结合态, RE表示残渣态 图 2 不同改良剂对土壤Cd形态分级的影响 Fig. 2 Effects of different amendmens on soil Cd fraction

2.3 不同改良剂对土壤有效态Cd含量的影响

不同改良剂均可降低土壤有效态Cd含量(图 3). T2与T1相比土壤有效态Cd含量降低13%; TSB处理T3和T4均显著降低了土壤有效态Cd含量, 降低幅度分别为24%和44%, 其中T4处理对土壤有效态Cd含量降低幅度较大. 混施T5和T6处理显著降低了27%和35%有效态Cd含量, 所有处理中T4和T6效果最好, T3和T5次之.

不同小写字母表示统计学显著性差异,Tukey's test,P<0.05, n =3 图 3 不同改良剂处理对土壤有效Cd含量的影响 Fig. 3 Effects of different amendment treatments on soil available Cd content

2.4 不同改良剂对小麦生物量的影响

小麦总生物量是包括根系、地上部分和籽粒的总体生物量. 由图 4可知不同改良剂对小麦总生物量影响未达显著水平. 然而T6与T1相比小麦籽粒增产32%, 说明TSB和DHP的添加改良了土壤, 增加了土壤肥力, 从而提高小麦产量.

不同小写字母表示统计学显著性差异,Tukey's test,P<0. 05,n =3 图 4 不同改良剂对小麦生物量的影响 Fig. 4 Effects of different amendments on wheat biomass

2.5 不同改良剂对小麦不同部位Cd含量的影响

图 5可知, 所有处理除T2外均可显著降低小麦各部位的Cd含量. 不同部位Cd含量为:根>茎>叶>叶鞘>颖壳. T3、T4和T6处理显著降低小麦根系Cd含量, T3和T4处理效果较好, 小麦根系Cd含量降低37%~41%[图 5(a)]. T3和T4处理小麦茎Cd含量分别降低29%和39%, T5和T6处理小麦茎Cd含量降低21%和43%, T6处理降低幅度最大[图 5(b)]. T3和T4处理小麦叶片Cd含量分别降低28%和32%, T4幅度较大. T5和T6分别显著降低13%~39%的小麦叶片Cd含量[图 5(c)]. T3和T4小麦叶鞘的Cd含量分别降低38%和65%, 且T4降幅较大. 混施处理T5和T6小麦叶鞘Cd含量显著降低18%~66%[图 5(d)]. TSB T3和T4处理小麦颖壳Cd含量降低26%和41%; 混施处理T5和T6小麦颖壳Cd含量降低明显, 降幅为12%~35%[图 5(e)].

不同小写字母表示统计学显著性差异,Tukey's test,P<0.05,n =3 图 5 不同改良剂对小麦植株Cd吸收转运的影响 Fig. 5 Effects of different amendments on Cd uptake and translocation in wheat

2.6 不同改良剂对籽粒Cd含量的影响

所有处理除T2外均显著降低小麦籽粒Cd含量(图 6). TSB T3和T4处理降低小麦籽粒Cd含量的42%和56%. T5和T6处理降低了小麦籽粒Cd含量的22%和53%. 所有处理中T4处理对小麦籽粒Cd含量降幅最大.

不同小写字母表示统计学显著性差异,Tukey's test,P <0.05, n =3 图 6 不同改良剂处理对小麦籽粒Cd含量的影响 Fig. 6 Effects of different treatments on wheat grain Cd content

2.7 籽粒Cd含量影响因素分析

为了更好地理解影响小麦籽粒Cd积累的因素, 本文分析了小麦各部位和土壤不同Cd形态以及pH和有效态Cd含量之间的皮尔逊相关性. 结果表明小麦籽粒Cd含量与小麦颖壳、根系、茎秆、叶片和叶鞘等植物部位Cd含量存在极显著相关性, 与土壤中EX-Cd和有效态Cd含量有极显著相关关系. 颖壳Cd含量与根系、茎秆、叶片、叶鞘和土壤有效态Cd含量呈极显著相关关系, 与土壤pH值呈显著负相关. 茎秆Cd含量与叶片和叶鞘Cd含量以及土壤有效态Cd含量呈极显著相关关系. 叶片Cd含量与叶鞘Cd含量极显著正相关, 同时与土壤中EX-Cd、CB-Cd和土壤有效态Cd含量呈极显著正相关, 与土壤中OX-Cd和OC-Cd呈显著正相关. 土壤中CB-Cd、OX-Cd和OC-Cd含量之间呈现极显著相关关系(图 7).

蓝色表示显著正相关, 红色表示显著负相关; 不同正方形的面积表示相关性的大小, 显著性: *表示P < 0.05, **表示P < 0.01 图 7 成熟期小麦各部位Cd含量及土壤Cd含量的皮尔逊相关性分析 Fig. 7 Pearson correlation analysis of Cd concentration in different parts of wheat and soil at mature period

2.8 土壤环境因子与小麦生理指标的主成分分析

本文进一步将土壤环境因子对小麦Cd含量的影响进行了主成分分析(图 8). 第一和第二主成分分别解释了88.24%和8.42%变量变化, 两个主成分解释了96.66%的总方差. PC1与籽粒和颖壳Cd含量、CB-Cd和OX-Cd呈高度正相关, 与改良剂含量和土壤pH呈高度负相关. PC2与产量和总生物量呈高度正相关. 因此, 这两个主成分可以反映处理对土壤Cd形态和小麦Cd吸收的综合效果. 不同处理间差异较大. T1和T2主要分布在第一和第四象限, 小麦对Cd的吸收较多, T4、T5和T6主要分布在第二和第三象限, 小麦对Cd的吸收较少. 土壤pH与有效态Cd含量和根系Cd含量呈显著负相关. 施加改良剂会增加土壤pH, 降低土壤有效Cd含量, 进而减少小麦根系对Cd的吸收. 小麦籽粒、颖壳和叶片Cd含量与土壤有效Cd和水溶态Cd的相关性较好. 小麦根系Cd含量与土壤CB-Cd和OX-Cd的相关性较好. 表明不同改良剂通过改变土壤Cd而影响小麦对Cd的吸收, 这与本文前面的结果一致.

R-Cd表示小麦根系Cd含量, C-Cd表示颖壳Cd含量, G-Cd表示籽粒Cd含量, H-Cd表示茎秆Cd含量, L-Cd表示叶Cd含量, V-Cd表示叶鞘Cd含量, S-Cd表示土壤有效态Cd含量, EX-Cd表示可交换态Cd, CB-Cd表示碳酸盐结合态Cd, OX-Cd表示铁锰氧化物结合态Cd, OC-Cd表示有机结合态Cd, RE-Cd表示残渣态Cd, Ty表示改良剂含量, Yield表示小麦产量, Biomass表示小麦总生物量 图 8 土壤中环境因子与成熟期小麦生理指标的主成分分析 Fig. 8 PCA analysis between soil environment factors and physiological indexes of wheat

3 讨论 3.1 不同改良剂对土壤pH和土壤Cd的植物有效性的影响

pH值可以极大地影响土壤Cd的生物有效性[1, 31]. 有研究表明土壤pH值每下降一个单位, 土壤溶液中的Cd可增加4.5倍[32]. 因此很多研究通过提高土壤pH的方法来降低土壤Cd的有效性而降低作物可食部分的Cd积累[33~37]. 在南方酸性土壤上施用碳酸钙等碱性物料提高土壤pH值可显著降低水稻籽粒Cd含量[37], 效果可持续两年以上[33]. 我国北方受污染耕地土壤基本都是碱性或微碱性, 一般来讲土壤Cd的有效性并不高, 然而在我国北方受污染农田中小麦Cd超标问题仍然比较严重.

目前, 虽然针对北方碱性或微碱性Cd污染土壤修复已有一定研究[36, 38, 39], 总体上仍有效果不稳定和机制不明确等问题, 需加大研究力度. 本文探索了TSB和DHP在北方微碱性Cd污染土壤的修复效果. TSB增加了土壤的pH值, 这是因为生物炭本身呈碱性. 生物炭的pH值与碳化温度有关, 一般温度越高生物炭的pH值越高, 但大都呈碱性可增加土壤pH值[40]. DHP降低了土壤pH则是因为DHP中NH4+的硝化作用所致. pH值的改变可以显著影响土壤Cd的赋存形态而改变土壤Cd的植物有效性. 刘阿梅等[41]的研究发现生物炭明显提高了土壤pH值, 随添加量的增加而增大, pH值提高会增加金属离子的吸附, 减少植物的吸收. 赵晶等[42]的研究发现增施磷肥能降低土壤pH值. 周志云[43]向石灰性土壤施用磷酸改性生物炭有利于土壤Cd的固定.

3.2 不同改良剂对土壤Cd的赋存形态和植物有效性的影响

生物炭具有较大的比表面积和丰富的官能团, 可改变Cd的赋存形态而影响植物对Cd的吸收[44~48]. 通过对2009~2020年之间发表的65篇论文的分析可知, 生物炭增加土壤pH值和电导率, 平均降低42.1%的土壤可提取态Cd含量[49]. 花生壳生物炭改性后稳定性提升, 更可通过物理阻控、沉淀、共沉淀、内表面络合和离子交换等机制提高对Cd的钝化能力[50]. 亚铁酸钾改性制得的分层次多孔磁性小麦秸秆生物炭无论在水中还是在土壤中对Cd均有较好的固定效果, ω(C)为1%的添加培养60 d可增加土壤pH值, 降低土壤47.97%~61.38%可提取态Cd[44].

磷酸盐可通过对Cd的吸附沉淀影响Cd的有效性. 水环境中磷酸盐在pH 4~9的范围内均可显著降低溶液中的Cd2+浓度, pH<5的情况下形成Cd5H2(PO4)4·4H2O, 在pH=7左右形成Cd(H2PO4)2、Cd3(PO4)2和Cd5H2(PO4)4·4H2O, pH≥8.5则形成无定形磷酸Cd沉淀[51]. 有研究表明磷酸盐通过促进螯合作用显著改善多年生黑麦草Cd毒害并降低黑麦草对Cd的吸收[52]. 磷酸盐减轻植物受Cd的胁迫, 降低植物对Cd的吸收, 降低Cd向地上部分转移比例[53]. 有研究表明磷酸盐与生物炭联合施用可降低玉米对Cd的吸收, 降低玉米籽粒Cd含量[54]. Cui等[55]采用3种不同粒径磷灰石修复重金属污染土壤, 结果表明磷灰石可降低土壤中27.4%的有效态Cd. 施用磷酸盐可使土壤Cd由交换态向残渣态转化, 可降低水稻精米Cd积累的35.8%[56].

有研究发现施用改良剂后土壤Cd的可交换态和碳酸盐结合态减少, 残渣态增加[57]. 在北方微碱性土壤上施用生物炭可显著提高残渣态Cd含量, 降低土壤有效态Cd含量, 降低小麦对Cd的吸收[36]. 本文TSB显著降低水溶态Cd和碳酸盐结合态Cd含量, 增加氧化物结合态和有机结合态(图 2), 且土壤有效Cd降低24%~44%(图 3). TSB和DHP配施显著增加了氧化物结合态和有机结合态Cd含量, 降低27%~34%土壤有效态Cd含量(图 2图 3), 高剂量的TSB和DHP混施, 能进一步降低土壤态Cd. 这些结果与前人研究一致[36, 57], 表明TSB和DHP可促进北方碱性土壤上Cd的形态转化, 降低其植物有效性.

3.3 不同改良剂对小麦Cd吸收的影响

小麦作为三大主粮作物之一, 在居民日常生活中消费量很大, 保障小麦粮食卫生安全意义重大.与水稻和玉米相比, 小麦由于Cd向地上部分转移效率较高而造成籽粒容易超标[14]. 本文选取的改良剂均可降低小麦根、茎、叶和颖壳Cd含量, 且随施用量的增加而降幅增大(图 5). DHP未能显著降低小麦籽粒Cd含量(图 6), 而两者配施显著降低了小麦籽粒Cd含量(图 6), 这并不是说DHP没有发挥作用, DHP显著增加了小麦籽粒产量[图 4(b)], 说明TSB和DHP配施能够在保证产量的前提下降低小麦籽粒对Cd的积累. 张静静等[36]的研究也发现生物炭在北方微碱性土壤施用可降低小麦籽粒Cd的积累. 尾矿区受污染耕地中添加磷酸盐可显著降低对Cd的吸收[58]. 此外, 在玉米[54]、多年生黑麦草[52]、高羊茅草[53]和菠菜[35]等植物上研究也发现磷酸盐能显著降低植物对Cd的吸收, 这与本试验的结果一致.

4 结论

(1) TSB和DHP对微碱性土壤pH影响不大, 但是可降低土壤交换态和碳酸盐结合态Cd含量, 提高氧化物结合态和有机结合态Cd含量, 降低土壤Cd的生物有效性.

(2) TSB和DHP均可降低小麦籽粒Cd含量, 两者配施可保证小麦产量不受影响.

参考文献
[1] Zhao F J, Ma Y B, Zhu Y G, et al. Soil contamination in China: current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759.
[2] 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689-1692.
Chen N C, Zheng Y J, He X F, et al. Analysis of the report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 2017, 36(9): 1689-1692.
[3] Luo L, Ma Y B, Zhang S Z, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90(8): 2524-2530. DOI:10.1016/j.jenvman.2009.01.011
[4] Clemens S, Aarts M G M, Thomine S, et al. Plant science: the key to preventing slow cadmium poisoning[J]. Trends in Plant Science, 2013, 18(2): 92-99. DOI:10.1016/j.tplants.2012.08.003
[5] Clemens S, Ma J F. Toxic heavy metal and metalloid accumulation in crop plants and foods[J]. Annual Review of Plant Biology, 2016, 67: 489-512. DOI:10.1146/annurev-arplant-043015-112301
[6] Ma W Y, Sun T, Xu Y M, et al. In-situ immobilization remediation, soil aggregate distribution, and microbial community composition in weakly alkaline Cd-contaminated soils: A field study[J]. Environmental Pollution, 2022, 292. DOI:10.1016/j.envpol.2021.118327
[7] Chaney R L. Health risks associated with toxic metals in municipal sludge[A]. In: Bitton G (Ed. ). Sludge: Health Risks of Land Application[M]. Michigan: Ann Arbor Science Publications, 1980.
[8] Zhao F J, Wang P. Arsenic and cadmium accumulation in rice and mitigation strategies[J]. Plant and Soil, 2020, 446(1-2): 1-21. DOI:10.1007/s11104-019-04374-6
[9] Qu J H, Yuan Y H, Zhang X M, et al. Stabilization of lead and cadmium in soil by sulfur-iron functionalized biochar: performance, mechanisms and microbial community evolution[J]. Journal of Hazardous Materials, 2022, 425. DOI:10.1016/j.jhazmat.2021.127876
[10] Zhao F J, Tang Z, Song J J, et al. Toxic metals and metalloids: uptake, transport, detoxification, phytoremediation, and crop improvement for safer food[J]. Molecular Plant, 2022, 15(1): 27-44. DOI:10.1016/j.molp.2021.09.016
[11] Huang S, Wang P T, Yamaji N, et al. Plant nutrition for human nutrition: hints from rice research and future perspectives[J]. Molecular Plant, 2020, 13(6): 825-835. DOI:10.1016/j.molp.2020.05.007
[12] Wang M E, Chen W P, Peng C. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, Southern China[J]. Chemosphere, 2016, 144: 346-351. DOI:10.1016/j.chemosphere.2015.09.001
[13] Chen H P, Tang Z, Wang P, et al. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice[J]. Environmental Pollution, 2018, 238: 482-490. DOI:10.1016/j.envpol.2018.03.048
[14] Sui F Q, Chang J D, Tang Z, et al. Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize[J]. Plant and Soil, 2018, 433(1-2): 377-389. DOI:10.1007/s11104-018-3849-5
[15] Song Y, Wang Y B N, Mao W F, et al. Dietary cadmium exposure assessment among the Chinese population[J]. PLoS One, 2017, 12(5). DOI:10.1371/journal.pone.0177978
[16] Tang L, Hamid Y, Zehra A, et al. Endophytic inoculation coupled with soil amendment and foliar inhibitor ensure phytoremediation and Argo-production in cadmium contaminated soil under oilseed rape-rice rotation system[J]. Science of the Total Environment, 2020, 748. DOI:10.1016/j.scitotenv.2020.142481
[17] Rehman M Z U, Khalid H, Akmal F, et al. Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field[J]. Environmental Pollution, 2017, 277: 560-568.
[18] Cui H B, Bao B L, Cao Y, et al. Combined application of ferrihydrite and hydroxyapatite to immobilize soil copper, cadmium, and phosphate under flooding-drainage alternations[J]. Environmental Pollution, 2022, 292. DOI:10.1016/j.envpol.2021.118323
[19] Jiang Y, Zhou H, Gu J F, et al. Combined amendment improves soil health and brown rice quality in paddy soils moderately and highly Co-contaminated with Cd and As[J]. Environmental Pollution, 2022, 295. DOI:10.1016/j.envpol.2021.118590
[20] Palansooriya K N, Shaheen S M, Chen S S, et al. Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review[J]. Environment International, 2020, 134. DOI:10.1016/j.envint.2019.105046
[21] Liang X F, Li N, He L Z, et al. Inhibition of Cd accumulation in winter wheat (Triticum aestivum L.) grown in alkaline soil using mercapto-modified attapulgite[J]. Science of the Total Environment, 2019, 688: 818-826. DOI:10.1016/j.scitotenv.2019.06.335
[22] Lahori A H, Guo Z Y, Zhang Z Q, et al. Use of biochar as an amendment for remediation of heavy metal-contaminated soils: prospects and challenges[J]. Pedosphere, 2017, 27(6): 991-1014. DOI:10.1016/S1002-0160(17)60490-9
[23] Gong Y Y, Zhao D Y, Wang Q L. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade[J]. Water Research, 2018, 147: 440-460. DOI:10.1016/j.watres.2018.10.024
[24] Chen D, Guo H, Li R Y, et al. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice-A field study over four rice seasons in Hunan, China[J]. Science of the Total Environment, 2016, 541: 1489-1498. DOI:10.1016/j.scitotenv.2015.10.052
[25] Lan J R, Zhang S S, Dong Y Q, et al. Stabilization and passivation of multiple heavy metals in soil facilitating by pinecone-based biochar: mechanisms and microbial community evolution[J]. Journal of Hazardous Materials, 2021, 420. DOI:10.1016/j.jhazmat.2021.126588
[26] 王璨, 张煜行, 何明靖, 等. 不同土壤调理剂对土壤镉和邻-苯二甲酸酯迁移转化影响[J]. 环境科学, 2021, 42(8): 4024-4036.
Wang C, Zhang Y H, He M J, et al. Influence of different soil conditioner on the transfer and transformation of cadmium and phthalate esters in soil[J]. Environmental Science, 2021, 42(8): 4024-4036. DOI:10.13227/j.hjkx.202012067
[27] 赵庆圆, 李小明, 杨麒, 等. 磷酸盐、腐殖酸与粉煤灰联合钝化处理模拟铅镉污染土壤[J]. 环境科学, 2018, 39(1): 389-398.
Zhao Q Y, Li X M, Yang Q, et al. Passivation of simulated Pb- and Cd-contaminated soil by applying combined treatment of phosphate, humic acid, and fly ash[J]. Environmental Science, 2018, 39(1): 389-398. DOI:10.13227/j.hjkx.201705273
[28] 霍洋, 仇银燕, 周航, 等. 外源磷对镉胁迫下水稻生长及镉累积转运的影响[J]. 环境科学, 2020, 41(10): 4719-4725.
Huo Y, Qiu Y Y, Zhou H, et al. Effects of exogenous phosphorus on rice growth and cadmium accumulation and transportation under cadmium stress[J]. Environmental Science, 2020, 41(10): 4719-4725. DOI:10.13227/j.hjkx.202003048
[29] 鲍士旦. 土壤农化分析[M]. ((第三版)). 北京: 中国农业出版社, 2000.
[30] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. DOI:10.1021/ac50043a017
[31] Wang A S, Angle J S, Chaney R L, et al. Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens[J]. Plant and Soil, 2006, 281(1-2): 325-337. DOI:10.1007/s11104-005-4642-9
[32] Wang J, Wang P M, Gu Y, et al. Iron-manganese (oxyhydro)oxides, rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems[J]. Environmental Science & Technology, 2019, 53(5): 2500-2508.
[33] Chen H P, Zhang W W, Yang X P, et al. Effective methods to reduce cadmium accumulation in rice grain[J]. Chemosphere, 2018, 207: 699-707. DOI:10.1016/j.chemosphere.2018.05.143
[34] Bolan N S, Adriano D C, Mani P A, et al. Immobilization and phytoavailability of cadmium in variable charge soils. Ⅱ. Effect of lime addition[J]. Plant and Soil, 2003, 251(2): 187-198. DOI:10.1023/A:1023037706905
[35] Tan W N, Li Z A, Qiu J, et al. Lime and phosphate could reduce cadmium uptake by five vegetables commonly grown in South China[J]. Pedosphere, 2011, 21(2): 223-229. DOI:10.1016/S1002-0160(11)60121-5
[36] 张静静, 朱爽阁, 朱利楠, 等. 不同钝化剂对微碱性土壤镉、镍形态及小麦吸收的影响[J]. 环境科学, 2020, 41(1): 460-468.
Zhang J J, Zhu S G, Zhu L N, et al. Effects of different amendments on fractions and uptake by winter wheat in slightly alkaline soil contaminated by cadmium and nickel[J]. Environmental Science, 2020, 41(1): 460-468.
[37] Liao P, Huang S, Zeng Y J, et al. Liming increases yield and reduces grain cadmium concentration in rice paddies: a meta-analysis[J]. Plant and Soil, 2021, 465(1-2): 157-169. DOI:10.1007/s11104-021-05004-w
[38] 朱利楠, 化党领, 杨金康, 等. 不同改良剂对微碱性土壤镉形态及小麦吸收的影响[J]. 中国环境科学, 2020, 40(8): 3559-3566.
Zhu L N, Hua D L, Yang J K, et al. Effects of different amendments on chemical speciation and uptake by winter wheat in slightly alkaline soil contaminated by Cadmium[J]. China Environmental Science, 2020, 40(8): 3559-3566. DOI:10.3969/j.issn.1000-6923.2020.08.036
[39] 杨金康, 朱利楠, 杨秋云, 等. 硅钙镁肥和改性腐殖酸对土壤镉形态和小麦镉积累的影响[J]. 生态与农村环境学报, 2021, 37(6): 808-816.
Yang J K, Zhu L N, Yang Q Y, et al. Effects of silicon-calcium-magnesium fertilizer and modified humic acid on soil cadmium chemical fractions and accumulation in wheat[J]. Journal of Ecology and Rural Environment, 2021, 37(6): 808-816.
[40] Fu Q, Zhao H, Li H, et al. Effects of biochar application during different periods on soil structures and water retention in seasonally frozen soil areas[J]. Science of the Total Environment, 2019, 694. DOI:10.1016/j.scitotenv.2019.133732
[41] 刘阿梅, 向言词, 田代科, 等. 生物炭对植物生长发育及重金属镉污染吸收的影响[J]. 水土保持学报, 2013, 27(5): 193-198, 204.
Liu A M, Xiang Y C, Tian D K, et al. Effects of biochar on plant growth and uptake of heavy metal cadmium[J]. Journal of Soil and Water Conservation, 2013, 27(5): 193-198, 204.
[42] 赵晶, 冯文强, 秦鱼生, 等. 不同氮磷钾肥对土壤pH和镉有效性的影响[J]. 土壤学报, 2010, 47(5): 953-961.
Zhao J, Feng W Q, Qin Y S, et al. Effects of application of nitrogen, phosphorus and potassium fertilizers on soil pH and cadmium availability[J]. Acta Pedologica Sinica, 2010, 47(5): 953-961.
[43] 周志云. 磷酸改性生物炭和氯化物混施对小麦吸收铅镉的影响[D]. 郑州: 河南农业大学, 2018.
Zhou Z Y. Effects of phosphoric-acid modified biochar combined with chlorine on lead and cadmium adsorption in wheat[D]. Zhengzhou: Henan Agricultural University, 2018.
[44] Fu H C, Ma S L, Xu S J, et al. Hierarchically porous magnetic biochar as an efficient amendment for cadmium in water and soil: performance and mechanism[J]. Chemosphere, 2021, 281. DOI:10.1016/j.chemosphere.2021.130990
[45] O'connor D, Peng T Y, Zhang J L, et al. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials[J]. Science of the Total Environment, 2018, 619-620: 815-826. DOI:10.1016/j.scitotenv.2017.11.132
[46] Bolan N, Kunhikrishnan A, Thangarajan R, et al. Remediation of heavy metal(loid)s contaminated soils-To mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266: 141-166.
[47] Hussain B, Umer M J, Li J M, et al. Strategies for reducing cadmium accumulation in rice grains[J]. Journal of Cleaner Production, 2021, 286. DOI:10.1016/j.jclepro.2020.125557
[48] Li H B, Dong X L, Da Silva E B, et al. Mechanisms of metal sorption by biochars: biochar characteristics and modifications[J]. Chemosphere, 2017, 178: 466-478.
[49] Albert H A, Li X, Jeyakumar P, et al. Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: a meta-analysis[J]. Science of the Total Environment, 2021, 755. DOI:10.1016/j.scitotenv.2020.142582
[50] Qiu Z, Chen J H, Tang J W, et al. A study of cadmium remediation and mechanisms: Improvements in the stability of walnut shell-derived biochar[J]. Science of the Total Environment, 2018, 636: 80-84.
[51] Matusik J, Bajda T, Manecki M. Immobilization of aqueous cadmium by addition of phosphates[J]. Journal of Hazardous Materials, 2008, 152(3): 1332-1339.
[52] Jia H, Hou D Y, O'Connor D, et al. Exogenous phosphorus treatment facilitates chelation-mediated cadmium detoxification in perennial ryegrass (Lolium perenne L.)[J]. Journal of Hazardous Materials, 2020, 389. DOI:10.1016/j.jhazmat.2019.121849
[53] Li Y P, Sun M J, He W, et al. Effect of phosphorus supplementation on growth, nutrient uptake, physiological responses, and cadmium absorption by tall fescue (Festuca arundinacea Schreb.) exposed to cadmium[J]. Ecotoxicology and Environmental Safety, 2021, 213. DOI:10.1016/j.ecoenv.2021.112021
[54] Li J F, Zhang S R, Ding X D. Biochar combined with phosphate fertilizer application reduces soil cadmium availability and cadmium uptake of maize in Cd-contaminated soils[J]. Environmental Science and Pollution Research, 2022, 29(17): 25925-25938.
[55] Cui H B, Shi Y, Zhou J, et al. Effect of different grain sizes of hydroxyapatite on soil heavy metal bioavailability and microbial community composition[J]. Agriculture, Ecosystems & Environment, 2018, 267: 165-173.
[56] 王林, 徐应明, 孙国红, 等. 海泡石和磷酸盐对镉铅污染稻田土壤的钝化修复效应与机理研究[J]. 生态环境学报, 2012, 21(2): 314-320.
Wang L, Xu Y M, Sun G H, et al. Effect and mechanism of immobilization of paddy soil contaminated by cadmium and lead using sepiolite and phosphate[J]. Ecology and Environment Sciences, 2012, 21(2): 314-320.
[57] 黄黎粤, 丁竹红, 胡忻, 等. 生物炭施用对小麦和玉米幼苗根际和非根际土壤中Pb、As和Cd生物有效性的影响研究[J]. 农业环境科学学报, 2019, 38(2): 348-355.
Huang L Y, Ding Z H, Hu X, et al. Effects of biochars on bioavailability of Pb, As, and Cd in the rhizosphere and non-rhizosphere soil of corn and wheat seedlings[J]. Journal of Agro-Environment Science, 2019, 38(2): 348-355.
[58] Wang B L, Xie Z M, Chen J J, et al. Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L.) in a mining tailing contaminated soil[J]. Journal of Environmental Sciences, 2008, 20(9): 1109-1117.