环境科学  2022, Vol. 43 Issue (12): 5608-5615   PDF    
生物炭吸附雨水径流难生物降解有机氮效能及机制
苏增辉1, 孙萍1, 陈友媛1,2,3, 罗冠杨1, 王秀海1,2,3, 郑天元1,2,3     
1. 中国海洋大学环境科学与工程学院, 青岛 266100;
2. 中国海洋大学海洋环境与生态教育部重点实验室, 青岛 266100;
3. 中国海洋大学山东省海洋环境地质工程重点实验室 266100
摘要: 有机氮(ON)在雨水径流氮素污染中起关键作用,但多数研究只关注可生物降解有机氮的生物转化去除,忽略了占比较高的难生物降解有机氮.以生物炭作为吸附剂,探究其对雨水径流典型难生物降解有机氮(吲哚)的吸附效能及机制.结果表明,原始生物炭对吲哚有较高的单位吸附量(45 mg·g-1),生物炭投加浓度为0.4 g·L-1时其表面平均吸附位点利用度最高.H2O2和NaOH改性生物炭对吲哚的吸附量是原始生物炭的1.3倍和1.6倍,吸附机制包括疏水相互作用、氢键和π-π电子供体-受体(π-π EDA)作用,以疏水相互作用为主,其中H2O2改性通过增加生物炭表面含氧官能团来加强氢键和π-π EDA作用,而NaOH改性生物炭通过大幅提高生物炭比表面积来加强疏水相互作用,故NaOH改性吸附效果更优.综上,生物炭对难生物降解有机氮具有较强去除作用,通过NaOH改性还能大幅提高效率,故在雨水径流氮素污染较高的地区把NaOH改性生物炭作为生物滞留池中的填料有着极大的应用潜力.
关键词: 生物炭      吲哚      改性      疏水相互作用      氢键      π-π电子供体-受体     
Effect and Mechanism of Biochar Adsorption on Unbiodegradable Organic Nitrogen in Stormwater Runoff
SU Zeng-hui1 , SUN Ping1 , CHEN You-yuan1,2,3 , LUO Guan-yang1 , WANG Xiu-hai1,2,3 , ZHENG Tian-yuan1,2,3     
1. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China;
2. Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China;
3. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
Abstract: Organic nitrogen (ON) plays a key role in the nitrogen pollution of stormwater runoff; however, most studies only focus on the biotransformation removal of biodegradable ON, ignoring the unbiodegradable ON that occupies a high proportion of ON. In this study, biochar was used as adsorbent to investigate the mechanism and effect on the adsorption of typical unbiodegradable organic nitrogen (indole) in stormwater runoff. The results revealed that biochar had high unit adsorption on indole (45 mg·g-1), and the dosage concentration of 0.4 g·L-1 had the highest utilization of average adsorption sites. The indole adsorption after H2O2- and NaOH-modified biochar were 1.3 and 1.6 times that of the original biochar; the adsorption mechanism included hydrophobic interactions, hydrogen bonds, and π-π electron-donor-acceptor (π-π EDA) interactions; and hydrophobic interactions were the most important. H2O2-modified biochar strengthened the role of hydrogen bonds and π-π EDA by increasing the oxygen-containing functional groups of biochar, whereas NaOH-modified biochar strengthened the hydrophobic interactions by greatly increasing the specific surface area of biochar; thus, the adsorption of indole by NaOH-modified biochar was better. Therefore, biochar had a high removal on unbiodegradable ON, and the effect could be greatly improved by NaOH-modified biochar, which has considerable application potential in areas with high nitrogen pollution in stormwater runoff.
Key words: biochar      indole      modification      hydrophobic interaction      hydrogen bond      π-π electron-donor-acceptor     

雨水径流会携带大量城市污染物进入受纳水体, 其中氮素作为分布最广泛的污染物之一, 过量输入到水体会造成水体富营养化和黑臭现象[1, 2].各种氮素污染物在雨水径流中所占比例有较大差异, Taylor等[3]和Lucke等[4]分别收集了墨尔本市和昆士兰东南部城市的雨水径流样品, 发现有机氮分别占总氮的52%和75%.而在雨水径流的所有有机氮种类中, 有41%是难以生物降解的[5], 无法通过微生物转化离开水体.目前研究大多关注可生物降解有机氮例如蛋白质和氨基糖的转化去除来解决过量氮素输入水体引起的环境危害[6], 忽略了占比较高的难生物降解有机氮, 因此有必要关注雨水径流中的难生物降解有机氮的去除.

雨水径流中难生物降解有机氮主要指带苯环结构的氮化合物, 例如木质素、单宁、吡咯和吲哚等[7, 8].吲哚作为自然界中常见的难生物降解有机氮, 主要来源于人和动物的排泄物和植物根际[9], 其衍生物也广泛分布于动植物生长系统, 例如动物生长必需的色氨酸和植物生长素, 因此土壤中存在着较高浓度的吲哚[10], 会随着降雨径流进入并危害水体.吲哚作为典型雨水径流难生物降解有机氮污染物, 难以被微生物转化, 通常采用物理手段去除, 如吸附作用.

生物炭是一种表面含氧官能团丰富、比表面积大和高芳香性的碳吸附剂, 能够吸附环境中的有机化合物, 吸附机制包括范德华力、疏水相互作用、静电吸引作用、氢键和π-π电子供体-受体(π-π EDA)作用等[11~13].有研究发现, 对于含苯环的有机化合物通常具有较强芳香性, 会与生物炭产生强烈的π-π EDA作用而被吸附[14]; 对于疏水性强的有机化合物, 容易通过疏水相互作用和孔隙填充被生物炭吸附[15].此外, 依据生物炭的吸附机制, Phinyothanmakorn等[16]和Wu等[17]对生物炭进行KOH和H2 O2改性来增加生物炭表面芳香结构和含氧官能团数量, 提高了对有机化合物的吸附效果.吲哚作为带苯环的有机含氮化合物, 同时具有疏水性, 理论上有被吸附的条件, 但目前尚无研究证实生物炭是否能有效吸附雨水径流的吲哚污染物及吸附机制.

本研究选择浒苔生物炭作为吸附剂, 通过批量吸附实验, 分析其对吲哚的吸附效果及机制, 以期为实际工程中氮素超标雨水径流中其他难生物降解有机氮的去除提供理论依据.

1 材料与方法 1.1 实验试剂与材料

浒苔购买自中国海洋大学生物技术有限公司(中国青岛), 置于60℃烘箱中干燥24 h后, 磨碎过100目筛备用.试剂主要包括:吲哚、过氧化氢(30%)和氢氧化钠等.

1.2 生物炭制备与改性

将浒苔置于气氛炉中, 在400℃下通N2热解2 h, 得到原始生物炭样品, 记为BC.

为了提高生物炭对吲哚的吸附效果和进一步验证吸附机制, 根据先前研究生物炭吸附部分有机污染物起主要作用的特性, 对生物炭进行氧化改性(增加生物炭含氧官能团数量)[17]和碱改性(增加生物炭比表面积)[18].

氧化改性:称取18 g BC分别加入120 mL 20% H2 O2溶液中, 于25℃搅拌4 h, 用去离子水反复清洗至pH接近中性, 在60℃烘箱中烘24 h直至恒重, 记为HBC.

碱改性:称取15 g BC加入150 mL 20% NaOH溶液中, 于60℃搅拌6 h, 用去离子水反复清洗至洗出液pH接近中性, 在60℃烘箱中烘24 h直至恒重, 记为NBC.

1.3 生物炭表征

通过扫描电子显微镜(SEM)观察生物炭的表面形态, 并用比表面积分析仪测定其比表面积; 通过元素分析仪测定生物炭中的C、H、O和N的含量, 并用差减法测定O的含量; 通过傅里叶变换红外光谱仪(FTIR)表征生物炭的官能团, 包括吸附吲哚前的生物炭(BC、HBC和NBC)及吸附吲哚后的生物炭(BC-ID、HBC-ID和NBC-ID, ID表示吲哚); 通过酸度计测定以1∶20固水质量比混合的生物炭悬浮液pH值.

1.4 吸附实验

吸附实验包括不同生物炭投加浓度、吸附动力学、吸附等温线、pH影响吸附和温度影响吸附实验, 控制条件如表 1所示, 其中取样时间和生物炭投加浓度取值范围根据预实验结果决定, 吲哚初始浓度(以N计)参考先前研究发现的雨水径流溶解氮浓度(约4~17 mg·L-1)[19], 溶液pH和温度取值范围参考实际环境可能出现的情况.所有吸附实验均在恒温振荡器中以150 r·min-1进行, 实验结束后取上清液过0.45 μm滤膜再测定溶液吲哚浓度(269 nm波长测吲哚吸光度).

表 1 吸附实验及控制条件 Table 1 Adsorption experiment and control conditions

1.5 数据分析

使用准一级动力学、准二级动力学和颗粒内扩散模型对吸附动力学数据进行拟合.

准一级动力学方程如下:

(1)

准二级动力学方程如下:

(2)

颗粒内扩散方程如下:

(3)

式中, Qe表示生物炭在平衡状态下的吸附容量, mg·g-1; Qt表示t时间吸附在生物炭上的吲哚质量, mg·g-1; k1表示准一级动力学吸附速率常数, h-1; k2表示准二级动力学吸附速率常数, g·(mg·h)-1; k3表示颗粒内扩散速率常数, mg·(g·h0.5)-1; C表示与边界层厚度相关的常数.

使用Langmuir和Freundlich模型对吸附等温线数据进行拟合.

Langmuir方程如下:

(4)

Freundlich方程如下:

(5)

式中, Qm表示平衡时吸附剂的最大单层吸附容量, mg·g-1; KL表示Langmuir吸附能常数, L·mg-1; ce表示平衡时的吸附质浓度, mg·L-1; KF表示Freundlich亲和系数, (mg·g-1)·(mg·L-1)-n; n表示Freundlich模型的无量纲指数.

使用SPSS 20.0和Origin 8.0对实验数据进行分析和绘图.

2 结果与讨论 2.1 生物炭的理化性质

生物炭的理化性质结果如表 2所示, 相较于BC, HBC的pH值明显下降, NBC略微上升; 比表面积排序分别为:NBC>HBC>BC, 其中HBC比表面积比BC增加1倍, 而NBC比表面积比BC增加约3倍.氧化改性后生物炭的pH显著降低主要源于H2 O2将表面的大多含氧官能团氧化成—COOH[20], 而碱改性后生物炭表面产生—OH, 因此pH得到提升.改性后BC比表面积的增大是由于H2 O2和NaOH可以腐蚀生物炭表面的杂质或堵塞孔隙的物质[21, 22], 根据生物炭的扫描电镜图可以看出(图 1), NBC大孔和中孔数量比BC明显增加, 而HBC受腐蚀最严重, 微孔基本都消失了, 因此比表面积增大效果要远低于NBC.

表 2 生物炭的理化性质 Table 2 Physicochemical properties of biochar

(a)原始生物炭(BC), (b)H2 O2改性生物炭(HBC), (c)NaOH改性生物炭(NBC) 图 1 生物炭的扫描电镜图 Fig. 1 SEM images of biochar

改性之后BC的C、H和N元素含量均降低, O元素提高, 其中HBC的C和O元素含量变化要高于NBC, 因此3种生物炭的O/C和(O+N)/C排序为:HBC>NBC>BC.NaOH的强碱性和H2 O2的强氧化性腐蚀了生物炭的碳骨架[23, 24], 导致了C含量降低, 并向生物炭表面引入丰富的含氧官能团, 从而显著提高O含量.O/C和(O+N)/C的增加表明碱改性和氧化改性增强了生物炭的亲水性和极性[25, 26], 即在表面负载了更多的带电基团, 而HBC的带电基团(酸性官能团—COOH等)数量要多于NBC.

2.2 生物炭投加浓度对吸附的影响

3种生物炭对吲哚的去除率都随着生物炭投加浓度的增加而提高[图 2(a)], 当投加浓度达到2 g·L-1时基本能完全去除吲哚; 但单位吸附量随着投加浓度的增加而降低, 在0~0.4 g·L-1投加浓度之间吲哚单位吸附量缓慢降低, 当超过0.4 g·L-1时, 吲哚单位吸附量急剧下降[图 2(b)].这主要因为生物炭投加浓度低时, 在溶液中分散较为均匀, 生物炭与吲哚分子充分接触, 表面吸附位点能有效被利用; 当超过0.4 g·L-1投加浓度时, 溶液中生物炭会产生团聚现象[27], 导致整体比表面积降低, 平均吸附位点大幅减少, 导致吲哚单位吸附量减少, 因此0.4 g·L-1的投加浓度能使生物炭的吸附性能得到充分发挥.

误差棒表示平行实验组数据的标准差 图 2 不同生物炭投加浓度对吲哚去除效果的影响 Fig. 2 Effect of different biochar concentration on indole removal

2.3 吸附行为及性能 2.3.1 吸附动力学

生物炭对吲哚的吸附在1 h内处于快速吸附阶段, 然后缓慢达到平衡(图 3), NBC和HBC的平衡吸附量分别为BC的1.6倍和1.3倍.采用准一级动力学、准二级动力学和颗粒内扩散模型来拟合吲哚在3种生物炭上的吸附动力学(表 3表 4), 其中准一级动力学和准二级动力学模型拟合度(R2)较高, 颗粒内扩散模型第一阶段的R2较高, 而第二阶段基本无法拟合.这些结果表明, 碱改性和氧化改性可以显著提高生物炭对吲哚的吸附效果, 且生物炭对吲哚的吸附存在着物理和化学2种吸附方式[28, 29], 其中物理吸附可能包括疏水相互作用(吲哚水溶性差, 疏水性强)、范德华力[30]和静电相互作用(吲哚在水中带弱碱性, 生物炭表面含有酸性官能团), 化学吸附可能包括氢键[31]和π-π EDA作用[吲哚带苯环, 生物炭表面带大量含苯环物质, 例如醌基官能团(—C=O)].颗粒内扩散的两个阶段分别表示污染物的表面吸附和污染物从生物炭表面到内部孔隙的缓慢扩散[32], 因此吲哚的吸附基本发生在生物炭表面, 颗粒内扩散不是吸附速率的限制步骤[33].

图 3 吲哚在生物炭上的吸附动力学 Fig. 3 Adsorption kinetics model of indole on biochar

表 3 准一级和准二级动力学模型拟合参数 Table 3 Fitting parameters of PF-order and PS-order models

表 4 颗粒内扩散模型拟合参数1) Table 4 Fitting parameters of Weber-Morris model

2.3.2 吸附等温线

在相同的溶液吲哚平衡浓度(约130 mg·L-1)下, NBC和HBC对吲哚的吸附量是BC的1.4倍和1.2倍(图 4).采用Langmuir和Freundlich模型来拟合吲哚在3种生物炭上的吸附动力学(表 5), 其中Freundlich模型(R2为0.987~0.996)比Langmuir模型(R2为0.920~0.968)更适合等温吸附过程, 意味着生物炭吸附吲哚为多层吸附[34].此外Freundlich模型的无量纲指数n值均大于1, 即吸附过程以物理吸附为主[35], 具有高度的异质性[36].

图 4 吲哚在不同生物炭上的吸附等温线 Fig. 4 Adsorption isotherm of indole on different biochar

表 5 Langmuir和Freundlich模型拟合参数 Table 5 Fitting parameters of Langmuir and Freundlich

2.3.3 吸附前后官能团变化

吲哚吸附前后生物炭表面官能团变化如图 5所示.相比于BC, 氧化改性后HBC在1 610、1 700和3 400 cm-1处峰强度增加, 在617 cm-1和1 146 cm-1处峰减弱, 碱改性后NBC在1 440 cm-1处峰强度略微增加, 在617 cm-1和1 146 cm-1处峰减弱.因此氧化改性后HBC表面引入了羟基(—OH)和羧基(—COOH)[37, 38], 还能通过H2 O2的强氧化性进一步引入醌基官能团(—C=O)以及表面带苯环的其他官能团(—C=C), 而碱改性后NBC表面含氧官能团变化较为微弱.生物炭吸附吲哚后, HBC-ID比HBC在1 610 cm-1和1 700 cm-1处峰强度减弱, 表明吸附吲哚过程中发生了π-π EDA作用, 主要通过吲哚的苯环和生物炭表面含苯环官能团及—C=O电子相互作用实现[37], 且在1 700 cm-1和3 400 cm-1处峰强度减弱还意味着生物炭表面—OH和—COOH和吲哚分子发生了氢键作用[40].

BC-ID、HBC-ID和NBC-ID表示吸附吲哚后的生物炭 图 5 吲哚吸附前后原始和改性生物炭的傅里叶红外光谱图(FTIR) Fig. 5 FTIR of original and modified biochar before and after indole adsorption

2.4 不同环境因素对吸附影响

不同环境因素下生物炭对吲哚的吸附效果如图 6所示.随着环境pH的增大(4~9), 3种生物炭对吲哚的吸附量基本无变化[图 6(a)]; 而随着环境温度的升高(20~45℃), 3种生物炭对吲哚的吸附量先上升后趋于平稳[图 6(b)].环境pH对生物炭吸附吲哚无影响, 意味着吸附基本不受吸附质和吸附剂的表面电荷变化影响[41], 即吸附过程基本无静电吸引作用.环境温度对吸附过程有显著影响, 先前研究发现有机化合物溶解度会随温度升高而增加[42], 导致吸附量下降, 而生物炭对吲哚吸附量随温度升高明显增加, 通常温度越高, 吸附剂和吸附质之间疏水相互作用越强[43~45], 因此生物炭和吲哚之间可能存在强烈的疏水相互作用.

不同小写字母表示不同处理组间差异显著(P<0.05) 图 6 不同环境因素下生物炭对吲哚吸附效果 Fig. 6 Adsorption of biochar on indole under different environment

2.5 吸附机制

根据吸附动力学和等温线拟合结果可知, 生物炭对吲哚的吸附存在物理和化学吸附2种方式, 以物理吸附为主(表 3表 4).有研究发现, 生物炭对有机物的吸附主要包括物理吸附的范德华力、疏水相互作用和静电吸引作用, 以及化学吸附的氢键和π-π EDA作用[11].根据FTIR结果可知(图 5), 生物炭对吲哚吸附存在π-π EDA和氢键作用.根据不同pH和温度下吲哚吸附量差异可知(图 6), 生物炭对吲哚吸附存在疏水相互作用, 但基本无静电吸引作用.根据生物炭理化性质和3种生物炭对吲哚吸附量差异可知(表 2图 2), 比表面积大小(与疏水相互作用成正比):NBC>HBC>BC, 含氧官能团数量(与氢键和π-π EDA作用成正比):HBC>NBC>BC, 而吸附效能:NBC>HBC>BC, 因此疏水相互作用强于氢键和π-π EDA作用.

综上, 吸附机制如图 7所示, 生物炭吸附吲哚包括疏水相互作用、氢键和π-π EDA作用, 其中以疏水相互作用为主要吸附方式.

图 7 生物炭吸附吲哚机制 Fig. 7 Mechanism of indole adsorption on biochar

3 结论

(1) 浒苔生物炭对吲哚有较好的吸附效果, 当吲哚初始浓度(以N计)为10 mg·L-1时, 生物炭投加浓度为2 g·L-1时能将吲哚基本去除完全, 但生物炭投加浓度为0.4 g·L-1时其表面平均吸附位点利用度最高.

(2) 氧化改性和碱改性能提高生物炭对吲哚的吸附效果, 氧化改性通过显著提高生物炭含氧官能团含量来增强对吲哚吸附效果, 碱改性通过大幅增加生物炭比表面积来增强对吲哚的吸附效果, 且碱改性要优于氧化改性.

(3) 生物炭吸附吲哚机制主要包括疏水相互作用、氢键作用和π-π EDA作用, 以疏水相互作用为主.

参考文献
[1] McCabe K M, Smith E M, Lang S Q, et al. Particulate and dissolved organic matter in stormwater runoff influences oxygen demand in urbanized headwater catchments[J]. Environmental Science & Technology, 2021, 55(2): 952-961.
[2] 陈友媛, 李培强, 李闲驰, 等. 浒苔生物炭对雨水径流中氨氮的吸附特性及吸附机制[J]. 环境科学, 2021, 42(1): 274-282.
Chen Y Y, Li P Q, Li X C, et al. Effect of Enteromorpha prolifera biochar on the adsorption characteristics and adsorption mechanisms of ammonia nitrogen in rainfall runoff[J]. Environmental Science, 2021, 42(1): 274-282.
[3] Taylor G D, Fletcher T D, Wong T H F, et al. Nitrogen composition in urban runoff—implications for stormwater management[J]. Water Research, 2005, 39(10): 1982-1989. DOI:10.1016/j.watres.2005.03.022
[4] Lucke T, Drapper D, Hornbuckle A. Urban stormwater characterisation and nitrogen composition from lot-scale catchments — New management implications[J]. Science of the Total Environment, 2018, 619-620: 65-71. DOI:10.1016/j.scitotenv.2017.11.105
[5] Seitzinger S P, Sanders R W, Renée S. Bioavailability of DON from natural and anthropogenic sources to estuarine plankton[J]. Limnology and Oceanography, 2002, 47(2): 353-366. DOI:10.4319/lo.2002.47.2.0353
[6] Valencia A, Ordonez D, Wen D, et al. The interaction of dissolved organic nitrogen removal and microbial abundance in iron-filings based green environmental media for stormwater treatment[J]. Environmental Research, 2020, 188. DOI:10.1016/j.envres.2020.109815
[7] Lusk M G, Toor G S. Biodegradability and molecular composition of dissolved organic nitrogen in urban stormwater runoff and outflow water from a stormwater retention pond[J]. Environmental Science & Technology, 2016, 50(7): 3391-3398.
[8] Mohtadi M, James B R, Davis A P. Adsorption of compounds that mimic urban stormwater dissolved organic nitrogen[J]. Water Environment Research, 2017, 89(2): 105-116. DOI:10.2175/106143016X14504669769010
[9] Lee J H, Wood T K, Lee J. Roles of indole as an interspecies and interkingdom signaling molecule[J]. Trends in Microbiology, 2015, 23(11): 707-718. DOI:10.1016/j.tim.2015.08.001
[10] Fukuoka K, Tanaka K, Ozeki Y, et al. Biotransformation of indole by Cupriavidus sp. strain KK10 proceeds through N-heterocyclic- and carbocyclic-aromatic ring cleavage and production of indigoids[J]. International Biodeterioration & Biodegradation, 2015, 97: 13-24.
[11] Luo Z R, Yao B, Yang X, et al. Novel insights into the adsorption of organic contaminants by biochar: a review[J]. Chemosphere, 2022, 287. DOI:10.1016/j.chemosphere.2021.132113
[12] Barquilha C E R, Braga M C B. Adsorption of organic and inorganic pollutants onto biochars: challenges, operating conditions, and mechanisms[J]. Bioresource Technology Reports, 2021, 15. DOI:10.1016/j.biteb.2021.100728
[13] Mrozik W, Minofar B, Thongsamer T, et al. Valorisation of agricultural waste derived biochars in aquaculture to remove organic micropollutants from water-experimental study and molecular dynamics simulations[J]. Journal of Environmental Management, 2021, 300. DOI:10.1016/j.jenvman.2021.113717
[14] Dai Y J, Zhang N X, Xing C M, et al. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review[J]. Chemosphere, 2019, 223: 12-27. DOI:10.1016/j.chemosphere.2019.01.161
[15] Tong Y R, McNamara P J, Mayer B K. Adsorption of organic micropollutants onto biochar: a review of relevant kinetics, mechanisms and equilibrium[J]. Environmental Science: Water Research & Technology, 2019, 5(5): 821-838.
[16] Phinyothanmakorn N, Prasert T, Ngernyen Y, et al. Characterization of molecular dissolved organic matter removed by modified eucalyptus-based biochar and disinfection by-product formation potential using Orbitrap mass spectrometric analysis[J]. Science of the Total Environment, 2022, 820. DOI:10.1016/j.scitotenv.2022.153299
[17] Wu D P, Chen Q, Wu M, et al. Heterogeneous compositions of oxygen-containing functional groups on biochars and their different roles in rhodamine B degradation[J]. Chemosphere, 2022, 292. DOI:10.1016/j.chemosphere.2022.133518
[18] Mu Y K, Ma H Z. NaOH-modified mesoporous biochar derived from tea residue for methylene blue and orange Ⅱ removal[J]. Chemical Engineering Research and Design, 2021, 167: 129-140. DOI:10.1016/j.cherd.2021.01.008
[19] Ma Y K, Wang S H, Zhang X Y, et al. Transport process and source contribution of nitrogen in stormwater runoff from urban catchments[J]. Environmental Pollution, 2021, 289. DOI:10.1016/j.envpol.2021.117824
[20] Cibati A, Foereid B, Bissessur A, et al. Assessment of Miscanthus×giganteus derived biochar as copper and zinc adsorbent: study of the effect of pyrolysis temperature, pH and hydrogen peroxide modification[J]. Journal of Cleaner Production, 2017, 162: 1285-1296. DOI:10.1016/j.jclepro.2017.06.114
[21] Yang W, Liu X X, Pan J F. Experimental and kinetic study on Hg0 removal by microwave/hydrogen peroxide modified seaweed-based porous biochars[J]. Environmental Technology & Innovation, 2021, 22. DOI:10.1016/j.eti.2021.101411
[22] An Q, Miao Y, Zhao B, et al. An alkali modified biochar for enhancing Mn2+ adsorption: performance and chemical mechanism[J]. Materials Chemistry and Physics, 2020, 248. DOI:10.1016/j.matchemphys.2020.122895
[23] Chen H Y, Yang X J, Liu Y L, et al. KOH modification effectively enhances the Cd and Pb adsorption performance of N-enriched biochar derived from waste chicken feathers[J]. Waste Management, 2021, 130: 82-92. DOI:10.1016/j.wasman.2021.05.015
[24] Alves B S Q, Fernandes L A, Southard R J. Biochar-cadmium retention and its effects after aging with hydrogen peroxide (H2 O2)[J]. Heliyon, 2021, 12(7). DOI:10.1016/j.heliyon.2021.e08476
[25] Chen D Y, Yu X Z, Song C, et al. Effect of pyrolysis temperature on the chemical oxidation stability of bamboo biochar[J]. Bioresource Technology, 2016, 218: 1303-1306. DOI:10.1016/j.biortech.2016.07.112
[26] Guo Y, Liu X Y, Xie S B, et al. 3D ZnO modified biochar-based hydrogels for removing U(Ⅵ) in aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642. DOI:10.1016/j.colsurfa.2022.128606
[27] Cao L Y, Zhang X Y, Xu Y, et al. Straw and wood based biochar for CO2 capture: adsorption performance and governing mechanisms[J]. Separation and Purification Technology, 2022, 287. DOI:10.1016/j.seppur.2022.120592
[28] 张哲源, 陈韬, 李业伟. 两种生物质炭对水中多环芳烃萘的吸附研究[J]. 应用化工, 2022, 51(3): 653-657.
Zhang Z Y, Chen T, Li Y W. Adsorption of polycyclic aromatic hydrocarbon naphthalene in water by two kinds of biochar[J]. Applied Chemical Industry, 2022, 51(3): 653-657. DOI:10.3969/j.issn.1671-3206.2022.03.008
[29] Chen Y Y, Wang B Y, Xin J, et al. Adsorption behavior and mechanism of Cr(Ⅵ) by modified biochar derived from Enteromorpha prolifera[J]. Ecotoxicology and Environmental Safety, 2018, 164: 440-447. DOI:10.1016/j.ecoenv.2018.08.024
[30] Ahmed I, Jhung S H. Remarkable adsorptive removal of nitrogen-containing compounds from a model fuel by a graphene oxide/MIL-101 composite through a combined effect of improved porosity and hydrogen bonding[J]. Journal of Hazardous Materials, 2016, 314: 318-325. DOI:10.1016/j.jhazmat.2016.04.041
[31] Sarker M, Song J Y, Jeong A R, et al. Adsorptive removal of indole and quinoline from model fuel using adenine-grafted metal-organic frameworks[J]. Journal of Hazardous Materials, 2018, 344: 593-601. DOI:10.1016/j.jhazmat.2017.10.041
[32] Nath H, Saikia A, Goutam P J, et al. Removal of methylene blue from water using okra (Abelmoschus esculentus L.) mucilage modified biochar[J]. Bioresource Technology Reports, 2021, 14. DOI:10.1016/j.biteb.2021.100689
[33] Sultana S, Islam K, Hasan A, et al. Adsorption of crystal violet dye by coconut husk powder: isotherm, kinetics and thermodynamics perspectives[J]. Environmental Nanotechnology, Monitoring & Management, 2022, 17. DOI:10.1016/j.enmm.2022.100651
[34] Yao B, Luo Z R, Du S Z, et al. Sustainable biochar/MgFe2O4 adsorbent for levofloxacin removal: adsorption performances and mechanisms[J]. Bioresource Technology, 2021, 340. DOI:10.1016/j.biortech.2021.125698
[35] Prasannamedha G, Kumar P S, Mehala R, et al. Enhanced adsorptive removal of sulfamethoxazole from water using biochar derived from hydrothermal carbonization of sugarcane bagasse[J]. Journal of Hazardous Materials, 2021, 407. DOI:10.1016/j.jhazmat.2020.124825
[36] 陈友媛, 惠红霞, 卢爽, 等. 浒苔生物炭的特征及其对Cr(Ⅵ)的吸附特点和吸附机制[J]. 环境科学, 2017, 38(9): 3953-3961.
Chen Y Y, Hui H X, Lu S, et al. Characteristics of Enteromorpha prolifera biochars and their adsorption performance and mechanisms for Cr(Ⅵ)[J]. Environmental Science, 2017, 38(9): 3953-3961.
[37] Yang Z Y, Yang X L, Wang T H, et al. Oxygen-functionalized Typha angustifolia biochars derived from various pyrolysis temperatures: physicochemical properties, heavy metal capture behaviors and mechanism[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628. DOI:10.1016/j.colsurfa.2021.127259
[38] Guo X J, Peng Y Y, Li N X, et al. Effect of biochar-derived DOM on the interaction between Cu(Ⅱ) and biochar prepared at different pyrolysis temperatures[J]. Journal of Hazardous Materials, 2022, 421. DOI:10.1016/j.jhazmat.2021.126739
[39] Xu L, Wu C X, Chai C, et al. Adsorption of micropollutants from wastewater using iron and nitrogen co-doped biochar: performance, kinetics and mechanism studies[J]. Journal of Hazardous Materials, 2022, 424. DOI:10.1016/j.jhazmat.2021.127606
[40] Liao Q, Rong H W, Zhao M H, et al. Strong adsorption properties and mechanism of action with regard to tetracycline adsorption of double-network polyvinyl alcohol-copper alginate gel beads[J]. Journal of Hazardous Materials, 2022, 422. DOI:10.1016/j.jhazmat.2021.126863
[41] Zhao Z M, Sun W J, Ray M B. Adsorption isotherms and kinetics for the removal of algal organic matter by granular activated carbon[J]. Science of the Total Environment, 2022, 806. DOI:10.1016/j.scitotenv.2021.150885
[42] Aumeier B M, Augustin A, Thönes M, et al. Linking the effect of temperature on adsorption from aqueous solution with solute dissociation[J]. Journal of Hazardous Materials, 2022, 429. DOI:10.1016/j.jhazmat.2022.128291
[43] Cho E J, Kang J K, Moon J K, et al. Removal of triclosan from aqueous solution via adsorption by kenaf-derived biochar: its adsorption mechanism study via spectroscopic and experimental approaches[J]. Journal of Environmental Chemical Engineering, 2021, 9(6). DOI:10.1016/j.jece.2021.106343
[44] Nam S W, Choi D J, Kim S K, et al. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon[J]. Journal of Hazardous Materials, 2014, 270: 144-152.
[45] Bao Z Z, Chen Z F, Zhong Y H, et al. Adsorption of phenanthrene and its monohydroxy derivatives on polyvinyl chloride microplastics in aqueous solution: model fitting and mechanism analysis[J]. Science of the Total Environment, 2021, 764. DOI:10.1016/j.scitotenv.2020.142889