2. 新疆维吾尔自治区生态环境监测总站, 乌鲁木齐 830011;
3. 天津城建大学环境与市政工程学院, 天津 300384;
4. 伊犁哈萨克自治州环境监测站, 伊宁 839300
2. Ecological Environment Monitoring Centre of Xinjiang Uygur Autonomous Region, Urumqi 830011, China;
3. School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China;
4. Environmental Monitor Station of Ili Kazak Autonomous Prefecture, Yining 839300, China
区域尺度大气颗粒物的同步观测与分析是制定大气污染防治策略的重要途径.大气颗粒物会影响能见度[1]和气候[2, 3], 并对人体产生不利影响[4, 5].水溶性无机离子(water-soluble inorganic ions, WSIIs)是大气颗粒物的重要组成部分, 其吸湿性强的特点, 可以改变大气的光学性质和云凝结核形成[6].另外, WSIIs组分很容易被人体吸收, 其具有表面活性剂的作用, 能增加有毒有机物质(如PAHs)的溶解性, 危害人体健康[7].国内对大气颗粒物和WSIIs的时空分布、来源解析和形成机制开展了一系列的研究, 相关研究主要集中在华北平原、长三角、珠三角和西北地区[3, 8~16].各区域污染呈现区域性特征, 然而区域内部不同城市之间仍然存在差异.以京津冀[12]区域为例, 京津冀和其区域背景点(隆化县)4个点位的PM2.5均以有机物、二次无机离子(NO3-、SO42-和NH4+合称SNA)和矿物尘为主, 北京受交通源影响较大使其n(NO3-)/n(SO42-)(1.25)高于天津(0.97)、石家庄(0.92)和兴隆(0.95); 而石家庄和天津受煤炭燃烧影响较大使其Cl-浓度(7.2和5.8 μg ·m-3)和占比(4.6%和5.5%)明显高于北京(2.6 μg ·m-3, 2.6%)和兴隆(1.2 μg ·m-3, 1.9%).此外, 同一城市不同功能区之间的污染特征也存在差异.Qiu等[17]的研究发现兰州市PM2.5浓度低值区的渝中县, SNA浓度也同样低于其他2个区(西固区、龙岗区), 且SNA占比在4个季节均为最低(24% ~38%), 得出低浓度地区前体物向二次气溶胶的转化率低于污染物高浓度地区.
伊犁河谷地形地貌呈“三山二盆一谷地”的格局, 整体呈喇叭状, 东、南、北三面环山, 地势东高西低, 东窄西宽, 属于温带大陆性干旱气候.该区域与珠三角亚热带季风气候、长三角亚热带季风气候、华北平原温带季风气候的气象条件存在明显差异.与同为河谷城市的兰州相比, 伊犁河谷受地形影响, 降雨量分布呈现明显的空间特征, 沿着山谷降雨量随海拔的升高而逐渐增加, 且河谷东部降水多于西部[18].与华北平原、长三角和珠三角等工业发达区域相比, 伊犁河谷的工业处于发展阶段, 工业企业以中小型企业为主.截止到2020年, 伊犁河谷核心区机动车保有量为32.3万辆, 远低于华北平原、长三角和珠三角区域.近年来, 随着工业化和城市化的发展, 包含伊宁市和周边伊宁县、霍城县和察布查尔锡伯自治县(以下简称为察县)的伊犁河谷核心区城市群的大气污染问题越发受到重视[19].“十三五”期间(2015~2020年), 全国大气颗粒物(PM10和PM2.5)浓度均呈现下降趋势, 然而伊宁市呈现出不减反增的趋势[20].地形、降雨和污染源等会影响大气颗粒物和其组分的浓度特征, 但是迄今鲜见伊犁河谷的WSIIs空间特征的相关研究, 因此本研究于2021年7月19~29日在伊犁河谷核心区城市群6个监测点位采集夏季PM2.5和PM10样品, 深入分析PM2.5和PM10中WSIIs的浓度特征、存在形式和形成机制的空间分布特征, 以期为伊犁河谷城市群大气防控提供数据基础和理论依据.
1 材料与方法 1.1 研究区域和点位布设本研究区域位于伊犁河谷核心区, 包含伊宁市和周边的伊宁县、霍城县和察县.其中, 伊宁市是伊犁哈萨克自治州首府城市, 位于伊犁河谷中部, 人口密度(约为1 087.93人·km-2)远高于伊宁县、霍城县和察县.霍城县位于伊犁河谷上游, 远离伊宁市; 察县地处新疆西天山支脉乌孙山北麓, 与伊宁市隔伊犁河相望; 伊宁县位于伊犁河谷东北部, 东侧和北侧临近天山, 地势较高, 年平均降水量明显高于其余城市, 距离伊宁市18 km.大型工业企业主要分布在伊宁市和伊宁县.此外, 伊宁市机动车保有量(16.3万辆)远高于霍城县(6.5万辆)、伊宁县(5.9万辆)和察县(3.5万辆).本研究结合城市功能区分布和现有国、省控自动监测点位, 布设了6个采样点(图 1).其中, 伊宁市设有3个采样点(伊宁市生态环境局、第二水厂和新政府片区), 周边三县各布设1个点位.伊宁市内3个采样点用以探究城市内不同点位受周边环境影响所呈现的空间分布特征, 伊宁市和周边三县的对比用以分析不同地形和气象对区域污染空间特征的影响.
![]() |
图 1 伊犁河谷核心区域采样点位分布示意 Fig. 1 Locations of sampling points in the core area of the Ili River Valley |
伊宁市海拔高度为660 m, 其中生态环境局(YNE)点位东南和东北方向60 m处为两条主要交通干道, 西南侧和西北侧为居民区.第二水厂(SWP)东侧700 m、南侧500 m、西侧600 m和北侧500 m均为道路, 其中南侧道路车流量较大, 东北方向1.5~2 km处存在较多施工工地.新政府片区(NG)南侧居民楼外分布有大量平房区, 北侧300 m处为主干道, 且道路两侧均为平房区, 东侧300 m处为道路.伊宁县(海拔高度714 m)生态环境局(YNCE)西侧为学校, 东侧和南侧为居民区.霍城县(海拔高度639 m)生态环境局(HCE)北侧为小公园, 南侧为道路, 东侧和西侧均为居民住宅区.察县(海拔高度602 m)采样点位为察布查尔电视台(CTV), 其东、南和北方向均为平房区.
1.2 样品采集和分析本研究选用德国康姆德润达LVS型便携式小流量(16.7 L ·min-1)颗粒物采样器进行采样.选用石英滤膜采集PM2.5和PM10样品, 用以分析9种WSIIs组分.采样时间为7月19~29日, 每日采样周期从12:00持续至次日11:00共23 h. 7月为夏季气象的典型代表月份[21], 通过分析7月气象数据发现, 采样期间温度(T)、湿度(RH)、风速均值和主导风向[(27.59±0.41)℃、(41.91±1.90)%、(1.71±0.06) m ·s-1、(138.98±16.96)°]均与7月平均的T、RH、风速和主导风向[(24.4±0.4)℃、(44.20±1.93)%、(1.83±0.02) m ·s-1和(140.96±11.60)°]一致, 采样期间和7月气象数据之间的相对偏差介于1% ~13%, 可见本研究的采样时段属于夏季较为典型的气候时段, 采样时段具有代表性.
采用DX-120型离子色谱仪对样品中的9种WSIIs进行定量分析.Dionex ICS-2100和Dionex ICS-1100(Thermo Fisher科学公司)分别用于分析样品中的4种阴离子(F-、Cl-、NO3-、SO42-)和5种阳离子(Na+、K+、NH4+、Ca2+、Mg2+).以上9种WSIIs检测限分别为0.001、0.005、0.012 5、0.012 5、0.007 2、0.000 6、0.001 7、0.035 5和0.03 mg ·L-1.
本研究中涉及到的气象数据(风向、风速、T、RH、降水量、能见度)和6项常规污染物(NO2、SO2、CO、O3、PM10、PM2.5)均来自同点位的自动监测站.采样期间手工和在线大气颗粒物浓度的相关性分析结果表明, 二者之间呈明显线性相关, PM2.5和PM10线性拟合曲线R2分别为0.92和0.86.
1.3 质量控制每次更换淋洗液后, 取用0.1 ng ·L-1有证标准样品进行单点质控.根据环境目标污染物的污染水平, 设置阴离子和阳离子标准溶液的浓度梯度, 要求校准曲线的相关系数大于0.999, 保证标准溶液中各离子的测量误差在10%以内, 阴离子和阳离子的平均相对标准偏差分别为3.0%和4.0%.为了保证仪器的稳定性和测定结果的准确性, 每天测试一个标准样品, 重复性测试要求的相对标准偏差小于5%.对每批样品采取空白样品、平行测试等质量控制和质量保证措施.空白石英滤膜与采样石英滤膜进行相同的前处理和分析, 得到石英滤膜空白值, 样品分析所得结果扣除空白值即可得到更可靠的分析结果.
1.4 二次转化率SO42-、NO3-和NH4+主要由气态前体物SO2、NOx和NH3经过均相或非均相反应形成[22~24].硫氧化率(sulfur oxidation rate, SOR)和氮氧化率(nitrogen oxidation rate, NOR)可用来评估SO2向SO42-和NO2向NO3-的转化程度[25], 计算公式如下:
![]() |
(1) |
![]() |
(2) |
式中, n(SO42-)、n(NO3-)、n(SO2)和n(NO2)分别表示SO42-、NO3-、SO2和NO2的量(mol).有研究表明[25, 26], SOR和NOR值越高, 说明越多SO2和NO2被转化为SO42-和NO3-.
2 结果与讨论 2.1 颗粒物和WSIIs浓度空间分布特征 2.1.1 颗粒物浓度的空间分布特征图 2为采样期间6点位颗粒物及离子组分浓度和气象数据的时间序列.夏季采样期间, 伊犁河谷城市群ρ(PM2.5)和ρ(PM10)均值分别为(23±3) μg ·m-3和(59±7) μg ·m-3, 其中, ρ(PM2.5)与乌鲁木齐夏季的(24 μg ·m-3)相当, ρ(PM10)则明显低于乌鲁木齐夏季(78 μg ·m-3)[27]. 受地形、气象条件和点位周边污染源影响, 会导致各点位浓度出现差异.分城市来看, 采样期间ρ(PM2.5)均值排序为:伊宁市[(25±3) μg ·m-3]>察县[(23±5) μg ·m-3]>霍城县[(20±2) μg ·m-3]和伊宁县[(20±5) μg ·m-3], ρ(PM10)均值排序则为:伊宁县[(63±15) μg ·m-3]>伊宁市[(61±7) μg ·m-3]>察县[(58±14) μg ·m-3]>霍城县[(49±8) μg ·m-3].综合来看, 伊宁市和伊宁县大气颗粒物浓度相对较高, 霍城县大气颗粒物浓度最低, 造成这种空间差异的原因: 一方面是因为伊犁河谷核心区大中型企业集中分布在伊宁市和伊宁县, 这两个城市受燃煤源和工业源影响大于其余两县; 另一方面伊宁市的机动车保有量远高于周边三县, 受移动源影响也高于周边三县; 图 2中伊宁市SO2和NO2浓度明显高于其余三县也反映出伊宁市本地排放较高.另外, 从图 2中可以看出不同城市PM2.5和PM10的日均浓度变化也存在差异, 日变化趋势不同除受点位周边污染源影响外, 主要受气象条件的影响.采样期间霍城县温度最高、湿度最低、风速最大的条件有利于污染扩散, 使得霍城县的颗粒物浓度低于其他城市; 察县位于河谷靠近伊犁河, 海拔最低、风速最小且湿度最高; 伊宁县温湿度处于中间水平, 海拔最高和降水量最大, 但其日均风速和风向变化较小, 扩散条件相对最差, 致使颗粒物累积.伊宁市内3个点位(YNE、SWP和NG)的PM2.5和PM10浓度的均值排序均为:YNE≥SWP>NG, 主要与YNE点位距离主干道较近(<100 m)且受居民生活源影响较大有关.
![]() |
CO单位为mg ·m-3, 其余物质单位为μg ·m-3 图 2 6个点位PM、WSIIs、气象数据和气态污染物时间序列 Fig. 2 Time series of concentrations of PM, WSIIs, meteorological data, and gaseous pollutants at six sites |
伊犁河谷城市群WSIIs在PM2.5和PM10中的浓度分别介于5.55~6.77 μg ·m-3和9.85~10.75 μg ·m-3.SO42-、NO3-、NH4+和Ca2+是PM2.5和PM10中主要的WSIIs(表 1中用FC表示), PM2.5和PM10中ρ(FC)分别为5.9 μg ·m-3和8.9 μg ·m-3, 分别占PM2.5和PM10中WSIIs的90%和89%, 与乌鲁木齐(89%和87%)的研究结果相当[28].这4种离子在PM10中浓度高低排序则为:Ca2+[(3.58±0.94) μg ·m-3]>SO42-[(3.47±0.65) μg ·m-3]>NO3-[(1.27±0.39) μg ·m-3]>NH4+[(1.07±0.37) μg ·m-3].在PM2.5中浓度高低排序为:SO42-[(2.98±0.69) μg ·m-3]>Ca2+[(1.44±0.56) μg ·m-3]>NH4+[(0.83±0.34) μg ·m-3]>NO3-[(0.64±0.32) μg ·m-3].对比其他城市和区域发现, 北京[29]夏季PM2.5以NO3-为主要离子组分, 而长三角[9]、珠三角[30]和西安市[31]与本研究结果类似, 均以SO42-为主.Ca2+为伊犁河谷核心城市占比次高的组分, 这与北京(SO42-)、长三角(NH4+)和珠三角(NH4+)明显不同, 而与西安和西宁[32]类似; Ca2+主要来源于地表扬尘[33], 这说明伊犁河谷核心区受到明显的扬尘源影响.
![]() |
表 1 6点位大气颗粒物中主要离子浓度、占比和质量浓度比1) Table 1 Concentration, proportion, and mass concentration ratio of main ions in particulate matter at six sites |
有研究表明粒子粒径越小越容易富集WSIIs[34], 73.9% ~94.8%的WSIIs分布在PM2.5中.表 1给出了6点位4种主要离子在PM2.5和PM10中的质量浓度比.当比值大于0.5时, 说明该离子组分集中在PM2.5中; 反之, 则集中在PM2.5~10粗离子中. 4种离子质量浓度比排序为:SO42-(0.86)>NH4+(0.75)>NO3-(0.52)>Ca2+(0.41), 可见SO42-和NH4+主要存在于PM2.5中, NO3-在PM2.5和PM10中平均分布, 而Ca2+则主要存在于PM10中, 这与太原的研究结果一致[35], 再次说明伊犁河谷夏季受到了明显的扬尘源影响.察县4种离子质量浓度比均大于0.5, 说明察县WSIIs更集中在PM2.5中, 这与该点位距离居民区较近, 受居民生活燃烧源和餐饮油烟源影响较大有关; 而伊宁县质量浓度比均较小, 说明该点位受扬尘源的影响更大.伊宁市内YNE点位质量浓度比高于其他两个点位, 主要是该点位靠近2条主干道, 受机动车尾气排放的小粒径颗粒物影响较大所致.
虽然4个城市SO2浓度水平存在明显差异, 但是SO42-浓度接近, 针对这一现象, 对4个城市SO42-进行相关性分析发现, 4个城市PM10和PM2.5中SO42-的相关性均较好, 伊宁市与察县、霍城县和伊宁县PM10中SO42-的相关性分别为0.888、0.710和0.885(P < 0.01); 伊宁市与察县、霍城县和伊宁县PM2.5中SO42-的相关性分别为0.939、0.885和0.744(P < 0.01).这表明了4个城市的SO42-具有共同的来源, 存在传输影响.4个城市PM10中Ca2+均显著相关(R>0.600, P < 0.01), 反映出整个区域扬尘源污染的问题.综上可以看出伊犁河谷SO42-和Ca2+呈现出明显的区域性特征.
n(NO3-)/n(SO42-)常被用作判断移动源和固定源对大气污染的相对贡献强度, 当比值大于1时, 表明移动源大于固定源; 反之, 表明固定源贡献强于移动源[36].本研究中PM2.5和PM10的n(NO3-)/n(SO42-)均值分别为0.78和0.76, 表明伊犁河谷城市群受固定源的影响大于移动源.伊犁河谷夏季n(NO3-)/n(SO42-)高于郑州[37](0.65)和兰州[17]夏季PM2.5的比值(0.31).霍城县、察县、伊宁县和伊宁市PM2.5中n(NO3-)/n(SO42-)分别为0.77、0.67、0.72和0.84, PM10中的该比值分别为0.75、0.64、0.68和0.82, 与各城市机动车保有量大小顺序一致.
2.2 二次转化分析当SOR和NOR均>0.10时, 表明NO3-和SO42-发生了二次转化[38].伊犁河谷城市群夏季NOR在PM2.5和PM10中分别为0.03~0.10和0.03~0.16, 除察县PM2.5和PM10中NOR略高于0.10外, 其余城市NOR均小于0.10, 这说明伊犁河谷NO3-的二次转化并不明显.借助NO3-分配比[39][ε(NO3-)= n(NO3-)/n(NO2+NO3-)]进一步分析NO3-的气粒转化情况, 4个城市PM10和PM2.5中ε(NO3-)分别介于0.10~0.28和0.07~0.21, 这表明夏季伊犁河谷城市群硝酸盐主要由颗粒态向气态转化, 从而导致夏季NO3-浓度低.这一现象主要与夏季气温较高有关, 气温高时NH4NO3易分解成气态的HNO3和NH3[40].
察县、霍城县、伊宁县和伊宁市PM2.5中SOR分别为0.41、0.29、0.35和0.21; 4个城市PM10中SOR分别为0.44、0.32、0.40和0.23.伊犁河谷SO42-的二次转化明显高于NO3-; 分城市来看, 察县SO42-的二次转化程度最高, 其次是伊宁县, 伊宁市的二次转化最低.有研究表明[41, 42], RH、T、O3和SO2的浓度会影响SO42-的二次转化, RH和O3分别被作为非均相反应和光化学反应的指标.本研究利用SOR与RH、T、O3和SO2之间的多元回归方程进一步探究各因素的影响作用和影响程度.
从表 2中可知, CTV点位受RH影响最高, 采样期间察县RH高于其他县市, 较高RH易促进SO42-非均相转化, 表明CTV点位SO42-主要由非均相反应生成; YNCE点位受O3影响最高, 伊宁县O3浓度明显高于其他县市, 表明YNCE点位SO42-主要由均相反应产生.HCE点位受4种因素的影响程度均小于CTV和YNCE, 表明HCE可能受到两种反应机制共同影响.伊宁市PM2.5和PM10中SO42-的形成机制总体上以非均相反应为主, 其中PM10中YNE点位受RH影响较小.
![]() |
表 2 6点位PM10和PM2.5中各因素与SOR多元线性回归系数 Table 2 Multiple linear regression coefficients between SOR and all factors in PM10 and PM2.5 at six sites |
4个城市SO42-浓度相当, 然而周边三县SOR明显高于伊宁市.一方面, 察县RH最高, 伊宁县大气氧化性较强, 高RH易促进硫酸盐的非均相转化, 氧化性强易促进硫酸盐的均相转化; 另外, 霍城县颗粒物浓度较低, 本地源排放较小, 远离伊宁市, 受区域传输影响相对较大[12], 部分硫酸盐可能来自传输过程中的二次转化, 导致其SOR高于伊宁市.另一方面, SO42-浓度与大气中SO2浓度有直接关系, 周边三县的ρ(SO2)(3.7 μg ·m-3)明显低于伊宁市(9.0 μg ·m-3), 而SO2主要来源于化石燃料的燃烧, 表明伊宁市受本地一次排放影响更为明显.
2.3 主要离子相关性和存在形式大气颗粒物中, 二次组分一般以(NH4)2SO4、NH4NO3和NH4Cl的形式存在, NH4+优先与SO42-结合生成(NH4)2SO4或者NH4HSO4, 剩余的NH4+再与NO3-和Cl-结合.Ca2+和Mg2+是扬尘源的标志物[43], Cl-的来源较为复杂, 主要包括生物质燃烧、化石燃料燃烧和海盐传输[44].各种离子之间的相关性一方面反映了大气气溶胶的结合方式, 另一方面也大致反映了其来源.对离子组分间的相关性进行分析发现, 6点位PM2.5和PM10中SO42-与NH4+之间均存在良好的正相关关系; 除PM2.5中NG点位和PM10中CTV点位外, 其余点位NO3-与NH4+之间均呈现正相关关系; PM2.5中Cl-与NH4+之间均不相关, YNE(0.64)、NG(0.25)和CTV(0.34)点位PM10中的Cl-与NH4+则呈现出较为明显的正相关关系.这表明, 伊犁河谷大气颗粒物中NH4+主要以(NH4)2SO4形式存在, 部分点位NH4+还以NH4NO3形式存在; 此外, 个别点位PM10中NH4+与Cl-以NH4Cl的形式结合.Ca2+和Mg2+在PM2.5和PM10中均呈现出明显正相关关系(R=0.56和0.51, P<0.01), 说明主要来自扬尘源.
有研究证实[45, 46], 当n(NH4+)/n(SO42-)大于2时, SO42-与NH4+全部转化为(NH4)2SO4, 而比值介于1~2之间时, 两者以(NH4)2SO4和NH4HSO4两种形式存在.本研究分别绘制了4个城市PM2.5和PM10中n(NH4+)与n(SO42-)和n(NH4+)与n(2SO42-+NO3-)的散点图(图 3), 以进一步分析NH4+与SO42-和NO3-之间的结合方式.
![]() |
(a)和(b)为PM2.5, (c)和(d)为PM10 图 3 PM2.5和PM10中n(NH4+)和n(SO42-)与n(NH4+)和n(2SO42-+NO3-)的散点图 Fig. 3 Scatter plots of n(NH4+) and n(SO42-), n(NH4+) and n(2SO42-+NO3-) in PM2.5 and PM10 |
各城市PM2.5和PM10中n(NH4+)与n(SO42-)拟合斜率分别为:1.56和1.54(察县)、0.88和1.28(霍城县)、2.10和1.43(伊宁县)、0.90和2.51(伊宁市), 均呈现出正相关关系[图 3(a)和3(c)], 这表明4个城市PM2.5和PM10中的NH4+中和SO42-生成了NH4HSO4和(NH4)2SO4; 且散点落在1 ∶2线以上, 这表明NH4+与SO42-反应后还有富余.进一步分析n(NH4+)和n(2SO42-+NO3-)的相关性发现[图 3(b)和3(d)], PM2.5和PM10中的大部分散点落在1 ∶1线以下, 这可能是由于夏季NH4NO3易分解、不稳定造成; PM10中少量散点落在1 ∶1以上, 这表明PM10中有少量的NH4+和NO3-结合生成了NH4NO3.
对比4个城市PM2.5中SNA的存在形式发现不同城市存在差异, 图 3中n(NH4+)与n(SO42-)相关性显示, 伊宁县NH4+完全被SO42-中和生成(NH4)2SO4, 察县主要生成了NH4HSO4和(NH4)2SO4, 霍城县和伊宁市更易于形成(NH4)HSO4; n(NH4+)与n(2SO42-+NO3-)的相关性显示出4个城市NH4+不足并未生成NH4NO3.PM10中的存在形式分布特征分别为:伊宁市NH4+完全中和形成(NH4)2SO4, 周边三县则更易形成NH4HSO4和(NH4)2SO4; 而仅有伊宁市NH4+盈余, 进一步形成了NH4NO3.
综上结果显示, SNA的主要存在形式为NH4HSO4、(NH4)2SO4和NH4NO3, 而NH4+与Cl-之间的正相关性表明二者拥有相同来源.4个城市PM2.5和PM10中n(NH4+)与n(2SO42-+NO3-)之间的斜率大小排序为:伊宁市>察县>伊宁县>霍城县, 其中PM2.5中均未形成NH4NO3, 而PM10中仅有伊宁市形成NH4NO3, 这主要与伊宁市NO3-前体物浓度较高有关.
3 结论(1) 城市间颗粒物分布特征不同, 伊宁市高ρ(PM2.5)(25 μg ·m-3)主要是受本地工业源贡献; 伊宁县高ρ(PM10)(63 μg ·m-3)主要与其受扬尘源的影响较大及扩散条件较差的山地环境有关; 而霍城县良好的扩散条件使其ρ(PM2.5)(20 μg·m-3)和ρ(PM10)(49 μg ·m-3)均为最低.
(2) SO42-、Ca2+、NO3-和NH4+为PM2.5和PM10中主要的4种离子, 其中4个城市SO42-和Ca2+浓度均较为接近, 且城市间相关性明显, 说明伊犁河谷SO42-和Ca2+呈现区域性污染特征, 周边三县SO42-受到明显的自伊宁市传输影响.因此, 后续管控需要加强伊宁市燃煤源的管控, 另外4个城市均需要加强道路扬尘和建筑扬尘的管控.
(3) SOR与各因素之间相关性表明, 伊宁县SO42-主要受高O3浓度影响均相反应形成, 察县和伊宁市SO42-主要受RH影响非均相反应形成, 霍城县则由非均相和均相反应共同形成.
(4) 离子间相关性结果显示NH4+与NO3-、SO42-主要以(NH4)2SO4、NH4HSO4和NH4NO3的形式存在, 伊宁市高NO2利于NH4NO3的形成; 部分点位PM10中部分铵盐主要以NH4Cl形式存在.
[1] | Yao L Q, Kong S F, Zheng H, et al. Co-benefits of reducing PM2.5 and improving visibility by COVID-19 lockdown in Wuhan[J]. npj Climate and Atmospheric Science, 2021, 4(1). DOI:10.1038/s41612-021-00195-6 |
[2] | Kinney P L. Interactions of climate change, air pollution, and human health[J]. Current Environmental Health Reports, 2018, 5(1): 179-186. DOI:10.1007/s40572-018-0188-x |
[3] | Pang N N, Gao J, Che F, et al. Cause of PM2.5 pollution during the 2016-2017 heating season in Beijing, Tianjin, and Langfang, China[J]. Journal of Environmental Sciences, 2020, 95: 201-209. DOI:10.1016/j.jes.2020.03.024 |
[4] | Li G X, Huang J, Wang J W, et al. Long-term exposure to ambient PM2.5 and increased risk of CKD prevalence in China[J]. Journal of the American Society of Nephrology, 2021, 32(2): 448-458. DOI:10.1681/ASN.2020040517 |
[5] | Scotto F, Bacco D, Lasagni S, et al. A multi-year source apportionment of PM2.5 at multiple sites in the southern Po Valley (Italy)[J]. Atmospheric Pollution Research, 2021, 12(11). DOI:10.1016/j.apr.2021.101192 |
[6] | Fu X X, Wang X M, Hu Q H, et al. Changes in visibility with PM2.5 composition and relative humidity at a background site in the Pearl River Delta region[J]. Journal of Environmental Sciences, 2016, 40: 10-19. DOI:10.1016/j.jes.2015.12.001 |
[7] | Goudarzi G, Shirmardi M, Naimabadi A, et al. Chemical and organic characteristics of PM2.5 particles and their in-vitro cytotoxic effects on lung cells: the Middle East dust storms in Ahvaz, Iran[J]. Science of the Total Environment, 2019, 655: 434-445. DOI:10.1016/j.scitotenv.2018.11.153 |
[8] | Srivastava D, Xu J S, Vu T V, et al. Insight into PM2.5 sources by applying positive matrix factorization (PMF) at urban and rural sites of Beijing[J]. Atmospheric Chemistry and Physics, 2021, 21(19): 14703-14724. DOI:10.5194/acp-21-14703-2021 |
[9] | Yang H M, Wang J F, Chen H D, et al. Chemical characteristics, sources and evolution processes of fine particles in Lin'an, Yangtze River Delta, China[J]. Chemosphere, 2020, 254. DOI:10.1016/j.chemosphere.2020.126851 |
[10] | Yan F H, Chen W H, Jia S G, et al. Stabilization for the secondary species contribution to PM2.5 in the Pearl River Delta (PRD) over the past decade, China: a meta-analysis[J]. Atmospheric Environment, 2020, 242. DOI:10.1016/j.atmosenv.2020.117817 |
[11] | Liu H B, Talifu D, Ding X, et al. Particles liquid water and acidity determine formation of secondary inorganic ions in Urumqi, NW China[J]. Atmospheric Research, 2021, 260. DOI:10.1016/j.atmosres.2021.105622 |
[12] | Huang X J, Liu Z R, Liu J Y, et al. Chemical characterization and source identification of PM2.5 at multiple sites in the Beijing-Tianjin-Hebei region, China[J]. Atmospheric Chemistry and Physics, 2017, 17(21): 12941-12962. DOI:10.5194/acp-17-12941-2017 |
[13] |
宓科娜, 庄汝龙, 梁龙武, 等. 长三角PM2.5时空格局演变与特征——基于2013-2016年实时监测数据[J]. 地理研究, 2018, 37(8): 1641-1654. Mi K N, Zhuang R L, Liang L W, et al. Spatio-temporal evolution and characteristics of PM2.5 in the Yangtze River Delta based on real-time monitoring data during 2013-2016[J]. Geographical Research, 2018, 37(8): 1641-1654. |
[14] | 郭振东. 长三角冬季PM2.5组分时空分布特征及其来源解析[D]. 南京: 南京信息工程大学, 2019. |
[15] | Wang H L, An J L, Cheng M T, et al. One year online measurements of water-soluble ions at the industrially polluted town of Nanjing, China: sources, seasonal and diurnal variations[J]. Chemosphere, 2016, 148. DOI:10.1016/j.chemosphere.2016.01.066 |
[16] |
吴丹, 蔺少龙, 杨焕强, 等. 杭州市PM2.5中水溶性离子的污染特征及其消光贡献[J]. 环境科学, 2017, 38(7): 2656-2666. Wu D, Lin S L, Yang H Q, et al. Pollution characteristics and light extinction contribution of water-soluble ions of PM2.5 in Hangzhou[J]. Environmental Science, 2017, 38(7): 2656-2666. DOI:10.3969/j.issn.1000-6923.2017.07.030 |
[17] | Qiu X H, Duan L, Gao J, et al. Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, China[J]. Journal of Environmental Sciences, 2016, 40: 75-83. DOI:10.1016/j.jes.2015.10.021 |
[18] | Li L L, Li J, Yu R C. Characteristics of summer regional rainfall events over Ili River Valley in Northwest China[J]. Atmospheric Research, 2020, 243. DOI:10.1016/j.atmosres.2020.104996 |
[19] |
辜天军. 伊宁市冬季PM2.5和PM10时空变化特征[J]. 科技资讯, 2021, 19(19): 81-83. Gu T J. Temporal and spatial variation characteristics of PM2.5 and PM10 in winter in Yining City[J]. Science & Technology Information, 2021, 19(19): 81-83. |
[20] | 新疆维吾尔自治区生态环境状况公报[EB/OL]. http://sthjt.xinjiang.gov.cn/xjepd/hjzkgb/common_list.shtml, 2022-02-08. |
[21] |
秦艳, 施介宽, 张志宗. 典型气象日方法在大气环境影响评价中的应用[J]. 东华大学学报(自然科学版), 2006, 32(1): 64-68. Qin Y, Shi J K, Zhang Z Z. The application of typical weather day in atmospheric environmental impact assessment[J]. Journal of Donghua University (Natural Science Edition), 2006, 32(1): 64-68. DOI:10.3969/j.issn.1671-0444.2006.01.015 |
[22] | Ren C H, Huang X, Wang Z L, et al. Nonlinear response of nitrate to NOx reduction in China during the COVID-19 pandemic[J]. Atmospheric Environment, 2021, 264. DOI:10.1016/j.atmosenv.2021.118715 |
[23] | Gao X Y, Zhong C, Tang M J, et al. Key factors determining heterogeneous uptake kinetics of NO2 onto alumina: implication for the linkage between laboratory work and modeling study[J]. Journal of Geophysical Research, 2021, 126(19). DOI:10.1029/2021JD034694 |
[24] | Huang X J, Zhang J K, Zhang W, et al. Atmospheric ammonia and its effect on PM2.5 pollution in urban Chengdu, Sichuan Basin, China[J]. Environmental Pollution, 2021, 291. DOI:10.1016/j.envpol.2021.118195 |
[25] | Huang X J, Liu Z R, Zhang J K, et al. Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing[J]. Atmospheric Research, 2016, 168: 70-79. DOI:10.1016/j.atmosres.2015.08.021 |
[26] | Yao Q, Liu Z R, Han S Q, et al. Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions in a coast megacity of North China Plain[J]. Environmental Science and Pollution Research, 2020, 27(21): 26750-26762. DOI:10.1007/s11356-020-09052-0 |
[27] |
汪蕊, 丁建丽, 马雯, 等. 基于PSCF与CWT模型的乌鲁木齐市大气颗粒物源区分析[J]. 环境科学学报, 2021, 41(8): 3033-3042. Wang R, Ding J L, Ma W, et al. Analysis of atmospheric particulates source in Urumqi based on PSCF and CWT models[J]. Acta Scientiae Circumstantiae, 2021, 41(8): 3033-3042. DOI:10.13671/j.hjkxxb.2021.0044 |
[28] |
魏明娜, 谢海燕, 邓文叶, 等. 乌鲁木齐市采暖期与非采暖期大气PM2.5和PM10中水溶性离子特征分析[J]. 安全与环境学报, 2017, 17(5): 1986-1991. Wei M N, Xie H Y, Deng W Y, et al. Water-soluble ions pollution characteristics of the atmospheric particles(PM2.5 and PM10) in Urumqi during the heating and non-heating periods[J]. Journal of Safety and Environment, 2017, 17(5): 1986-1991. |
[29] | Su J, Zhao P S, Ding J, et al. Insights into measurements of water-soluble ions in PM2.5 and their gaseous precursors in Beijing[J]. Journal of Environmental Sciences, 2021, 102: 123-137. DOI:10.1016/j.jes.2020.08.031 |
[30] | Huang X F, Zou B B, He L Y, et al. Exploration of PM2.5 sources on the regional scale in the pearl river delta based on ME-2 modeling[J]. Atmospheric Chemistry and Physics, 2018, 18(16): 11563-11580. DOI:10.5194/acp-18-11563-2018 |
[31] |
黄含含, 王羽琴, 李升苹, 等. 西安市PM2.5中水溶性离子的季节变化特征[J]. 环境科学, 2020, 41(6): 2528-2535. Huang H H, Wang Y Q, Li S P, et al. Seasonal variation of water-soluble ions in PM2.5 in Xi'an[J]. Environmental Science, 2020, 41(6): 2528-2535. |
[32] | Hu X F, Yin Y Z, Duan L, et al. Temporal and spatial variation of PM2.5 in Xining, Northeast of the Qinghai-Xizang (Tibet) Plateau[J]. Atmosphere, 2020, 11(9). DOI:10.3390/atmos11090953 |
[33] | Liu J, Wu D, Fan S J, et al. A one-year, on-line, multi-site observational study on water-soluble inorganic ions in PM2.5 over the Pearl River Delta region, China[J]. Science of the Total Environment, 2017, 601-602: 1720-1732. DOI:10.1016/j.scitotenv.2017.06.039 |
[34] |
刀谞, 张霖琳, 王超, 等. 京津冀冬季与夏季PM2.5/PM10及其水溶性离子组分区域性污染特征分析[J]. 环境化学, 2015, 34(1): 60-69. Dao X, Zhang L L, Wang C, et al. Characteristics of mass and ionic compounds of atmospheric particles in winter and summer of Beijing-Tianjin-Hebei area, China[J]. Environmental Chemistry, 2015, 34(1): 60-69. |
[35] |
王璐, 温天雪, 苗红妍, 等. 太原大气颗粒物中水溶性无机离子质量浓度及粒径分布特征[J]. 环境科学, 2016, 37(9): 3249-3257. Wang L, Wen T X, Miao H Y, et al. Concentrations and size distributions of water-soluble inorganic ions in aerosol particles in Taiyuan, Shanxi[J]. Environmental Science, 2016, 37(9): 3249-3257. |
[36] |
李佳琪, 张军科, 董贵明, 等. 《大气污染防治行动计划》后期成都大气PM2.5中水溶性无机离子特征[J]. 环境科学, 2021, 42(12): 5616-5623. Li J Q, Zhang J K, Dong G M, et al. Characterization of water-soluble inorganic ions in atmospheric PM2.5 in Chengdu during the later stage of the air pollution prevention and control action plan[J]. Environmental Science, 2021, 42(12): 5616-5623. |
[37] |
陈慕白, 袁明浩, 林秋菊, 等. 郑州市PM2.5组分季节性特征及来源研究[J]. 中国环境监测, 2020, 36(4): 61-68. Chen M B, Yuan M H, Lin Q J, et al. Seasonal characteristics and source apportionment of PM2.5 components in Zhengzhou City[J]. Environmental Monitoring in China, 2020, 36(4): 61-68. |
[38] |
张蕾, 姬亚芹, 王士宝, 等. 盘锦市冬季PM2.5水溶性离子特征及来源分析[J]. 环境科学, 2018, 39(6): 2521-2527. Zhang L, Ji Y Q, Wang S B, et al. Characteristics and source apportionment of water-soluble ions in PM2.5 during winter in Panjin[J]. Environmental Science, 2018, 39(6): 2521-2527. |
[39] | Zhang Z Y, Cao L, Liang Y, et al. Importance of NO3 radical in particulate nitrate formation in a southeast Chinese urban city: New constraints by δ15 N-δ18 O space of NO3-[J]. Atmospheric Environment, 2021, 253. DOI:10.1016/j.atmosenv.2021.118387 |
[40] | Wang X Q, Wei W, Cheng S Y, et al. Characteristics of PM2.5 and SNA components and meteorological factors impact on air pollution through 2013-2017 in Beijing, China[J]. Atmospheric Pollution Research, 2019, 10(6): 1976-1984. DOI:10.1016/j.apr.2019.09.004 |
[41] | Ma P K, Quan J N, Jia X C, et al. Effects of ozone and relative humidity in secondary inorganic aerosol formation during haze events in Beijing, China[J]. Atmospheric Research, 2021, 264. DOI:10.1016/j.atmosres.2021.105855 |
[42] | Liu Y C, Feng Z M, Zheng F X, et al. Ammonium nitrate promotes sulfate formation through uptake kinetic regime[J]. Atmospheric Chemistry and Physics, 2021, 21(17): 13269-13286. DOI:10.5194/acp-21-13269-2021 |
[43] |
操文祥, 陈楠, 田一平, 等. 武汉地区秋冬季清洁与重污染过程的水溶性离子特征研究[J]. 环境科学学报, 2017, 37(1): 82-88. Cao W X, Chen N, Tian Y P, et al. Characteristic analysis of water-soluble ions during clean and heavy pollution processes in autumn and winter in Wuhan[J]. Acta Scientiae Circumstantiae, 2017, 37(1): 82-88. |
[44] | Xie Y J, Lu H B, Yi A J, et al. Characterization and source analysis of water-soluble ions in PM2.5 at a background site in Central China[J]. Atmospheric Research, 2020, 239. DOI:10.1016/j.atmosres.2020.104881 |
[45] | Huang X J, Zhang J K, Luo B, et al. Water-soluble ions in PM2.5 during spring haze and dust periods in Chengdu, China: Variations, nitrate formation and potential source areas[J]. Environmental Pollution, 2018, 243: 1740-1749. DOI:10.1016/j.envpol.2018.09.126 |
[46] | Ukhov A, Mostamandi S, Krotkov N, et al. Study of SO2 pollution in the Middle East using MERRA-2, CAMS data assimilation products, and high-resolution WRF-Chem simulations[J]. Journal of Geophysical Research, 2020, 125(6). DOI:10.1029/2019JD031993 |