环境科学  2022, Vol. 43 Issue (11): 4810-4821   PDF    
河口-近海环境新污染物的环境过程、效应与风险
王新红, 于晓璇, 王思权, 殷笑晗, 钱韦旭, 林晓萍, 吴越, 刘畅     
厦门大学环境与生态学院, 厦门 361102
摘要: 在全球变化和人类活动双重影响下, 大量陆源污染物特别是备受各国政府和民众关注的微塑料、新型持久性有机污染物以及药物和个人护理品等新污染物进入水体环境并迁移扩散, 对近海生态环境安全和人体健康产生了巨大影响.综述国内外微塑料、全/多氟化合物、抗生素和内分泌干扰物等新污染物在河口-近海环境中的污染来源、时空分布和迁移传输等环境过程及其影响因素, 分析探讨近海水生生态系统中新污染物产生的不良生态效应和风险, 提出未来研究重点应关注河口-近海环境中多种新污染物的相互作用和新污染物产生的联合生态毒理效应及造成的生态和健康风险等, 为陆海统筹下的海洋污染防治和海洋经济的健康发展提供科学依据.
关键词: 新污染物      河口近海      迁移传输      环境效应      健康风险     
Environmental Process, Effects and Risks of Emerging Contaminants in the Estuary-Coastal Environment
WANG Xin-hong , YU Xiao-xuan , WANG Si-quan , YIN Xiao-han , QIAN Wei-xu , LIN Xiao-ping , WU Yue , LIU Chang     
College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
Abstract: Human activities and global climate change have contributed substantially to the input of land-sourced pollutants into the aquatic environment, especially for emerging or newly identified contaminants, such as microplastics, emerging persistent organic pollutants, pharmaceuticals, and personal care products. The prevalence and toxicity of these emerging pollutants has raised continued concern for the health and safety of the public worldwide. A review of sources, distribution, interfacial transport processes of microplastics, per-and polyfluorinated compounds, antibiotics, and endocrine-disrupting chemicals and factors that influence their environmental behavior in the estuary-coastal environment have been included. The adverse ecological effects and health risks of these emerging contaminants to humans were also reviewed. Lastly, the direction of future research was provided regarding the environmental behavior of multiple emerging pollutants in the coastal environment and the health risks resulting from their interactions, supporting the prevention and control of marine pollution and the healthy development of the marine economy.
Key words: emerging contaminants      estuary-coastal      interfacial transport      environmental effects      health risks     

持久性有机污染物、内分泌干扰物、抗生素和微塑料等是目前环境中广受关注的新污染物[1, 2], 具有生物毒性、环境持久性、生物累积性等特征, 对生态环境和人体健康具有较大的危害性风险.由于工业化进程的加快, 新污染物在全球范围内的检出已引发各国政府和民众的关注, 并且多个国家也对新污染物进行了相应的污染现状调查、毒性和风险评价以及污染控制修复研究. 2022年新污染物治理已被我国生态环境部纳入“十四五”规划和2035年远景目标.

河口位于河流与海洋的交汇处, 是一个功能多并且复杂的生态系统, 具有水动力作用强烈、泥沙输送量大、物质交换频繁和界面过程复杂等特点, 且受人类活动干扰强烈, 是对全球变化响应最为敏感的地带[3].河口可接收大量陆源污染物, 是水污染严重的区域之一.由于河口区影响因素复杂, 污染物在该陆海界面的迁移传输变化剧烈, 并受到多种因素调控.因此, 阐明新污染物在河口-近海环境的输运变动机制和人类活动产生的生态环境影响, 可为新污染物治理和陆海统筹的环境保护等提供科学依据.本文总结了全/多氟化合物(PFAS)、内分泌干扰物、抗生素和微塑料为主的新污染物在河口-近海环境的来源、污染现状、环境行为、生态效应和健康风险, 并提出未来亟待发展的研究方向.

1 河口-近海新污染物的来源及污染现状 1.1 河口-近海环境新污染物的来源

随着工业化和城市化的快速发展, 陆源新污染物的直接或间接排放导致水体环境中新污染物浓度不断增加, 而这些污染物由于具有不同的用途而存在来源差异, 并且通过生活、工农业和医院废水排放、垃圾填埋场渗滤液、农业径流和降雨进入水生系统(图 1).河口-近海环境中新污染物会通过多点源或者非点源的方式进入到水体中, 因此了解新污染物的来源是研究新污染物环境行为和对其进行治理的关键.例如, PFAS广泛应用于电镀材料、纺织品、消防泡沫、防水防污剂和不粘锅涂料等, 因此其在工业发达的地区污染水平较高[4~6].内分泌干扰物(雌激素等)和微塑料的污染也多来自于工业、生产制造区域和农业发达的地区[7~9].而抗生素作为医疗用品和农业畜牧业养殖所使用的药品, 河口-近海环境中的抗生素主要来源于医院和制药厂等医疗区、住宅区和养殖区域的排放[10, 11].因此, 河口-近海环境中的新污染物的来源分布与新污染物的生产和使用情况密切相关, 并且由于河口到近海环境中水流的稀释效应, 河流河口(靠近污染源的位置)的污染物浓度比海洋环境高[12~15].

图 1 河口-近海新污染物的污染来源 Fig. 1 Sources of emerging pollutants in estuary-coastal environments

大部分来自工业、医院和家用排放污水都会经过排水网络进入污水处理厂, 少部分未经处理的生活和工业废水直接排放进入水体并通过河网进入河口-近海环境中[16].虽然污水处理场会通过生物膜反应器、纳米技术和高级氧化技术去除污水中抗生素、PFAS和雌激素等新污染物, 但由于技术限制导致小粒径微塑料等污染物无法彻底去除, 使其在污水处理厂附近富集并大量检出[17~21].因此, 污水处理厂被认为是水生环境中的新污染物的主要来源之一[22].另外, 河口-近海环境中新污染物的来源还可以通过大气沉降[23, 24]、降雨和洪水[25]等途径从排放源进入到水体中.目前, 新污染物在河口近海的环境行为仍以污染调查为主, 而在河口近海的环境变动过程及其影响调控因素的研究偏少.

1.2 河口-近海环境新污染物的污染现状

河口受人为活动(工业化、农业化、水产养殖和人口密度等)的影响程度是新污染物在全球不同河口污染水平差异的主要原因.以我国三大主要河口为例, 珠江和长江上游多以发展塑料加工和电子通讯设备生产等不同工业活动为主[26], 且年径流总量高, 如珠江为3 492亿m3, 长江是亚洲第一大河流, 年径流总量高达9 051亿m3, 平均输沙量为4.33亿t, 导致珠江口和长江口中新污染物的浓度处于较高水平(表 1); 我国中部区域多以工农业为主[9], 因此黄河口和长江口抗生素和内分泌干扰物的污染水平较高.国外河流河口的污染情况也有类似结论.欧洲莱茵河沿岸平原区农业发达, 与工业较为发达且河流支流水系发达的密西西比河相比, 主要以抗生素污染为主; 而南非的奥兰治河及其主要支流瓦尔河主要以牧业为主, 且上游人口和沿岸城市数目极少, 因此该地区新污染物处于较低水平.河口-近海环境中新污染物的污染水平与点源排放显著相关[13~15], 并且陆源新污染物的污染水平从河口到近海环境呈现逐渐降低的趋势.由表 1可以看出, 新污染物在太平洋和大西洋等外海区域处于较低水平.目前, 针对新污染物的调查研究, 尤其是微塑料, 在采样和分析方法上存在不同的问题, 导致同一海域微塑料的污染数据存在差异, 也使不同海域微塑料污染状况较难进行比较.因此未来新污染物的采样和分析方法需要进行规范化和统一化.另外, 很多近海和开阔大洋中新污染物的分布和污染水平还未见报道.因此, 不同类型新污染物从河口到近海环境中的分布和迁移特征仍需要进一步深入研究.

表 1 全球主要河口-近海水环境中新污染物的污染现状1) Table 1 Pollution status of emerging pollutants in global estuary-coastal environments

2 河口-近海环境新污染物的迁移传输及其影响因素

陆源新污染物随河流迁移, 流经河口, 一直扩散到近海环境的过程存在空间传输和界面传输行为, 并受到多种因素调控.已有大量研究对新污染物在河口-近海环境的界面传输过程及其影响因素通过实验室模拟和模型构建等进行了探索.

2.1 新污染物在河口-近海的空间传输及其影响因素

新污染物在河口-近海环境的迁移传输过程复杂, 受河流径流量、水环境条件、河流动力学和气象因素等的综合影响.首先, 不同河流每年的入海径流量存在差异, 导致河流向近海传输污染物的负荷也有所不同[48].通常微塑料通过河流排放入海的量比较大, 据估计全球1 000多条河流微塑料排放量占全球年排放量的80%, 并且小型城市河流贡献量更大[78].内分泌干扰物和抗生素在河口-近海的迁移也会受到相应的影响.大量的抗生素负荷会从河流上游向下游累积并排放入海, 如海河和永定新河流入渤海湾的抗生素年均投入量为5 t[79, 80].珠三角地区每年向邻近海域的内分泌干扰物通量超过500 t[49].其次, 河流的水环境条件和水动力学参数, 如水体温度、pH和离子强度等, 也会影响新污染物在河口-近海的空间迁移传输[81~84].例如, 微塑料的表面电荷和空间斥力随着水体物理化学性质(如金属离子和pH值)发生变化, 从而影响微塑料和其他颗粒物以及污染物的团聚作用而影响其迁移行为[85].另外, 河流的动力学变化, 如潮汐涨落和潮汐循环、混合和分层的变化[86]都会改变河口向近海微塑料的输送过程, 而潮汐输送的确切方向和通量需要根据当地的潮汐状况和河口的形状来具体分析[87].潮汐变化还会改变河口不同粒径微塑料的组成[88], 也会影响PFAS迁移传输的动力学过程[89]以及抗生素和内分泌干扰物[90]在河口-近海的空间传输行为.

洋流和一些气象因素, 如风力和风向也是新污染物从近岸到开阔海域长距离运输的主要驱动因素之一.在海洋洋流、大面积的风力影响下, 微塑料和化学污染物到达海洋后可以迅速和广泛地分散, 并从源头开始进行远距离传输[91].洋流会将近岸河口的污染物向远处输送, 影响微塑料和PFAS在边缘海的分布, 甚至会使这些新污染物参与全球传输[92, 93].在海洋的垂直湍流混合过程中, 亚表层洋流通常比海洋表面洋流流速低, 而且没有风和表面波的影响, 会导致微塑料、颗粒物和化学物停留时间增大.对微塑料空间迁移而言, 除了风驱动的洋流变动, 风本身也可以直接影响塑料在海面上漂浮的轨迹和速度[94].

2.2 新污染物在河口-近海的界面分配及其影响因素

新污染物在河口-近海的界面分配及其影响因素对理解其源汇机制和污染控制具有重要作用[95].沉积物可以作为水中PFAS和内分泌干扰物等新污染物的重要汇和底栖食物网的营养来源将生物和环境相关联[96].抗生素、PFASs和内分泌干扰物在水沉积物界面的迁移传输主要由分配系数(Kd)或者辛醇-水分配系数(Kow)主导, KdKow值越大, 表明污染物越倾向于在沉积物中分布, 反之污染物倾向于溶解在水中.水体的理化性质(盐度、pH等)、黏土矿物的有机质含量和污染物性质等因素都能够影响这些新污染物在水-沉积物的界面分配行为[11, 97, 98].微塑料在水-沉积物中的迁移沉降会受到微塑料本身的大小、密度和形状等因素影响, 密度越大, 越容易沉降到沉积物中.另外, 生物污损以及和其他颗粒物的吸附作用也会使其密度增大, 从而更容易沉降[99].除此之外, 微塑料具有特殊的载体行为, 可以吸附环境中的抗生素、PFAS和内分泌干扰物等新污染物[82, 83, 100, 101].然而在动态的水环境下, 微塑料对于这些污染物的吸附和解吸过程非常复杂且受到微塑料性质、微塑料所在的环境介质和化合物的性质等多种因素的影响[102~104], 从而使新污染物在河口-近海迁移传输等环境行为变得更加复杂.虽然实验室的研究工作已经较为全面地剖析了内分泌干扰物、抗生素和PFAS在固液两相间的分配机制, 但受复杂自然环境的影响, 其在沉积物-水界面的分配行为仍有较大差距, 在未来的研究工作中应重视将多个影响因素与微塑料的相互作用纳入其界面行为分析.

2.3 全球变化和极端气候对河口-近海环境新污染物迁移的影响

由全球气候变化所导致的干旱、洪水和水温变化等极端环境事件, 对新污染物的赋存和迁移转化产生重要影响.如在干旱时期, 污染物集中在河流, 而在洪水期间, 会导致某些物质(如颗粒物或微塑料)的再悬浮使污染物重新释放[105].新污染物在河口-近海水生生态系统中的环境行为和生物累积受到多种复杂因素的综合影响, 包括环境条件, 如温度和降水; 污染物的物理化学性质, 如疏水性和密度等.气候变化会同时改变上述影响因素, 从而影响污染物在环境中的迁移行为, 改变污染物在食物网中的积累[106, 107].因此, 对于全球变化对新污染物在河口-近海的迁移运输等环境行为研究仍需加强.

3 新污染物的生态效应与风险 3.1 新污染物在海洋生物体内的富集与毒性效应

随着近海生态系统的污染情况日趋严重, 水生生物会不断吸收富集环境中的新污染物.目前, 已在不同水生生物, 包括浮游植物、浮游动物、鱼类和其他大型海洋哺乳动物等生物体内检测到PFAS[108~110]、抗生素[111]、内分泌干扰物[112~114]和微塑料[115~118]的存在.PFAS、抗生素和内分泌干扰物能够在生物体内富集, 并沿食物链产生生物放大行为[119~121], 而微塑料在水生生态食物链中的累积传递和放大效应仍存在争议.例如, 在淡水环境中, 淡水鱼类对微塑料的直接摄食占主导地位[122], 但有研究认为海洋灰海豹(Halichoerus grypus)粪便中存在的微塑料是由于它们食用野生鲭鱼(Scomber scobrus)的营养转移所致[123]; 然而多种野外观测结果中并未发现微塑料在整个海洋食物网中的显著生物放大效应[124, 125].微塑料与其他3种新污染物的生物富集和放大作用有所不同, 其原因主要是一些持久性有机污染物等具有亲脂性[126], 并且在生物体内存在一系列代谢循环过程, 当代谢速率小于吸收速率时, 很容易在生物组织中累积, 并通过生物放大进入捕食者体内; 而微塑料通常以固体形式存在, 大尺寸微塑料不能经过循环系统进入器官, 很容易被排出体外, 从而难以被生物体消化吸收[127].因此, 微塑料在海洋生物营养级中的富集和放大行为还需要进一步研究.

新污染物在水环境中的持久性残留可对水生生物产生多种毒性效应(图 2).多种化学污染物通过不同的作用机制干扰关键基因的调控, 并引起氧化应激、DNA损伤、免疫干扰和生殖障碍等负面作用, 从而对生物体、后代和种群造成不利影响.工业化学品/塑料添加剂(如双酚类、阻燃剂、增塑剂)、农药类(如有机氯/磷农药)和雌激素类等均具有内分泌干扰效应[128].它们通常与机体内分泌相关受体结合, 改变内源性激素的合成、释放、运输或代谢, 进而干扰生物体的内分泌功能.除了与受体相互作用外, 此类物质也参与类固醇激素的合成、分布和排泄以及作用于下丘脑垂体性腺(HPG)轴而引起下游反应[129].PFAS对海洋鱼类内分泌系统也具有干扰作用[130, 131], 其主要通过影响类固醇生成和与核激素受体的相互作用干扰内分泌系统[132].此外, PFAS对不同水生生物体的生长抑制、免疫毒性也被发现[133, 134].但由于PFAS单体化合物的种类繁多, 暴露浓度和时间不一, 已有关于此类物质产生不良反应的结论仍存在不一致的问题, 需要进一步加强研究.

图 2 新污染物对水生生物的毒性效应 Fig. 2 Toxic effects of emerging pollutants on aquatic organisms

抗生素作为一类被广泛应用于水产养殖的抗菌药物, 被证实可对非靶标生物产生一系列如死亡率增加、氧化损伤、神经毒性和肠道稳态干扰等负面效应, 并且能够对致病菌和耐药菌进行筛选, 促使耐药菌成为优势菌群, 并促进抗生素抗性基因的富集和通过水平转移等方式进行传播[135~137].抗生素在环境介质中的低水平残留可刺激生物体产生适应机制, 促进积极的反应, 表现出兴奋效应(hormesis)[138].有研究认为, 低剂量兴奋效应是微生物应对抗生素的一种适应机制和防御策略, 以增强它们在低剂量抗生素暴露时的恢复能力[139], 这可能也进一步增加环境中抗性基因的载量, 对公共健康、食品和饮用水安全构成威胁.

微塑料作为化学污染物的一类载体, 这些化学物质可能来自塑料制造过程中加入的化学添加剂, 或由于其吸附能力从污染环境中积累.当微塑料被摄入至生物体内, 其化学添加成分和吸附的污染物就有可能被解吸到生物体内而产生毒性[140].微塑料作为一类复杂多样的污染物, 已有研究表示微塑料在个体、细胞和分子水平上均具有负面效应, 由于微塑料本身与其添加剂和吸附物质的协同作用, 可诱导生物氧化应激、捕食和行为反应下降、能量代谢降低和关于生长发育、神经免疫、肠道损伤等多种不良反应[141~145].但由于塑料聚合物、类型、大小、吸附的环境化学物质和表面生物膜等的多样性, 目前微塑料对生物毒性的定量分析、作用机制等方面仍存在较大的研究空白, 未来仍需进行深入探讨.

3.2 新污染物的风险评价

国内外针对水生生态系统的风险评价方法已开展大量相关研究.其中, 风险商值法(risk quotient, RQ)是评估污染物对目标生物生态风险的最常见的评价方法, 其通过环境中污染物测量浓度(MEC)与预测的无效应浓度(PNEC)之间的比值进行评估.已有研究通过该方法评估水环境中4类新污染物对藻类、水蚤和鱼类的生态风险商值[146~150].风险商法可以评估某些污染物是否产生生态风险, 但不能确定风险等级和危害概率, 更适用于单个化合物的风险评估, 并且针对微塑料的评估没有涉及到不同聚合物的微塑料对水体的生态影响, 具有一定的局限性.RQ法也用于评估沉积物中抗生素和PFASs污染的生态风险, 但由于沉积物中新污染物的毒理学数据有限, 因此采用不同相态间的平衡分配推导沉积物PNEC值[5, 151].由于微塑料存在形态大小和成分种类的多样性, 研究还通过潜在风险污染指数法和层次分析法(AHP)对微塑料污染进行风险评估[152~154].但层次分析法模型局限在需要大量的统计数据, 其中包括了微塑料生产、使用、排放和水体污染丰度等数据.如果不能保证数据的可用性和可靠质量, 其预测准确性将会降低.潜在风险污染指数法由于微塑料背景值未知, 因此无法获得准确的风险指数, 仅能大致进行分级.目前对于新污染物的生态风险评价方法仍需要进一步地优化, 对沉积物中的毒性参数仍需要进一步研究.我国也新颁布了关于新污染物的治理行动方案, 提出建立新污染物的环境风险评估制度, 完善评估方案和评估数据库的必要性.

对于人类摄入污染物存在的水产品所产生的健康风险主要采用健康风险商(health risk quotient, HQ)法, 通过计算估计每日摄入量(EDI)和可接受的日摄入量(ADI)的比值进行评估.危害指数(hazard ratio, HR)也用来评价人体暴露于污染物的健康风险, 其是居民对食品的平均日摄入量(EADI)与污染物非致癌参考剂量(RfD)的比值.食用受污染的水产品是人类暴露新污染物的重要途经之一, 因此对水产品摄入产生的人类健康风险进行评估具有一定的重要性和必要性.已有较多研究针对抗生素、内分泌干扰物在水产品中的污染情况对人类健康进行风险评价[155, 156].近年来, 针对PFAS和微塑料对人体健康风险受到社会的广泛关注.目前EPA存在关于全氟辛烷磺酸[PFOS, 25 μg ·(kg ·d)-1]和全氟辛酸[PFOA, 330 μg ·(kg ·d)-1]的RfD数据[157], 且PFOS通常是鱼类肌肉中最主要的检出物质.通过对比国内外居民海产品摄入产生的PFASs的EADI和HR[158~162], 摄入珠江三角洲河口部分淡水鱼(如罗非鱼、鳢、马面鱼和俄罗斯草鱼)和渤海湾的养殖鱼产生的危险比值均大于1, 表明食用这几种鱼类可能对当地居民的健康构成较高风险, 而摄入其他区域的海产品未产生显著风险.另外, 人类也通过摄食海产品而接触微塑料, 但对人体的风险仍不明确[163].有研究发现, 食用的贝类和小鱼是可能产生最高接触风险的海产品, 因为人们食用的这些海产品中胃肠道通常含有最高浓度的微塑料[164].迄今为止, 关于摄食含微塑料水产品对人体的健康风险评估模型研究相对较少, 并且由于微塑料可以吸附内分泌干扰物、抗生素和PFAS等新污染物, 其在水产品中的复合污染所产生的人类健康风险仍需要进一步的评估.

4 结论与展望

(1) 新污染物的不同使用和生产方式导致河口-近海环境中其来源有所不同, 但新污染物的污染现状与当地的经济发展和支柱产业具有一定的相关性.目前部分河口近海环境中新污染物的污染水平和从河口到近海环境的迁移传输过程及入海通量等仍亟需研究.

(2) 新污染物在河口-近海的迁移传输具有复杂多变的特点, 并且其空间传输和界面分配受到多种因素调控.微塑料作为一种特殊的新污染物, 其对其他有机污染物和微生物的载体效应也会导致其环境行为更为复杂, 因此研究新污染物迁移传输的主要驱动因子及调控机制对于新污染物的治理和控制具有重要意义.

(3) 目前针对新污染物, 尤其是微塑料和PFAS对水生生物的毒性效应和机制仍存在较大的研究空白.微塑料类型、PFAS种类和受试生物的性别和年龄等是重要影响因素, 未来仍需进行全面深入探讨.

(4) 已有研究针对单一新污染物的风险评估较多, 但由于微塑料对抗生素、重金属和持久性有机污染物等具有吸附作用, 因此多种污染物的联合生态风险评估仍需要进一步完善.

参考文献
[1] 王菡娟. 如何应对新污染物?[N]. 人民政协报, 2022-04-07(006).
[2] 章轲. 生态环境部: 抗生素类物质等多种新污染物将纳入重点管控[N]. 第一财经日报, 2022-10-13(A02).
[3] Olisah C, Adams J B, Rubidge G. The state of persistent organic pollutants in South African estuaries: a review of environmental exposure and sources[J]. Ecotoxicology and Environmental Safety, 2021, 219. DOI:10.1016/j.ecoenv.2021.112316
[4] Qi Y J, Hu S B, Huo S L, et al. Spatial distribution and historical deposition behaviors of perfluoroalkyl substances (PFASs) in sediments of Lake Chaohu, a shallow eutrophic lake in Eastern China[J]. Ecological Indicators, 2015, 57: 1-10. DOI:10.1016/j.ecolind.2015.04.015
[5] Zhong H F, Zheng M G, Liang Y, et al. Legacy and emerging per-and polyfluoroalkyl substances (PFAS) in sediments from the East China Sea and the Yellow Sea: occurrence, source apportionment and environmental risk assessment[J]. Chemosphere, 2021, 282. DOI:10.1016/j.chemosphere.2021.131042
[6] 刘云清. 全氟和多氟化合物在渤海湾近岸海域的空间分布及在生物营养级中传递行为的研究[D]. 天津: 天津大学, 2018.
Liu Y Q. Spatial distribution of per-and polyfluoroalkyl substances in the coastal areas of Bohai Bay and their trophic transfer behavior in Bohai Sea[D]. Tianjin: Tianjin University, 2018.
[7] Wang P, Lu Y L, Wang T Y, et al. Occurrence and transport of 17 perfluoroalkyl acids in 12 coastal rivers in South Bohai coastal region of China with concentrated fluoropolymer facilities[J]. Environmental Pollution, 2014, 190: 115-122. DOI:10.1016/j.envpol.2014.03.030
[8] So M K, Yamashita N, Taniyasu S, et al. Health risks in infants associated with exposure to perfluorinated compounds in human breast milk from Zhoushan, China[J]. Environmental Science & Technology, 2006, 40(9): 2924-2929.
[9] 刘宝印, 荀斌, 黄宝荣, 等. 我国水环境中新污染物空间分布特征分析[J]. 环境保护, 2021, 49(10): 25-30.
Liu B Y, Xun B, Huang B R, et al. Spatial differentiation characteristics of new pollutants in China's water environment[J]. Environmental Protection, 2021, 49(10): 25-30. DOI:10.3969/j.issn.1674-1021.2021.10.007
[10] Liu X, Wang H, Zhao H M. Propagation of antibiotic resistance genes in an industrial recirculating aquaculture system located at northern China[J]. Environmental Pollution, 2020, 261. DOI:10.1016/j.envpol.2020.114155
[11] Dong H, Chen Y L, Wang J, et al. Interactions of microplastics and antibiotic resistance genes and their effects on the aquaculture environments[J]. Journal of Hazardous Materials, 2021, 403. DOI:10.1016/j.jhazmat.2020.123961
[12] Wang Q W, Yang G P, Zhang Z M, et al. Optimization of sample preparation and chromatography for the determination of perfluoroalkyl acids in sediments from the Yangtze Estuary and East China Sea[J]. Chemosphere, 2018, 205: 524-530. DOI:10.1016/j.chemosphere.2018.04.143
[13] Kim S, Kim Y, Moon H B. Contamination and historical trends of legacy and emerging plasticizers in sediment from highly industrialized bays of Korea[J]. Science of the Total Environment, 2021, 765. DOI:10.1016/j.scitotenv.2020.142751
[14] Bollmann U E, Möller A, Xie Z Y, et al. Occurrence and fate of organophosphorus flame retardants and plasticizers in coastal and marine surface waters[J]. Water Research, 2012, 46(2): 531-538. DOI:10.1016/j.watres.2011.11.028
[15] Zhao X, Qiu W H, Zheng Y, et al. Occurrence, distribution, bioaccumulation, and ecological risk of bisphenol analogues, parabens and their metabolites in the Pearl River Estuary, South China[J]. Ecotoxicology and Environmental Safety, 2019, 180: 43-52. DOI:10.1016/j.ecoenv.2019.04.083
[16] Verlicchi P, Al Aukidy M, Zambello E. Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment-a review[J]. Science of the Total Environment, 2012, 429: 123-155. DOI:10.1016/j.scitotenv.2012.04.028
[17] Raju S, Carbery M, Kuttykattil A, et al. Transport and fate of microplastics in wastewater treatment plants: implications to environmental health[J]. Reviews in Environmental Science and Bio/Technology, 2018, 17(4): 637-653. DOI:10.1007/s11157-018-9480-3
[18] Pan C G, Liu Y S, Ying G G. Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: removal efficiency and exposure risk[J]. Water Research, 2016, 106: 562-570. DOI:10.1016/j.watres.2016.10.045
[19] Gabet-Giraud V, Miège C, Choubert J M, et al. Occurrence and removal of estrogens and beta blockers by various processes in wastewater treatment plants[J]. Science of the Total Environment, 2010, 408(19): 4257-4269. DOI:10.1016/j.scitotenv.2010.05.023
[20] Guerra P, Kim M, Shah A, et al. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes[J]. Science of the Total Environment, 2014, 473-474: 235-243. DOI:10.1016/j.scitotenv.2013.12.008
[21] Pal A, Gin K Y H, Lin A Y C, et al. Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects[J]. Science of the Total Environment, 2010, 408(24): 6062-6069. DOI:10.1016/j.scitotenv.2010.09.026
[22] Kasprzyk-Hordern B, Dinsdale R M, Guwy A J. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters[J]. Water Research, 2009, 43(2): 363-380. DOI:10.1016/j.watres.2008.10.047
[23] Barroso P J, Santos J L, Martín J, et al. Emerging contaminants in the atmosphere: analysis, occurrence and future challenges[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(2): 104-171. DOI:10.1080/10643389.2018.1540761
[24] Wright S L, Ulke J, Font A, et al. Atmospheric microplastic deposition in an urban environment and an evaluation of transport[J]. Environment International, 2020, 136. DOI:10.1016/j.envint.2019.105411
[25] Corada-Fernández C, Candela L, Torres-Fuentes N, et al. Effects of extreme rainfall events on the distribution of selected emerging contaminants in surface and groundwater: the Guadalete River basin (SW, Spain)[J]. Science of the Total Environment, 2017, 605-606: 770-783. DOI:10.1016/j.scitotenv.2017.06.049
[26] So M K, Miyake Y, Yeung W Y, et al. Perfluorinated compounds in the Pearl River and Yangtze River of China[J]. Chemosphere, 2007, 68(11): 2085-2095. DOI:10.1016/j.chemosphere.2007.02.008
[27] He D, Chen X J, Zhao W, et al. Microplastics contamination in the surface water of the Yangtze River from upstream to estuary based on different sampling methods[J]. Environmental Research, 2021, 196. DOI:10.1016/j.envres.2021.110908
[28] Wang T, Vestergren R, Herzke D, et al. Levels, isomer profiles, and estimated riverine mass discharges of perfluoroalkyl acids and fluorinated alternatives at the mouths of Chinese rivers[J]. Environmental Science & Technology, 2016, 50(21): 11584-11592.
[29] Zhao Z, Tang J H, Mi L J, et al. Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River estuary[J]. Science of the Total Environment, 2017, 599-600: 114-123. DOI:10.1016/j.scitotenv.2017.04.147
[30] Yan C X, Yang Y, Zhou J L, et al. Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment[J]. Environmental Pollution, 2013, 175: 22-29. DOI:10.1016/j.envpol.2012.12.008
[31] Zhang Z M, Zhang H H, Zhang J, et al. Occurrence, distribution, and ecological risks of phthalate esters in the seawater and sediment of Changjiang River Estuary and its adjacent area[J]. Science of the Total Environment, 2018, 619-620: 93-102. DOI:10.1016/j.scitotenv.2017.11.070
[32] Shi J H, Liu X W, Chen Q C, et al. Spatial and seasonal distributions of estrogens and bisphenol A in the Yangtze River Estuary and the adjacent East China Sea[J]. Chemosphere, 2014, 111: 336-343. DOI:10.1016/j.chemosphere.2014.04.046
[33] 刘涛, 孙晓霞, 朱明亮, 等. 东海表层海水中微塑料分布与组成[J]. 海洋与湖沼, 2018, 49(1): 62-69.
Liu T, Sun X X, Zhu M L, et al. Distribution and composition of microplastics in the surface water of the east china sea[J]. Oceanologia et Limnologia Sinica, 2018, 49(1): 62-69.
[34] Wang S Q, Ding G H, Liu Y H, et al. Legacy and emerging persistent organic pollutants in the marginal seas of China: occurrence and phase partitioning[J]. Science of the Total Environment, 2022, 827. DOI:10.1016/j.scitotenv.2022.154274
[35] Zheng H Y, Wang F, Zhao Z, et al. Distribution profiles of per-and poly fluoroalkyl substances (PFASs) and their re-regulation by ocean currents in the East and South China Sea[J]. Marine Pollution Bulletin, 2017, 125(1-2): 481-486. DOI:10.1016/j.marpolbul.2017.08.009
[36] Li F F, Chen L, Chen W D, et al. Antibiotics in coastal water and sediments of the East China Sea: distribution, ecological risk assessment and indicators screening[J]. Marine Pollution Bulletin, 2020, 151. DOI:10.1016/j.marpolbul.2019.110810
[37] Li F F, Wen D H, Bao Y Y, et al. Insights into the distribution, partitioning and influencing factors of antibiotics concentration and ecological risk in typical bays of the East China Sea[J]. Chemosphere, 2022, 288. DOI:10.1016/j.chemosphere.2021.132566
[38] Xie J H, Zhao N, Zhang Y Y, et al. Occurrence and partitioning of bisphenol analogues, triclocarban, and triclosan in seawater and sediment from East China Sea[J]. Chemosphere, 2022, 287. DOI:10.1016/j.chemosphere.2021.132218
[39] Han M, Niu X R, Tang M, et al. Distribution of microplastics in surface water of the lower Yellow River near estuary[J]. Science of the Total Environment, 2020, 707. DOI:10.1016/j.scitotenv.2019.135601
[40] Xu W H, Zhang G, Zou S C, et al. A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China[J]. Water Environment Research, 2009, 81(3): 248-254. DOI:10.2175/106143008X325719
[41] Lu S, Lin C Y, Lei K, et al. Profiling of the spatiotemporal distribution, risks, and prioritization of antibiotics in the waters of Laizhou Bay, northern China[J]. Journal of Hazardous Materials, 2022, 424. DOI:10.1016/j.jhazmat.2021.127487
[42] Sun C Z, Chen L Y, Zhao S S, et al. Seasonal distribution and ecological risk of phthalate esters in surface water and marine organisms of the Bohai Sea[J]. Marine Pollution Bulletin, 2021, 169. DOI:10.1016/j.marpolbul.2021.112449
[43] Zhang W W, Zhang S F, Zhao Q, et al. Spatio-temporal distribution of plastic and microplastic debris in the surface water of the Bohai Sea, China[J]. Marine Pollution Bulletin, 2020, 158. DOI:10.1016/j.marpolbul.2020.111343
[44] Zhao Z, Cheng X H, Hua X, et al. Emerging and legacy per-and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers[J]. Environmental Pollution, 2020, 263. DOI:10.1016/j.envpol.2020.114391
[45] Men B, He M C, Tan L, et al. Distributions of polychlorinated biphenyls in the Daliao River estuary of Liaodong Bay, Bohai Sea (China)[J]. Marine Pollution Bulletin, 2014, 78(1-2): 77-84. DOI:10.1016/j.marpolbul.2013.11.005
[46] Yan M T, Nie H Y, Xu K H, et al. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou city and Pearl River estuary, China[J]. Chemosphere, 2019, 217: 879-886. DOI:10.1016/j.chemosphere.2018.11.093
[47] Pan C G, Ying G G, Liu Y S, et al. Contamination profiles of perfluoroalkyl substances in five typical rivers of the Pearl River Delta region, South China[J]. Chemosphere, 2014, 114: 16-25. DOI:10.1016/j.chemosphere.2014.04.005
[48] Xu W H, Yan W, Li X D, et al. Antibiotics in riverine runoff of the Pearl River Delta and Pearl River Estuary, China: concentrations, mass loading and ecological risks[J]. Environmental Pollution, 2013, 182: 402-407. DOI:10.1016/j.envpol.2013.08.004
[49] Xu W H, Yan W, Huang W X, et al. Endocrine-disrupting chemicals in the Pearl River Delta and coastal environment: sources, transfer, and implications[J]. Environmental Geochemistry and Health, 2014, 36(6): 1095-1104. DOI:10.1007/s10653-014-9618-3
[50] Liu S, Pan Y F, Li H X, et al. Microplastic pollution in the surface seawater in Zhongsha Atoll, South China Sea[J]. Science of the Total Environment, 2022, 822. DOI:10.1016/j.scitotenv.2022.153604
[51] Cui Y Z, Liu M Y, Selvam S, et al. Microplastics in the surface waters of the South China sea and the western Pacific Ocean: different size classes reflecting various sources and transport[J]. Chemosphere, 2022, 299. DOI:10.1016/j.chemosphere.2022.134456
[52] Chen H, Liu S, Xu X R, et al. Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: occurrence, bioaccumulation and human dietary exposure[J]. Marine Pollution Bulletin, 2015, 90(1-2): 181-187. DOI:10.1016/j.marpolbul.2014.10.053
[53] Zhang R J, Zhang R L, Yu K F, et al. Occurrence, sources and transport of antibiotics in the surface water of coral reef regions in the South China Sea: potential risk to coral growth[J]. Environmental Pollution, 2018, 232: 450-457. DOI:10.1016/j.envpol.2017.09.064
[54] Deich C, Kanwischer M, Zhang R F, et al. Natural and synthetic estrogenic compounds in the Pearl River Estuary and northern shelf of the South China Sea[J]. Oceanologia, 2021. DOI:10.1016/j.oceano.2021.08.001
[55] Zhang L P, Wang X H, Ya M L, et al. Levels of endocrine disrupting compounds in South China Sea[J]. Marine Pollution Bulletin, 2014, 85(2): 628-633. DOI:10.1016/j.marpolbul.2013.12.040
[56] Scircle A, Cizdziel J V, Missling K, et al. Single-pot method for the collection and preparation of natural water for microplastic analyses: microplastics in the Mississippi river system during and after historic flooding[J]. Environmental Toxicology and Chemistry, 2020, 39(5): 986-995. DOI:10.1002/etc.4698
[57] Nakayama S F, Strynar M J, Reiner J L, et al. Determination of perfluorinated compounds in the upper Mississippi river basin[J]. Environmental Science & Technology, 2010, 44(11): 4103-4109.
[58] Zhang S Y, Zhang Q, Darisaw S, et al. Simultaneous quantification of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) in Mississippi river water, in New Orleans, Louisiana, USA[J]. Chemosphere, 2007, 66(6): 1057-1069. DOI:10.1016/j.chemosphere.2006.06.067
[59] Di Mauro R, Kupchik M J, Benfield M C. Abundant plankton-sized microplastic particles in shelf waters of the northern Gulf of Mexico[J]. Environmental Pollution, 2017, 230: 798-809. DOI:10.1016/j.envpol.2017.07.030
[60] Mani T, Hauk A, Walter U, et al. Microplastics profile along the Rhine River[J]. Scientific Reports, 2015, 5. DOI:10.1038/srep17988
[61] Möller A, Ahrens L, Surm R, et al. Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed[J]. Environmental Pollution, 2010, 158(10): 3243-3250. DOI:10.1016/j.envpol.2010.07.019
[62] Christian T, Schneider R J, Färber H A, et al. Determination of antibiotic residues in manure, soil, and surface waters[J]. Acta Hydrochimica et Hydrobiologica, 2003, 31(1): 36-44. DOI:10.1002/aheh.200390014
[63] Wolschke H, Xie Z Y, Möller A, et al. Occurrence, distribution and fluxes of benzotriazoles along the German large river basins into the North Sea[J]. Water Research, 2011, 45(18): 6259-6266. DOI:10.1016/j.watres.2011.09.028
[64] Roscher L, Fehres A, Reisel L, et al. Microplastic pollution in the Weser estuary and the German North Sea[J]. Environmental Pollution, 2021, 288. DOI:10.1016/j.envpol.2021.117681
[65] Joerss H, Apel C, Ebinghaus R. Emerging per-and polyfluoroalkyl substances (PFASs) in surface water and sediment of the North and Baltic Seas[J]. Science of the Total Environment, 2019, 686: 360-369. DOI:10.1016/j.scitotenv.2019.05.363
[66] Brumovsky M, Be Dč anová J, Kohoutek J, et al. Exploring the occurrence and distribution of contaminants of emerging concern through unmanned sampling from ships of opportunity in the North Sea[J]. Journal of Marine Systems, 2016, 162: 47-56. DOI:10.1016/j.jmarsys.2016.03.004
[67] Weideman E A, Perold V, Ryan P G. Limited long-distance transport of plastic pollution by the Orange-Vaal River system, South Africa[J]. Science of the Total Environment, 2020, 727. DOI:10.1016/j.scitotenv.2020.138653
[68] Groffen T, Wepener V, Malherbe W, et al. Distribution of perfluorinated compounds (PFASs) in the aquatic environment of the industrially polluted Vaal River, South Africa[J]. Science of the Total Environment, 2018, 627: 1334-1344. DOI:10.1016/j.scitotenv.2018.02.023
[69] Nyamukamba P, Moloto M J, Tavengwa N, et al. Evaluating physicochemical parameters, heavy metals, and antibiotics in the influents and final effluents of South African wastewater treatment plants[J]. Polish Journal of Environmental Studies, 2019, 28(3): 1305-1312. DOI:10.15244/pjoes/85122
[70] Mnguni S B, Schoeman C, Marais S S, et al. Determination of oestrogen hormones in raw and treated water samples by reverse phase ultra-fast liquid chromatography mass spectrometry-a case study in Johannesburg south, South Africa[J]. Water SA, 2018, 44(1): 111-117.
[71] dos SantosQueiroz A F, Da Conceicao A S, Chelazzi D, et al. First assessment of microplastic and artificial microfiber contamination in surface waters of the Amazon Continental Shelf[J]. Science of the Total Environment, 2022, 839. DOI:10.1016/j.scitotenv.2022.156259
[72] Pan Z, Liu Q L, Sun Y, et al. Environmental implications of microplastic pollution in the Northwestern Pacific Ocean[J]. Marine Pollution Bulletin, 2019, 146: 215-224. DOI:10.1016/j.marpolbul.2019.06.031
[73] Cai M H, Zhao Z, Yin Z G, et al. Occurrence of perfluoroalkyl compounds in surface waters from the North Pacific to the Arctic Ocean[J]. Environmental Science and Technology, 2012, 46(2): 661-668. DOI:10.1021/es2026278
[74] González-Gaya B, Dachs J, Roscales J L, et al. Perfluoroalkylated substances in the global tropical and subtropical surface oceans[J]. Environmental Science & Technology, 2014, 48(22): 13076-13084.
[75] Zheng H Y, Gao Y, Xia Y Y, et al. Seasonal variation of legacy Organochlorine Pesticides (OCPs) from East Asia to the Arctic Ocean[J]. Geophysical Research Letters, 2020, 47(19). DOI:10.1029/2020GL089775
[76] Silvestrova K, Stepanova N. The distribution of microplastics in the surface layer of the Atlantic Ocean from the subtropics to the equator according to visual analysis[J]. Marine Pollution Bulletin, 2021, 162. DOI:10.1016/j.marpolbul.2020.111836
[77] Lohmann R, Markham E, Klanova J, et al. Trends of diverse POPs in air and water across the western Atlantic Ocean: strong gradients in the ocean but not in the air[J]. Environmental Science & Technology, 2021, 55(14): 9498-9507.
[78] Meijer L J J, Van Emmerik T, Van Der Ent R, et al. More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean[J]. Science Advances, 2021, 7(18). DOI:10.1126/sciadv.aaz5803
[79] Zhang R J, Zhang G, Zheng Q, et al. Occurrence and risks of antibiotics in the Laizhou Bay, China: impacts of river discharge[J]. Ecotoxicology and Environmental Safety, 2012, 80: 208-215. DOI:10.1016/j.ecoenv.2012.03.002
[80] Lei K, Zhu Y, Chen W, et al. Spatial and seasonal variations of antibiotics in river waters in the Haihe River Catchment in China and ecotoxicological risk assessment[J]. Environment International, 2019, 130. DOI:10.1016/j.envint.2019.104919
[81] Wang Y H, Yang Y N, Liu X, et al. Interaction of microplastics with antibiotics in aquatic environment: distribution, adsorption, and toxicity[J]. Environmental Science & Technology, 2021, 55(23): 15579-15595.
[82] Yu F, Yang C F, Zhu Z L, et al. Adsorption behavior of organic pollutants and metals on micro/nanoplastics in the aquatic environment[J]. Science of the Total Environment, 2019, 694. DOI:10.1016/j.scitotenv.2019.133643
[83] Ateia M, Zheng T, Calace S, et al. Sorption behavior of real microplastics (MPs): insights for organic micropollutants adsorption on a large set of well-characterized MPs[J]. Science of the Total Environment, 2020, 720. DOI:10.1016/j.scitotenv.2020.137634
[84] Liu G Z, Zhu Z L, Yang Y X, et al. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater[J]. Environmental Pollution, 2019, 246: 26-33. DOI:10.1016/j.envpol.2018.11.100
[85] Lu S H, Zhu K R, Song W C, et al. Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions[J]. Science of the Total Environment, 2018, 630: 951-959. DOI:10.1016/j.scitotenv.2018.02.296
[86] Eerkes-Medrano D, Thompson R C, Aldridge D C. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs[J]. Water Research, 2015, 75: 63-82. DOI:10.1016/j.watres.2015.02.012
[87] Zhang H. Transport of microplastics in coastal seas[J]. Estuarine, Coastal and Shelf Science, 2017, 199: 74-86. DOI:10.1016/j.ecss.2017.09.032
[88] Sadri S S, Thompson R C. On the quantity and composition of floating plastic debris entering and leaving the Tamar Estuary, Southwest England[J]. Marine Pollution Bulletin, 2014, 81(1): 55-60. DOI:10.1016/j.marpolbul.2014.02.020
[89] Aly N A, Luo Y S, Liu Y N, et al. Temporal and spatial analysis of per and polyfluoroalkyl substances in surface waters of Houston ship channel following a large-scale industrial fire incident[J]. Environmental Pollution, 2020, 265. DOI:10.1016/j.envpol.2020.115009
[90] Kim S K, Kang D J, Kim K R, et al. Distribution of organochlorine pesticides in intertidal and subtidal sediments in coastal wetland with high tidal ranges[J]. Archives of Environmental Contamination and Toxicology, 2010, 58(3): 514-522. DOI:10.1007/s00244-009-9433-5
[91] Van Sebille E, England M H, Froyland G. Origin, dynamics and evolution of ocean garbage patches from observed surface drifters[J]. Environmental Research Letters, 2012, 7(4). DOI:10.1088/1748-9326/7/4/044040
[92] Kwok K Y, Wang X H, Ya M, et al. Occurrence and distribution of conventional and new classes of per-and polyfluoroalkyl substances (PFASs) in the South China Sea[J]. Journal of Hazardous Materials, 2015, 285: 389-397. DOI:10.1016/j.jhazmat.2014.10.065
[93] Law K L, Morét-Ferguson S, Maximenko N A, et al. Plastic accumulation in the North Atlantic subtropical gyre[J]. Science, 2010, 329(5996): 1185-1188. DOI:10.1126/science.1192321
[94] Breivik Ø, Allen A A, Maisondieu C, et al. Wind-induced drift of objects at sea: the leeway field method[J]. Applied Ocean Research, 2011, 33(2): 100-109. DOI:10.1016/j.apor.2011.01.005
[95] 朱利中. 有机污染物界面行为调控技术及其应用[J]. 环境科学学报, 2012, 32(11): 2641-2649.
Zhu L Z. Controlling technology of interfacial behaviors of organic pollutants and its application[J]. Acta Scientiae Circumstantiae, 2012, 32(11): 2641-2649. DOI:10.13671/j.hjkxxb.2012.11.019
[96] Lin Y, Jiang J J, Rodenburg L A, et al. Perfluoroalkyl substances in sediments from the Bering Sea to the western Arctic: Source and pathway analysis[J]. Environment International, 2020, 139. DOI:10.1016/j.envint.2020.105699
[97] Wang S Q, Ma L Y, Chen C, et al. Occurrence and partitioning behavior of per-and polyfluoroalkyl substances (PFASs) in water and sediment from the Jiulong Estuary-Xiamen Bay, China[J]. Chemosphere, 2020, 238. DOI:10.1016/j.chemosphere.2019.124578
[98] Zhang Y Y, Zhi Y, Liu J X, et al. Sorption of perfluoroalkyl acids to fresh and aged nanoscale zerovalent iron particles[J]. Environmental Science & Technology, 2018, 52(11): 6300-6308.
[99] Semcesen P O, Wells M G. Biofilm growth on buoyant microplastics leads to changes in settling rates: implications for microplastic retention in the Great Lakes[J]. Marine Pollution Bulletin, 2021, 170. DOI:10.1016/j.marpolbul.2021.112573
[100] Li J, Zhang K N, Zhang H. Adsorption of antibiotics on microplastics[J]. Environmental Pollution, 2018, 237: 460-467. DOI:10.1016/j.envpol.2018.02.050
[101] Lara L Z, Bertoldi C, Alves N M, et al. Sorption of endocrine disrupting compounds onto polyamide microplastics under different environmental conditions: behaviour and mechanism[J]. Science of the Total Environment, 2021, 796. DOI:10.1016/j.scitotenv.2021.148983
[102] Joo S H, Liang Y J, Kim M, et al. Microplastics with adsorbed contaminants: mechanisms and treatment[J]. Environmental Challenges, 2021, 3. DOI:10.1016/j.envc.2021.100042
[103] Wang F, Zhang M, Sha W, et al. Sorption behavior and mechanisms of organic contaminants to nano and microplastics[J]. Molecules, 2020, 25(8): 1827. DOI:10.3390/molecules25081827
[104] Atugoda T, Vithanage M, Wijesekara H, et al. Interactions between microplastics, pharmaceuticals and personal care products: implications for vector transport[J]. Environment International, 2021, 149. DOI:10.1016/j.envint.2020.106367
[105] Richardson S D, Kimura S Y. Emerging environmental contaminants: challenges facing our next generation and potential engineering solutions[J]. Environmental Technology & Innovation, 2017, 8: 40-56. DOI:10.3969/j.issn.1004-7204.2017.01.012
[106] Rodríguez-Verdugo A, Lozano-Huntelman N, Cruz-Loya M, et al. Compounding effects of climate warming and antibiotic resistance[J]. iScience, 2020, 23(4). DOI:10.1016/j.isci.2020.101024
[107] Mahmoudnia A, Mehrdadi N, Baghdadi M, et al. Change in global PFAS cycling as a response of permafrost degradation to climate change[J]. Journal of Hazardous Materials Advances, 2022, 5. DOI:10.1016/j.hazadv.2021.100039
[108] Carlsson P, Crosse J D, Halsall C, et al. Perfluoroalkylated substances (PFASs) and legacy persistent organic pollutants (POPs) in halibut and shrimp from coastal areas in the far north of Norway: small survey of important dietary foodstuffs for coastal communities[J]. Marine Pollution Bulletin, 2016, 105(1): 81-87. DOI:10.1016/j.marpolbul.2016.02.053
[109] Rigét F, Bossi R, Sonne C, et al. Trends of perfluorochemicals in Greenland ringed seals and polar bears: indications of shifts to decreasing trends[J]. Chemosphere, 2013, 93(8): 1607-1614. DOI:10.1016/j.chemosphere.2013.08.015
[110] Powley C R, George S W, Russell M H, et al. Polyfluorinated chemicals in a spatially and temporally integrated food web in the Western Arctic[J]. Chemosphere, 2008, 70(4): 664-672. DOI:10.1016/j.chemosphere.2007.06.067
[111] Liu S S, Zhao H X, Lehmler H J, et al. Antibiotic pollution in marine food webs in Laizhou Bay, North China: trophodynamics and human exposure implication[J]. Environmental Science & Technology, 2017, 51(4): 2392-2400.
[112] Monirith I, Nakata H, Watanabe M, et al. Organochlorine contamination in fish and mussels from Cambodia and other Asian countries[J]. Water Science and Technology, 2000, 42(7-8): 241-252. DOI:10.2166/wst.2000.0575
[113] Tanabe S. Contamination and toxic effects of persistent endocrine disrupters in marine mammals and birds[J]. Marine Pollution Bulletin, 2002, 45(1-12): 69-77. DOI:10.1016/S0025-326X(02)00175-3
[114] Horiguchi T, Kojima M, Takiguchi N, et al. Continuing observation of disturbed reproductive cycle and ovarian spermatogenesis in the giant abalone, Haliotis madaka from an organotin-contaminated site of Japan[J]. Marine Pollution Bulletin, 2005, 51(8-12): 817-822. DOI:10.1016/j.marpolbul.2005.06.045
[115] Desforges J P W, Galbraith M, Ross P S. Ingestion of microplastics by zooplankton in the northeast Pacific Ocean[J]. Archives of Environmental Contamination and Toxicology, 2015, 69(3): 320-330. DOI:10.1007/s00244-015-0172-5
[116] Lusher A L, Mchugh M, Thompson R C. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel[J]. Marine Pollution Bulletin, 2013, 67(1-2): 94-99. DOI:10.1016/j.marpolbul.2012.11.028
[117] Cole M, Lindeque P, Fileman E, et al. Microplastic ingestion by zooplankton[J]. Environmental Science & Technology, 2013, 47(12): 6646-6655.
[118] Lusher A L, Hernandez-Milian G, O'Brien J, et al. Microplastic and macroplastic ingestion by a deep diving, oceanic cetacean: the true's beaked whale Mesoplodon mirus[J]. Environmental Pollution, 2015, 199: 185-191. DOI:10.1016/j.envpol.2015.01.023
[119] Pan C G, Xiao S K, Yu K F, et al. Legacy and alternative per-and polyfluoroalkyl substances in a subtropical marine food web from the Beibu Gulf, South China: fate, trophic transfer and health risk assessment[J]. Journal of Hazardous Materials, 2021, 403. DOI:10.1016/j.jhazmat.2020.123618
[120] de A. Miranda D, Peaslee G F, Zachritz A M, et al. A worldwide evaluation of trophic magnification of per-and polyfluoroalkyl substances in aquatic ecosystems[J]. Integrated Environmental Assessment and Management, 2022. DOI:10.1002/IEAM.4579
[121] Diehl J, Johnson S E, Xia K, et al. The distribution of 4-nonylphenol in marine organisms of North American Pacific Coast estuaries[J]. Chemosphere, 2012, 87(5): 490-497. DOI:10.1016/j.chemosphere.2011.12.040
[122] Garcia F, De Carvalho A R, Riem-Galliano L, et al. Stable isotope insights into microplastic contamination within freshwater food webs[J]. Environmental Science & Technology, 2021, 55(2): 1024-1035.
[123] Nelms S E, Galloway T S, Godley B J, et al. Investigating microplastic trophic transfer in marine top predators[J]. Environmental Pollution, 2018, 238: 999-1007. DOI:10.1016/j.envpol.2018.02.016
[124] Pan Z, Liu Q L, Jiang R G, et al. Microplastic pollution and ecological risk assessment in an estuarine environment: the Dongshan Bay of China[J]. Chemosphere, 2021, 262. DOI:10.1016/j.chemosphere.2020.127876
[125] Miller M E, Hamann M, Kroon F J. Bioaccumulation and biomagnification of microplastics in marine organisms: A review and meta-analysis of current data[J]. PLoS One, 2020, 15(10). DOI:10.1371/journal.pone.0240792
[126] Gray J S. Biomagnification in marine systems: the perspective of an ecologist[J]. Marine Pollution Bulletin, 2002, 45(1-12): 46-52. DOI:10.1016/S0025-326X(01)00323-X
[127] Batel A, Baumann L, Carteny C C, et al. Histological, enzymatic and chemical analyses of the potential effects of differently sized microplastic particles upon long-term ingestion in zebrafish (Danio rerio)[J]. Marine Pollution Bulletin, 2020, 153. DOI:10.1016/j.marpolbul.2020.111022
[128] Rempel M A, Schlenk D. Effects of environmental estrogens and antiandrogens on endocrine function, gene regulation, and health in fish[J]. International Review of Cell and Molecular Biology, 2008, 267: 207-252.
[129] Kwon B, Choi K. Occurrence of major organic UV filters in aquatic environments and their endocrine disruption potentials: a mini-review[J]. Integrated Environmental Assessment and Management, 2021, 17(5): 940-950. DOI:10.1002/ieam.4449
[130] Zhang S Q, Zhao X L, He S W, et al. Effects of long-term exposure of norfloxacin on the HPG and HPT axes in juvenile common carp[J]. Environmental Science and Pollution Research, 2022, 29(29): 44513-44522. DOI:10.1007/s11356-022-18995-5
[131] Chen L G, Hu C Y, Tsui M M P, et al. Multigenerational disruption of the thyroid endocrine system in Marine Medaka after a life-cycle exposure to perfluorobutanesulfonate[J]. Environmental Science & Technology, 2018, 52(7): 4432-4439.
[132] Mokra K. Endocrine disruptor potential of short-and long-chain perfluoroalkyl substances (PFASs)—a synthesis of current knowledge with proposal of molecular mechanism[J]. International Journal of Molecular Sciences, 2021, 22(4). DOI:10.3390/ijms22042148
[133] Liu C H, Gin K Y H. Immunotoxicity in green mussels under perfluoroalkyl substance (PFAS) exposure: reversible response and response model development[J]. Environmental Toxicology and Chemistry, 2018, 37(4): 1138-1145. DOI:10.1002/etc.4060
[134] Niu Z G, Na J, Xu W A, et al. The effect of environmentally relevant emerging per-and polyfluoroalkyl substances on the growth and antioxidant response in marine Chlorella sp[J]. Environmental Pollution, 2019, 252: 103-109. DOI:10.1016/j.envpol.2019.05.103
[135] Wang X H, Hu M H, Gu H X, et al. Short-term exposure to norfloxacin induces oxidative stress, neurotoxicity and microbiota alteration in juvenile large yellow croaker Pseudosciaena crocea[J]. Environmental Pollution, 2020, 267. DOI:10.1016/j.envpol.2020.115397
[136] Yan Z Y, Yang Q L, Jiang W L, et al. Integrated toxic evaluation of sulfamethazine on zebrafish: including two lifespan stages (embryo-larval and adult) and three exposure periods (exposure, post-exposure and re-exposure)[J]. Chemosphere, 2018, 195: 784-792. DOI:10.1016/j.chemosphere.2017.12.119
[137] Zhao Y, Liu H, Wang Q, et al. The influence of three antibiotics on the growth, intestinal enzyme activities, and immune response of the juvenile sea cucumber Apostichopus japonicus selenka[J]. Fish & Shellfish Immunology, 2019, 84: 434-440. DOI:10.3969/j.issn.1004-2490.2019.04.005
[138] Agathokleous E, Calabrese E J. Hormesis: the dose response for the 21st century: the future has arrived[J]. Toxicology, 2019, 425. DOI:10.1016/j.tox.2019.152249
[139] Iavicoli I, Fontana L, Agathokleous E, et al. Hormetic dose responses induced by antibiotics in bacteria: a phantom menace to be thoroughly evaluated to address the environmental risk and tackle the antibiotic resistance phenomenon[J]. Science of the Total Environment, 2021, 798. DOI:10.1016/j.scitotenv.2021.149255
[140] Amelia T S M, Khalik W M A W M, Ong M C, et al. Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans[J]. Progress in Earth and Planetary Science, 2021, 8. DOI:10.1186/s40645-020-00405-4
[141] Li Z Q, Chang X Q, Hu M H, et al. Is microplastic an oxidative stressor? Evidence from a meta-analysis on bivalves[J]. Journal of Hazardous Materials, 2022, 423. DOI:10.1016/j.jhazmat.2021.127211
[142] Paul-Pont I, Lacroix C, González Fernández C, et al. Exposure of marine mussels Mytilus spp. to polystyrene microplastics: toxicity and influence on fluoranthene bioaccumulation[J]. Environmental Pollution, 2016, 216: 724-737. DOI:10.1016/j.envpol.2016.06.039
[143] Lu Y F, Zhang Y, Deng Y F, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 2016, 50(7): 4054-4060.
[144] Foley C J, Feiner Z S, Malinich T D, et al. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates[J]. Science of the Total Environment, 2018, 631-632: 550-559. DOI:10.1016/j.scitotenv.2018.03.046
[145] Chen Q Q, Yin D Q, Jia Y L, et al. Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish[J]. Science of the Total Environment, 2017, 609: 1312-1321. DOI:10.1016/j.scitotenv.2017.07.144
[146] 孙晓楠, 陈浩, 贾其隆, 等. 我国陆域水体系统表层水中微塑料生态风险评估[J]. 环境科学, 2022, 43(11): 5040-5052.
Sun X N, Chen H, Jia Q L, et al. Ecological risk assessment of microplastics occurring in surface water of terrestrial water systems across China[J]. Environmental Science, 2022, 43(11): 5040-5052.
[147] Deng W J, Li N, Zheng H L, et al. Occurrence and risk assessment of antibiotics in river water in Hong Kong[J]. Ecotoxicology and Environmental Safety, 2016, 125: 121-127. DOI:10.1016/j.ecoenv.2015.12.002
[148] 陈玫宏, 郭敏, 刘丹, 等. 典型内分泌干扰物在太湖及其支流水体和沉积物中的污染特征[J]. 中国环境科学, 2017, 37(11): 4323-4332.
Chen M H, Guo M, Liu D, et al. Occurrence and distribution of typical endocrine disruptors in surface water and sediments from Taihu Lake and its tributaries[J]. China Environmental Science, 2017, 37(11): 4323-4332. DOI:10.3969/j.issn.1000-6923.2017.11.038
[149] 李杰, 高月, 王之芬, 等. 汉江水体和沉积物中全氟化合物的风险评估[J]. 北京大学学报(自然科学版), 2017, 53(5): 913-920.
Li J, Gao Y, Wang Z F, et al. Risk assessment of perfluoroalkyl compounds (PFCs) in water and sediment samples of Hanjiang River[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(5): 913-920.
[150] 王德宝, 胡莹. 生态风险评价程序概述[J]. 中国资源综合利用, 2009, 27(12): 33-35.
[151] Zhou L J, Li J, Zhang Y D, et al. Trends in the occurrence and risk assessment of antibiotics in shallow lakes in the lower-middle reaches of the Yangtze River basin, China[J]. Ecotoxicology and Environmental Safety, 2019, 183. DOI:10.1016/j.ecoenv.2019.109511
[152] Li Z Z, Liu Y D, Zhang D H, et al. Distribution and environmental risk assessment of microplastics in continental shelf sediments in the southern East China Sea: a high-spatial-resolution survey[J]. Marine Pollution Bulletin, 2022, 177. DOI:10.1016/j.marpolbul.2022.113548
[153] Li Y Z, Chen G L, Xu K H, et al. Microplastics environmental effect and risk assessment on the aquaculture systems from south China[J]. International Journal of Environmental Research and Public Health, 2021, 18(4). DOI:10.3390/ijerph18041869
[154] Zhang F, Peng G Y, Xu P, et al. Ecological risk assessment of marine microplastics using the analytic hierarchy process: a case study in the Yangtze River Estuary and adjacent marine areas[J]. Journal of Hazardous Materials, 2022, 425. DOI:10.1016/j.jhazmat.2021.127960
[155] Witczak A, Harada D, Aftyka A, et al. Endocrine-disrupting organochlorine xenobiotics in fish products imported from Asia—an assessment of human health risk[J]. Environmental Monitoring and Assessment, 2021, 193(3). DOI:10.1007/s10661-021-08914-5
[156] Han Q F, Zhao S, Zhang X R, et al. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China[J]. Environment International, 2020, 138. DOI:10.1016/j.envint.2020.105551
[157] U.S. Environmental Protection Agency (USEPA). Drinking water health advisories for PFOA and PFOS[EB/OL]. https://www.epa.gov/sdwa/drinking-water-health-advisories-pfoa-and-pfos, 2022-06-15.
[158] Roscales J L, Suárez De Puga B R, Vicente A, et al. Levels and trends of perfluoroalkyl acids (PFAAs) in water (2013-2020) and fish from selected riverine basins in Spain[J]. Chemosphere, 2022, 286. DOI:10.1016/j.chemosphere.2021.131940
[159] Squadrone S, Ciccotelli V, Prearo M, et al. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA): emerging contaminants of increasing concern in fish from Lake Varese, Italy[J]. Environmental Monitoring and Assessment, 2015, 187(7). DOI:10.1007/s10661-015-4686-0
[160] Lin X P, Wang S Q, Li Q, et al. Occurrence, partitioning behavior and risk assessments of per-and polyfluoroalkyl substances in water, sediment and biota from the Dongshan Bay, China[J]. Chemosphere, 2022, 291. DOI:10.1016/j.chemosphere.2021.132812
[161] Chen C L, Wang T Y, Naile J E, et al. Perfluorinated compounds in aquatic products from Bohai Bay, Tianjin, China[J]. Human and Ecological Risk Assessment: An International Journal, 2011, 17(6): 1279-1291.
[162] Zhao Y G, Wan H T, Law A Y S, et al. Risk assessment for human consumption of perfluorinated compound-contaminated freshwater and marine fish from Hong Kong and Xiamen[J]. Chemosphere, 2011, 85(2): 277-283.
[163] Smith M, Love D C, Rochman C M, et al. Microplastics in seafood and the implications for human health[J]. Current Environmental Health Reports, 2018, 5(3): 375-386.
[164] Ferrante M, Pietro Z, Allegui C, et al. Microplastics in fillets of Mediterranean seafood. A risk assessment study[J]. Environmental Research, 2022, 204. DOI:10.1016/j.envres.2021.112247