环境科学  2022, Vol. 43 Issue (9): 4608-4615   PDF    
微气泡臭氧化预处理实际制药废水去除SS和有机物性能
刘春, 陈蕊, 张静, 杨旭, 陈晓轩, 郭延凯, 武明泽, 庞勃     
河北科技大学环境科学与工程学院, 河北省污染防治生物技术重点实验室, 石家庄 050018
摘要: 采用臭氧微气泡预处理实际制药废水,并与氮气微气泡、臭氧普通气泡和氮气普通气泡处理过程比较,考察悬浮固体(SS)和有机物去除过程和性能.结果表明,臭氧微气泡存在强吸附-气浮-氧化作用,显著增强SS去除能力,60 min时SS去除率可达到81.67%,同时SS粒径减小,SS表面负电荷转变为正电荷.微气泡臭氧化具有强·OH氧化作用,显著增强有机物降解去除能力,60 min时溶解性COD(SCOD)去除率可达到36.60%,且SS去除可加速SCOD去除,UV254去除率可达到36.91%,同时可生化性改善和生物毒性消除作用明显.三维荧光和GC-MS分析表明,微气泡臭氧化可有效氧化破坏废水中复杂结构大分子有机物,显著降低废水中有机物芳香性.微气泡臭氧化可为高浓度难降解实际制药废水提供高效可行的预处理手段.
关键词: 微气泡      臭氧化      实际制药废水      预处理      吸附-气浮-氧化     
Removal Performance of Suspended Solid (SS) and Organic Compounds in the Pre-treatment of Actual Pharmaceutical Wastewater by Microbubble Ozonation
LIU Chun , CHEN Rui , ZHANG Jing , YANG Xu , CHEN Xiao-xuan , GUO Yan-kai , WU Ming-ze , PANG Bo     
Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Abstract: Actual pharmaceutical wastewater was pretreated with ozone microbubbles and compared with the treatment processes of nitrogen microbubbles, ozone common bubbles, and nitrogen common bubbles. The removal process and performance of suspended solids (SS) and organic compounds were investigated. The results showed that ozone microbubble treatment with strong adsorption-flotation-oxidation effects could enhance SS removal significantly, and the corresponding SS removal efficiency reached 81.67% at 60 min. The SS particle size was reduced, and the negative charge on the SS surface was simultaneously changed into a positive charge. Microbubble ozonation with a strong·OH oxidation effect also significantly enhanced the degradation and removal of organic compounds. The removal efficiency of soluble COD (SCOD) reached 36.60% at 60 min, and the SCOD removal was accelerated after the SS removal. The removal efficiency of UV254 also reached 36.91%. The biodegradability was improved, and the biological toxicity was obviously eliminated. The analysis of three-dimensional fluorescence and GC-MS showed that the macromolecular organic compounds with complex structure could be oxidized and decomposed efficiently with microbubble ozonation, resulting in the aromatic reduction in organic compounds in wastewater. Therefore, microbubble ozonation could be considered as an efficient and feasible pretreatment method for high concentration and refractory pharmaceutical wastewater.
Key words: microbubble      ozonation      actual pharmaceutical wastewater      pre-treatment      absorption-floatation-oxidation     

制药废水具有污染物浓度高、成分复杂、生物毒性强和可生化性差等特征[1~3], 常规生化处理效率偏低.为提高生化处理效果, 可对制药废水进行预处理, 使难生物降解或有毒有害污染物转化为可生物降解物质[4, 5], 改善废水可生化性并降低生物毒性, 有助于达到最终处理要求.

制药废水预处理方法包括吸附[6]、化学絮凝[7]、水解酸化[8]和高级氧化[9]等.臭氧高级氧化技术通过羟基自由基(·OH)氧化反应, 具有较强氧化能力[10], 以及有机物氧化彻底、无二次污染等优势[11~13], 在实际制药废水预处理中更具应用优势.然而, 传统臭氧化技术由于气-液传质速率慢、臭氧利用率低、氧化能力不足等问题[14, 15], 限制了其在实际制药废水预处理中的应用.

臭氧微气泡可显著强化臭氧传质过程[16, 17], 同时具有较强·OH产生能力[18~20], 可有效氧化去除难降解污染物, 并降低污染物生态风险, 对工业废水处理性能优于普通气泡臭氧化[21~23].此外, 微气泡对固体亲水界面具有较强附着能力, 因而对废水中悬浮固体(SS)具有宏观气浮去除效果[24~27], 而去除SS有助于提高溶解性COD(SCOD)臭氧化降解效率[28~30].因此, 微气泡臭氧化预处理存在吸附-气浮-氧化过程, 有利于SS和SCOD协同去除, 但目前相关研究鲜有报道.

本研究采用氮气微气泡(N2/MB)、氮气普通气泡(N2/CB)、臭氧微气泡(O3/MB)和臭氧普通气泡(O3/CB)处理过程对实际制药废水进行预处理, 比较考察了O3/MB处理过程对实际制药废水预处理去除SS和SCOD性能, 以期为微气泡臭氧化技术在实际制药废水预处理中的应用提供理论和技术支持.

1 材料与方法 1.1 实验装置

本实验装置如图 1所示.以纯氧为气源, 采用臭氧发生器(OZ-10G, 广州大环臭氧科技有限公司)产生臭氧气体, 通过流量计控制臭氧气体流量.臭氧气体与反应器中循环废水混合后进入微气泡发生器(SFMB-8, 北京晟峰恒泰科技有限公司)产生臭氧微气泡, 气-液混合物由底部进入反应器.反应器为密封不锈钢柱体(直径16 cm, 高97 cm), 有效容积为16.5 L.臭氧尾气由反应器顶部排出至吸收瓶.

图 1 实验装置示意 Fig. 1 Experimental apparatus

1.2 废水水质

本研究所用实际制药废水取自河北省石家庄市某制药集团废水集中处理设施集水池, 为生物发酵制药和化学合成制药混合废水.废水水质如表 1所示.

表 1 实际制药废水原水水质 Table 1 Quality of actual raw pharmaceutical wastewater

1.3 实验过程

分别采用N2/MB、O3/MB、N2/CB和O3/CB处理过程批次实验, 对实际制药废水进行预处理.处理水量为16.5 L, 处理时间为60 min, 气体流量为0.3 L·min-1(在此流量下, 产生微气泡平均直径小于50 μm), O3/MB和O3/CB处理过程臭氧投加量稳定保持在12.48 mg·min-1.处理过程中在一定时间从反应器中部取样口取样, 测定SS浓度及其粒径、Zeta电位变化, SCOD、BOD5浓度和UV254变化, 废水发光细菌抑制率变化以及·OH信号强度.对处理前后废水采用三维荧光光谱(3D-EEM)和GC-MS进行检测分析, 确定废水中主要有机污染物种类及其在处理过程中的变化.

1.4 检测方法

采用重量法测定废水中的SS浓度, 采用粒度计数仪(PSS LE400-05, 美国)测定SS中位径, 采用Zeta电位分析仪(NanoBrook 90plus Zeta, 美国)测定SS表面Zeta电位.水样经0.45 μm膜过滤后, 采用重铬酸钾快速消解法测定SCOD浓度; 采用紫外-可见分光光度计(U3900, 上海天美)测定UV254值; 采用生物化学需氧量测定仪(LH-BOD601, 连华科技)测定BOD5浓度; 生物毒性采用发光细菌法测定[31].以5, 5-二甲基-1-吡咯啉-N-氧化物(DMPO)作为·OH捕获剂, 采用电子顺磁共振波谱仪(ESR)(ADANI SPINSCAN X, 白俄罗斯)测定DMPO-OH信号及其强度.采用荧光光谱仪(HORIBA FluoroMax-4, 日本)检测废水3D-EEM光谱.以二氯甲烷为萃取剂, 在中性、酸性和碱性条件下分别萃取3次.萃取后样品采用气相色谱-质谱联用仪(Thermo DSQ Ⅱ, 美国)进行GC-MS分析.

2 结果与讨论 2.1 SS去除性能

N2/MB、O3/MB、N2/CB和O3/CB处理过程对实际制药废水预处理过程中SS去除率随时间变化如图 2所示.可以看到, 处理60 min时, N2/CB对SS去除率仅为8.94%; O3/CB存在氧化作用, 其对SS去除率可提高至24.14%.

图 2 4种不同处理过程预处理实际制药废水去除SS Fig. 2 SS removal in pre-treatment of actual pharmaceutical wastewater in four different treatment processes

N2/MB处理过程对SS去除作用明显提高, 处理20 min时去除率为38.10%, 处理60 min时去除率可达到53.43%.O3/MB处理过程去除SS效率进一步提高, 处理20 min时去除率可达到68.33%, 处理60 min时去除率可达到81.67%.

可见与普通气泡处理过程相比, 微气泡处理过程去除SS能力显著提高, 且前20 min去除速率较快, 液面可明显观察到泡沫浮渣层.因此, 微气泡处理存在吸附-气浮过程, 并在SS去除中具有关键作用.同时, 微气泡处理过程去除SS性能与其氧化能力有关, O3/MB具有更强的同步吸附-气浮-氧化作用, 因此SS去除效率最高.

处理过程中SS中位径D50随时间变化如图 3所示.可以看到, N2/CB处理中SS中位径D50整体升高但波动明显.O3/CB、N2/MB和O3/MB处理中, SS中位径D50整体呈现先升高后减小趋势.各处理过程中SS中位径D50升高的原因可能与SS颗粒在水力扰动下的聚集有关; 而O3/CB、N2/MB和O3/MB处理中SS中位径D50升高幅度较小且随后下降是由于氧化作用使得SS颗粒解体; 同时微气泡产生过程中的强水力剪切作用亦会阻碍SS颗粒聚集.O3/MB处理中同时具有强水力剪切作用和强氧化作用, 因此SS中位径D50前期升高幅度最小而后期减小幅度最大.

图 3 4种不同处理过程预处理实际制药废水中SS中位径变化 Fig. 3 Variation in SS median diameter in pre-treatment of actual pharmaceutical wastewater in four different treatment processes

处理过程中SS表面Zeta电位随时间变化如图 4所示.可以看到, N2/CB处理中, SS表面Zeta电位整体保持负值.而在O3/CB以及N2/MB、O3/MB处理中, SS表面Zeta电位均呈现从负值向正值转变的趋势, 特别是在N2/MB和O3/MB处理中Zeta电位由负值向正值转变更快, 转变幅度更大.SS表面Zeta电位负值可能是由其有机组分中的羧酸基团解离产生负电荷造成的, 而处理过程中氧化作用可将负电荷基团氧化破坏, 使得SS表面电荷性质发生变化, Zeta电位负值减小, 并逐渐转变为正值.

图 4 4种不同处理过程预处理实际制药废水中SS表面Zeta电位变化 Fig. 4 Variation in Zeta potential on SS surface in pre-treatment of actual pharmaceutical wastewater in four different treatment processes

N2/MB和O3/MB处理中10~20 min时SS去除速率最快, 其原因可能是, 10~20 min时SS表面负电荷迅速减少或转变为正电荷, 而微气泡在废水pH值(7.6~8.5)条件下表面呈负电荷[32, 33], 因此更有利于微气泡对SS的吸附.

2.2 SCOD和UV254去除性能

N2/MB、O3/MB、N2/CB和O3/CB预处理实际制药废水过程中, SCOD去除率随时间变化如图 5所示.可以看到, 除N2/CB外, 其他处理过程均表现出对SCOD的氧化去除效果.处理60 min时, N2/MB、O3/CB和O3/MB处理过程SCOD去除率分别为11.49%、18.26%和36.60%.

图 5 4种不同处理过程预处理实际制药废水去除SCOD Fig. 5 SCOD removal in pre-treatment of actual pharmaceutical wastewater in four different treatment processes

计算N2/MB和O3/MB处理过程整体以及0~20 min和20~60 min的SCOD去除准一级反应动力学常数, N2/MB处理中分别为0.002 1、0.001 4和0.002 4 min-1, O3/MB处理中分别为0.007 7、0.005 9和0.008 1 min-1.可见, 微气泡处理过程中, SCOD去除在20 min后均明显加快.其原因是20 min后SS得到有效去除, 减小了其对臭氧化作用的不利影响, 从而改善了SCOD氧化去除.因此, 微气泡臭氧化在预处理中存在SS及SCOD协同去除作用.

N2/MB、O3/MB、N2/CB和O3/CB预处理实际制药废水过程中, UV254去除率随时间变化如图 6所示.可以看到, 各处理过程对UV254的去除性能与SCOD去除性能基本一致.N2/CB对UV254基本没有去除; N2/MB和O3/CB处理60 min后UV254去除率分别为14.24%和19.30%; O3/MB处理中UV254去除率最高, 可达到36.91%. UV254通常用来指示废水中有机物分子不饱和键和芳香环结构特征, 其去除表明N2/MB、O3/MB和O3/CB均可氧化破坏有机物不饱和键和芳香环结构, 而O3/MB氧化作用最强.

图 6 4种不同处理过程预处理实际制药废水去除UV254 Fig. 6 UV254 removal in pre-treatment of actual pharmaceutical wastewater in four different treatment processes

采用ESR检测DMPO-OH信号, 分析N2/MB、O3/MB、N2/CB和O3/CB处理过程中·OH产生情况, 如图 7所示.可以看到, N2/CB处理中未检测到DMPO-OH信号, 而在O3/CB以及N2/MB和O3/MB处理中均可检测到较强DMPO-OH信号, 其中O3/MB处理中DMPO-OH信号最强.可见, O3/CB通过臭氧分解产生·OH, 存在臭氧直接氧化和·OH氧化作用; 而N2/MB通过微气泡收缩破裂产生·OH, 存在·OH氧化作用; O3/MB处理中同时存在臭氧分解和微气泡收缩破裂产生·OH作用, 因而·OH产生能力最强.

图 7 4种不同处理过程ESR图谱 Fig. 7 ESR spectra of four different treatment processes

2.3 可生化性和生物毒性变化

N2/MB、O3/MB、N2/CB和O3/CB预处理实际制药废水过程中, BOD5/COD和发光细菌抑制率随时间变化如图 8图 9所示.处理前, 实际制药废水BOD5/COD为0.212, 发光细菌抑制率为70.47%, 可生化性较差, 生物毒性较高.N2/CB对可生化性改善和生物毒性消除没有效果.N2/MB、O3/CB和O3/MB处理60 min后, 废水BOD5/COD分别提高至0.263、0.303和0.526, 发光细菌抑制率分别降低至52.51%、41.29%和24.69%.可见, O3/MB预处理后可显著改善废水可生化性, 并明显降低生物毒性, 可为后续生化处理创造良好条件.

图 8 4种不同处理过程预处理实际制药废水中BOD5/COD变化 Fig. 8 Variation in BOD5/COD in pre-treatment of actual pharmaceutical wastewater in four different treatment processes

图 9 4种不同处理过程预处理实际制药废水中发光细菌抑制率变化 Fig. 9 Variation in inhibition rate of luminescent bacteria in pre-treatment of actual pharmaceutical wastewater in four different treatment processes

2.4 有机污染物氧化降解 2.4.1 三维荧光光谱(3D-EEM)分析

原水及N2/MB、O3/MB、N2/CB和O3/CB处理后废水3D-EEM光谱经平行因子分析法解析, 可得到3种物质模型, 如图 10所示.C1物质Ex/Em为375 nm/450 nm, 为类腐殖质[34]; C2物质Ex/Em为400 nm/470 nm, 为类腐殖酸[35]; C3物质Ex/Em为430 nm/520 nm, 为类富里酸[36].C1~C3物质ExEm呈现连续增加趋势, 表明C1~C3物质共轭芳环增大, 芳香性增强.

图 10 平行因子分析得出的3组分荧光光谱图及其ExEm对应载荷值 Fig. 10 PARAFAC components and wavelengths loadings (C1-C3) of the three components based on PARAFAC analysis

原水及N2/MB、O3/MB、N2/CB和O3/CB处理后, C1~C3物质峰荧光强度变化如图 11所示.可以看到, 氧化能力较弱的N2/MB和O3/CB处理后, C1物质峰荧光强度有所下降, 但C2和C3物质峰荧光强度基本不变; 氧化能力强的O3/MB处理后, C1~C3物质峰荧光强度均显著下降, 其降低率分别为66.28%、44.88%和29.26%.可见, 芳香性越强的有机物, 降解所要求的氧化能力越高, O3/MB氧化能力显著高于其他处理过程.

图 11 制药废水处理前后物质峰荧光强度和荧光指数 Fig. 11 Fluorescence intensity of substance peak and fluorescence index of pharmaceutical wastewater before and after treatment

根据废水3D-EEM光谱计算废水荧光指数FI值, 其为激发波长370 nm时, 发射波长分别为450 nm和500 nm处的荧光强度之比, 大小与废水中物质芳香性呈反比[37].原水FI值为1.6, 在N2/MB、O3/CB和O3/MB处理后, FI值均有所提高, 提高幅度分别为9.38%、12.50%和40.63%, 同样表明氧化作用使得废水中有机物的芳香性下降, 而O3/MB强氧化能力对有机物芳香性破坏作用最强.

2.4.2 GC-MS分析

原水及O3/MB处理后废水GC图谱如图 12所示. 通过GC-MS分析可以看到, 原水中主要有机污染物种类包括2-甲氨基甲基-1, 3-二氧戊环(保留时间4.58 min)、1, 3-二甲基-苯(保留时间6.48 min)、2, 4-双(1, 1-二甲基乙基)-苯酚(保留时间15.82 min)、丁噻隆(保留时间16.09 min)和甲基苯磺酰胺(保留时间17.77 min和18.23 min). 上述有机物在N2/MB和O3/CB处理后仍然存在, 相对丰度有不同程度降低.O3/MB处理后, 2-甲氨基甲基-1, 3-二氧戊环、1, 3-二甲基苯和丁噻隆仍有存留, 同时, 2, 4-双(1, 1-二甲基乙基)苯酚和甲基苯磺酰胺基本消失.

图 12 臭氧微气泡(O3/MB)处理前后制药废水气相色谱图 Fig. 12 Gas chromatogram of pharmaceutical wastewater before and after treatment by ozone microbubble (O3/MB)

3 结论

(1) 在实际制药废水处理中, 臭氧微气泡处理存在强吸附-气浮-氧化作用, 显著增强SS去除能力, 60 min时SS去除率可达到81.67%, 并减小SS粒径, 同时将SS表面负电荷转变为正电荷.

(2) 微气泡臭氧化具有强·OH氧化作用, 显著增强有机物降解去除能力, 60 min时SCOD去除率可达到36.60%, 且SS去除可加速SCOD去除, UV254去除率可达到36.91%, 同时可生化性改善和生物毒性消除作用明显.

(3) 微气泡臭氧化可有效氧化破坏废水中复杂结构大分子有机物, 显著降低废水中有机物芳香性.

参考文献
[1] Shi Y F, Li S N, Wang L Y, et al. Compositional characteristics of dissolved organic matter in pharmaceutical wastewater effluent during ozonation[J]. Science of the Total Environment, 2021, 778. DOI:10.1016/j.scitotenv.2021.146278
[2] Ma K, Qin Z, Zhao Z Q, et al. Toxicity evaluation of wastewater collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant[J]. Chemosphere, 2016, 158: 163-170. DOI:10.1016/j.chemosphere.2016.05.052
[3] Zhao F Z, Ju F, Huang K L, et al. Comprehensive insights into the key components of bacterial assemblages in pharmaceutical wastewater treatment plants[J]. Science of the Total Environment, 2019, 651: 2148-2157. DOI:10.1016/j.scitotenv.2018.10.101
[4] Yu X, Zuo J N, Tang X Y, et al. Toxicity evaluation of pharmaceutical wastewaters using the alga Scenedesmus obliquus and the bacterium Vibrio fischeri[J]. Journal of Hazardous Materials, 2014, 266: 68-74. DOI:10.1016/j.jhazmat.2013.12.012
[5] Sui Q, Huang J, Deng S B, et al. Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China[J]. Water Research, 2010, 44(2): 417-426. DOI:10.1016/j.watres.2009.07.010
[6] Gur-Reznik S, Katz I, Dosoretz C G. Removal of dissolved organic matter by granular-activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents[J]. Water Research, 2008, 42(6-7): 1595-1605. DOI:10.1016/j.watres.2007.10.004
[7] Neffa M, Hanine H, Lekhlif B, et al. Improvement of biological process using biocoagulation-flocculation pretreatment aid in olive mill wastewater detoxification[J]. Desalination and Water Treatment, 2014, 52(13-15): 2893-2902. DOI:10.1080/19443994.2013.813692
[8] Tian X M, Zhou Y X, Wang K J. Chloroacetaldehyde removal by zero valent iron enhanced hydrolytic acidification pretreatment[J]. Sustainable Chemistry and Pharmacy, 2020, 15. DOI:10.1016/j.scp.2020.100215
[9] Wang J L, Zhuan R. Degradation of antibiotics by advanced oxidation processes: an overview[J]. Science of the Total Environment, 2020, 701. DOI:10.1016/j.scitotenv.2019.135023
[10] Gao G Y, Shen J M, Chu W, et al. Mechanism of enhanced diclofenac mineralization by catalytic ozonation over iron silicate-loaded pumice[J]. Separation and Purification Technology, 2017, 173: 55-62. DOI:10.1016/j.seppur.2016.09.016
[11] Ahmadi M, Kakavandi B, Jaafarzadeh N, et al. Catalytic ozonation of high saline petrochemical wastewater using PAC@Fe Fe 2O4: optimization, mechanisms and biodegradability studies[J]. Separation and Purification Technology, 2017, 177: 293-303. DOI:10.1016/j.seppur.2017.01.008
[12] 侯瑞, 金鑫, 金鹏康, 等. 污水厂二级出水中难凝聚有机物的臭氧化特性[J]. 环境科学, 2018, 39(2): 844-851.
Hou R, Jin X, Jin P K, et al. Ozonation characteristics of low coagulability organic matter from the secondary effluent of WWTPs[J]. Environmental Science, 2018, 39(2): 844-851.
[13] 张静, 张守敬, 刘春, 等. 工业废水水质对微气泡臭氧化深度处理影响[J]. 环境科学, 2020, 41(4): 1752-1760.
Zhang J, Zhang S J, Liu C, et al. Influence of industrial wastewater quality on advanced treatment of microbubble ozonation[J]. Environmental Science, 2020, 41(4): 1752-1760.
[14] 张静, 杜亚威, 刘晓静, 等. 臭氧微气泡处理酸性大红3R废水特性研究[J]. 环境科学, 2015, 36(2): 584-589.
Zhang J, Du Y W, Liu X J, et al. Characteristics of acid red 3R wastewater treatment by ozone microbubbles[J]. Environmental Science, 2015, 36(2): 584-589.
[15] 孙文静, 王亚旻, 卫皇曌, 等. Fe-MCM-41催化臭氧氧化间甲酚废水[J]. 环境科学, 2015, 36(4): 1345-1351.
Sun W J, Wang Y M, Wei H J, et al. Degradation of m-cresol with Fe-MCM-41 in catalytic ozonation[J]. Environmental Science, 2015, 36(4): 1345-1351.
[16] Shin W T, Mirmiran A, Yiacoumi S, et al. Ozonation using microbubbles formed by electric fields[J]. Separation and Purification Technology, 1999, 15(3): 271-282. DOI:10.1016/S1383-5866(98)00107-5
[17] Chu L B, Xing X H, Yu A F, et al. Enhanced ozonation of simulated dyestuff wastewater by microbubbles[J]. Chemosphere, 2007, 68(10): 1854-1860. DOI:10.1016/j.chemosphere.2007.03.014
[18] Khuntia S, Majumder S K, Chosh P. Quantitative prediction of generation of hydroxyl radicals from ozone microbubbles[J]. Chemical Engineering Research and Design, 2015, 98: 231-239. DOI:10.1016/j.cherd.2015.04.003
[19] Zhang J, Huang G Q, Liu C, et al. Synergistic effect of microbubbles and activated carbon on the ozonation treatment of synthetic dyeing wastewater[J]. Separation and Purification Technology, 2018, 201: 10-18. DOI:10.1016/j.seppur.2018.02.003
[20] Khuntia S, Majumder S K, Ghosh P. Catalytic ozonation of dye in a microbubble system: hydroxyl radical contribution and effect of salt[J]. Journal of Environmental Chemical Engineering, 2016, 4(2): 2250-2258. DOI:10.1016/j.jece.2016.04.005
[21] Wu C, Li P, Xia S J, et al. The role of interface in microbubble ozonation of aromatic compounds[J]. Chemosphere, 2019, 220: 1067-1074. DOI:10.1016/j.chemosphere.2018.12.174
[22] Tentscher P R, Bourgin M, von Gunten U. Ozonation of Para-substituted phenolic compounds yields p-benzoquinones, other cyclic α, β-unsaturated ketones, and substituted catechols[J]. Environmental Science & Technology, 2018, 52(8): 4763-4773.
[23] Li C J, Yuan S F, Jiang F, et al. Degradation of fluopyram in water under ozone enhanced microbubbles: kinetics, degradation products, reaction mechanism, and toxicity evaluation[J]. Chemosphere, 2020, 258. DOI:10.1016/j.chemosphere.2020.127216
[24] Yang C. Observation of microbubble attachment onto a hydrophilic glass surface[J]. Chemical Engineering Science, 2002, 57(8): 1485-1488. DOI:10.1016/S0009-2509(02)00016-7
[25] Malysa K, Krasowska M, Krzan M. Influence of surface active substances on bubble motion and collision with various interfaces[J]. Advances in Colloid and Interface Science, 2005, 114-115: 205-225. DOI:10.1016/j.cis.2004.08.004
[26] Liu C, Tanaka H, Ma J, et al. Effect of microbubble and its generation process on mixed liquor properties of activated sludge using Shirasu porous glass (SPG) membrane system[J]. Water Research, 2012, 46(18): 6051-6058. DOI:10.1016/j.watres.2012.08.032
[27] Liu S, Wang Q H, Ma H Z, et al. Effect of micro-bubbles on coagulation flotation process of dyeing wastewater[J]. Separation and Purification Technology, 2010, 71(3): 337-346. DOI:10.1016/j.seppur.2009.12.021
[28] Ekblad M, Juárez R, Falås P, et al. Influence of operational conditions and wastewater properties on the removal of organic micropollutants through ozonation[J]. Journal of Environmental Management, 2021, 286. DOI:10.1016/j.jenvman.2021.112205
[29] Zucker I, Lester Y, Avisar D, et al. Influence of wastewater particles on ozone degradation of trace organic contaminants[J]. Environmental Science & Technology, 2015, 49(1): 301-308.
[30] Wert E C, Gonzales S, Dong M M, et al. Evaluation of enhanced coagulation pretreatment to improve ozone oxidation efficiency in wastewater[J]. Water Research, 2011, 45(16): 5191-5199. DOI:10.1016/j.watres.2011.07.021
[31] 李瑞霞. 利用发光细菌法对制药废水生物急性毒性的研究[D]. 北京: 清华大学, 2013.
Li R X. Acute toxicity evaluation of pharmaceutical wastewater using luminescent bacteria[D]. Beijing: Tsinghua University, 2013.
[32] Zheng T L, Wang Q H, Zhang T, et al. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry[J]. Journal of Hazardous Materials, 2015, 287: 412-420. DOI:10.1016/j.jhazmat.2015.01.069
[33] Takahashi M. ζ potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface[J]. The Journal of Physical Chemistry B, 2005, 109(46): 21858-21864. DOI:10.1021/jp0445270
[34] Pan H W, Lei H J, Liu X, et al. Assessment on the leakage hazard of landfill leachate using three-dimensional excitation-emission fluorescence and parallel factor analysis method[J]. Waste Management, 2017, 67: 214-221. DOI:10.1016/j.wasman.2017.05.041
[35] Cawley K M, Butler K D, Aiken G R, et al. Identifying fluorescent pulp mill effluent in the Gulf of Maine and its watershed[J]. Marine Pollution Bulletin, 2012, 64(8): 1678-1687. DOI:10.1016/j.marpolbul.2012.05.040
[36] Stedmon C A, Markager S, Bro R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry, 2003, 82(3-4): 239-254. DOI:10.1016/S0304-4203(03)00072-0
[37] 宁成武, 包妍, 黄涛, 等. 夏季巢湖入湖河流溶解性有机质来源及其空间变化[J]. 环境科学, 2021, 42(8): 3743-3752.
Ning C W, Bao Y, Huang T, et al. Sources and spatial variation of dissolved organic matter in summer water of inflow rivers along Chaohu lake watershed[J]. Environmental Science, 2021, 42(8): 3743-3752.