2. 湖南师范大学地理科学学院, 长沙 410081
2. School of Geographic Sciences, Hunan Normal University, Changsha 410081, China
湖泊通过径流与泥沙汇入成为污染物重要的汇集地, 且大部分污染物最终汇集在沉积物中[1].溶解性有机质(dissolved organic matter, DOM)是沉积物中重要的活性组分, 影响着陆源水生系统的碳循环[2], 为微生物提供能量[3], 并影响重金属、营养盐和有机污染物等的生物地球化学环境行为[4].与此同时, 作为连接碳循环和污染物环境归趋的桥梁, DOM的化学性质不仅受到陆源、内源和人为来源的影响, 也受到湖泊中水位波动、流速等水文过程的再处理与再分布[5, 6].因此, 探究水文环境对沉积物DOM组成与来源的影响, 有助于进一步认知DOM的媒介作用, 为湖泊不同区域的污染控制提供依据.
水位波动造成典型的淹水环境差异, 从而造成湖泊/水库的土壤/沉积物DOM随淹水过程向上覆水释放[7], 并显著影响污染物的环境行为[8, 9].目前, 关于淹水变化影响DOM的组成与来源的研究较为丰富, 但主要集中在水体[10~12], 对沉积物DOM特征的关注较少.湖泊中由于水位波动导致的淹水环境空间差异, 其对DOM特性的影响仍不明确, 尤其是缺乏常年淹水与季节淹水环境下沉积物DOM组成与来源异质性的研究.有研究表明经历季节淹水的土壤DOM在淹水期比落干期具有更高的芳香性、腐殖化程度和疏水组分[13].然而有研究证明, 与季节淹水相比, 深水区常年淹水的沉积物DOM的芳香性和腐殖化程度更高[7], 从而有利于污染物的迁移[13].但也有研究发现干湿交替培养下, 沉积物DOM在落干期具有更高的芳香性和疏水组分[14], 究其原因为不同湖泊与水库DOM的组成和来源有所不同.与此同时, 不同淹水环境下, 沉积物DOM来源也存在一定的差异.水库季节淹水区水体DOM在淹水期比落干期具有更多的自生源特征, 原因是沉积物中吸附更多的陆源DOM[11]; 同时, 湖心(常年淹水)的沉积物DOM比湖滨(季节淹水)受到外源干扰更少, 具有更高的自生源性[15].然而, 落干期的季节淹水区与常年淹水区存在天然的水位差异, 这种淹水环境差异对DOM特性的影响尚未可知.此外, 淹水环境由于受到水文过程差异和人类活动的影响, DOM的组成与来源也有所不同.已有的研究发现常年淹水与季节淹水的沉积物在粒径、营养元素(C、N等)、pH和重金属等方面具有显著差异[16~18].有研究报道富营养湖泊中湖滨沉积物DOM由于藻华暴发与废污水排放的影响具有比湖心更高的芳香性与类色氨酸组分[15], 说明真实湖泊环境下淹水的空间差异对DOM的影响较为复杂.由于DOM不同组分具有特定的光谱特性, 紫外可见光谱与三维荧光光谱结合平行因子分析被广泛用于探索DOM的组成与来源, 具有灵敏度高、选择性高和对样品结构无损害等优点[19].因此, 有必要利用多光谱技术进一步明确在真实湖泊中不同淹水环境对沉积物DOM组成与来源的影响, 为湖泊水质与污染物的精准调控提供科学依据.
本文以东洞庭湖为研究区域, 运用光谱学技术探究东洞庭湖常年淹水与季节淹水的沉积物DOM的组成与来源, 并结合统计学分析探讨淹水环境差异对DOM组成与来源的影响, 揭示湖泊水位的空间差异对沉积物DOM特性的作用机制, 以期为枯水期湖岸与洪道的污染控制提供依据.
1 材料与方法 1.1 研究区与样品采集东洞庭湖(28°28′~29°35′N, 112°19′~113°05′E)为洞庭湖最大湖区, 属于典型的过水性洪道湖泊[20], 水位的季节变化大[21], 东部的行洪道与湖岸滩地形成典型的常年淹水区(perennial inundation zone, PIZ)和季节淹水区(seasonal inundation zone, SIZ).随着围湖造田向自然保护的转变, 东洞庭湖生态环境有所恢复, 但重金属污染仍然需要重视[22].以往的研究表明, 东洞庭湖沉积物与水体中的DOM与湖泊水质、重金属迁移关系密切[4, 23].并且东洞庭湖东部作为洞庭湖的汇水区与沿岸经济快速发展地区, 具有复杂的有机质来源.
沉积物样品于2020年12月采集自东洞庭湖东部, 共36个采样点(图 1), 包括湖岸滩地(S1~S18)和行洪道(P1~P18)两部分, 分别表示季节淹水与常年淹水两种环境.用采泥器采集适量表层(0~20 cm)沉积物样品.根据行洪道水文特点[24]和沿岸土地利用的分布, 将研究区域分为入湖段(R:P1~P3, S1~S5)、湖中段(Z:P4~P13, S6~S13)和出湖段(C:P14~P18, S14~S18), 每段的季节淹水与常年淹水分别用RS、RP、ZS、ZP、CS和CP表示.采集的样品均于4℃黑暗条件下保存.运回实验室后, 于-24℃冰箱冷冻24 h.然后在黑暗条件下冷冻干燥, 研磨后过100目筛, 用聚乙烯自封袋密封保存备用.根据已有研究测定沉积物的pH、总碳(total carbon, TC)、总氮(total nitrogen, TN)及总硫(total sulfur, TS)含量、碳氮比(C/N)和颗粒组成[25].
![]() |
图 1 东洞庭湖沿岸土地利用类型与样点分布示意 Fig. 1 Distribution of sampling sites and coastal land use types in East Dongting Lake |
用超纯水提取沉积物中的DOM[14]:将沉积物样品按土水比1∶5加入超纯水中混合均匀, 在室温避光条件下以220r·min-1连续振荡24 h, 再以4 000r·min-1离心30 min, 取上清液过0.45 μm水系滤膜.滤液为沉积物DOM, 避光冷藏(4℃)保存, 并在一周内使用.采用总有机碳分析仪(TOC-VCPH, 日本岛津)测定溶解性有机碳(dissolved organic carbon, DOC)浓度, 以表示DOM的含量[22].
紫外可见吸收光谱采用UV-2550型分光光度计测定, 以超纯水为空白, 扫描波长范围为190~600 nm, 间隔为1 nm, 每个样品测定3次.选取SUVA254、SUVA260和E2/E3来表征沉积物中DOM的芳香性、疏水组分含量与相对分子质量大小[26].
用Hitachi F-7000型荧光光谱分析仪对沉积物DOM进行EEM测定[14].激发波长Ex与发射波长Em的扫描范围分别为200~500 nm与250~600 nm, 采样间隔分别为10 nm与2 nm, 狭缝均为5 nm, 扫描速度为2 400 nm·min-1, 用Milli-Q超纯水作空白样测定.对DOM样品的EEM光谱进行PARAFAC分析, 确定最优的DOM组分数目[14].此外, 选取荧光指数FI、自生源指数BIX和腐殖化指数HIX来判断DOM的来源、自生源贡献和腐殖化程度[27].
1.3 统计分析与绘图利用Excel 2010和Origin Pro 2021软件对DOM样品的光谱数据进行分析处理以及作图.用SPSS Statistics 23进行非参数检验(Mann-Whitney, U; Kruskal-Wallis, H)和Spearman相关性分析, 分别说明沉积物特性和DOM的差异(两种淹水; 3个分段)显著性与二者的关系.利用ArcGIS 10.2软件绘制土地利用类型与样点分布示意图、光谱参数的空间插值图(反距离加权法).其中, 2020年30 m分辨率的土地利用/覆盖数据来源于文献[28], 城镇与工业入河排污口等数据来源于湖南省水利厅(http://yzt.hnswkcj.com:9090/#/)和实地考察.
2 结果与分析 2.1 沉积物基本理化性质与DOC浓度差异表 1和图 2反映了常年淹水与季节淹水的沉积物性质.如表 1所示, 两种淹水环境的沉积物均以砂粒为主.与SIZ相比, PIZ的沉积物具有更多粉粒含量, 更少的黏粒含量.如图 2(b)所示, PIZ的沉积物呈碱性(pH=7.99±0.25); 而SIZ的沉积物整体呈中性, 但在入湖段主要呈碱性(除S3, pH为6.14), 湖中段主要呈中性(除S9和S10, pH<6.5); 出湖段由酸性到碱性[29].SIZ的沉积物中TC和TN的平均含量均高于PIZ, C/N显著低于PIZ. TS的平均含量在湖中段与出湖段的SIZ较高. ω(DOC)的平均值为(0.22±0.09)g·kg-1, 并且PIZ在湖中段的南部与入湖段出现高值; SIZ在湖中段最高[图 3(a)].
![]() |
表 1 不同淹水环境下的沉积物特性与DOC含量1) Table 1 Sediment characteristics and DOC content under different inundation environments |
![]() |
图 2 东洞庭湖东部不同湖段沉积物特性变化 Fig. 2 Variation in sediment characteristics in different subsections in the eastern part of East Dongting Lake |
![]() |
图 3 东洞庭湖东部沉积物DOM的DOC含量、紫外可见光谱特征(SUVA254、SUVA260、E2/E3) 和三维荧光光谱特征(C1、C2、C3、FI、BIX、HIX)的空间分布 Fig. 3 Spatial distribution of DOC content, UV-vis spectral characteristics (SUVA254, SUVA260, E2/E3) and fluorescence spectral characteristics (C1, C2, C3, FI, BIX, HIX) of sediment DOM in the eastern part of East Dongting Lake |
不同淹水环境下沉积物DOM的SUVA254、SUVA260和E2/E3如图 3和图 4所示.SUVA254和SUVA260在PIZ的平均值分别为4.84±3.88和4.71±3.81, 均显著高于SIZ(2.55±1.99和2.45±1.90); 空间上呈现:湖中段>出湖段>入湖段(P<0.05).E2/E3值越大, DOM的相对分子质量越小[26].所以DOM的相对分子质量在PIZ显著高于SIZ(P<0.05), 湖中段的PIZ最高.
![]() |
图 4 两种淹水环境下沉积物DOM的紫外可见光谱特征与空间变化 Fig. 4 UV-Vis spectral characteristics and spatial variations of DOM and in sediments under two inundation environments |
利用PARAFAC分析从沉积物DOM的荧光EEM数据中提取了3种荧光组分(图 5), 包括1个类腐殖酸组分和2个类蛋白组分.组分1(C1)的主峰(Ex/Em=240/418 nm)表示类腐殖酸组分, 在废水、湿地和农业环境中有发现[30].组分2(C2)分别在230/330 nm和280/330 nm处具有主峰和次峰, 表示类色氨酸物质, 是一种可生物降解的类蛋白物质[27].组分3(C3, Ex/Em=200/292 nm)表示微生物降解产生的内源类蛋白中的酪氨酸物质[27, 31].
![]() |
图 5 沉积物中DOM的荧光组分及其相对丰度在分段上的变化 Fig. 5 Fluorescence component diagrams for DOM in sediments and variation in their relative abundance in subsections |
如图 3和图 5(d)所示, 沉积物DOM的类蛋白组分(C2+C3)相对丰度高达(72.95±8.94)%, 且SIZ高于PIZ.C2与C3的相对丰度分别在出湖段和湖中段最高, 且PIZ显著低于SIZ(P<0.05).PIZ[(29.30±7.25)%]的DOM相较于SIZ[(24.80±10.07)%]具有更高的C1组分, 并且出湖段显著更高(P<0.05).因此, 枯水期沉积物DOM以类蛋白组分为主, 在湖中段与出湖段的季节淹水区相对丰度更高; 而类腐殖酸组分在出湖段的常年淹水区更高.
沉积物DOM的荧光指数(FI)、自生源指数(BIX)和腐殖化指数(HIX)的值与空间分布如图 6和图 3 (h)~3(j)所示.FI值在1.80~2.42之间(平均值为1.93), 表明沉积物DOM受到以微生物源为主的陆源与微生物源共同作用[27].BIX在0.78~1.23之间(平均值为0.91), 反映沉积物DOM总体自生源特征较显著[27].HIX值的范围为0.44~2.61(平均值为1.57), 指示沉积物DOM总体表现为较弱的腐殖质特征和明显的内源特征[27].
![]() |
图 6 东洞庭湖东部不同湖段沉积物中DOM的荧光参数变化 Fig. 6 Fluorescence index variation in DOM in sediments of different subsections in the eastern part of East Dongting Lake |
SIZ的FI值显著高于PIZ(1.98±0.14和1.88±0.04, P<0.05); 而HIX值显著低于PIZ(1.38±0.57和1.77±0.52, P<0.05).BIX在湖中段南部的PIZ和中部的SIZ出现高值, BIX>1; 在P2与P17的BIX值<0.8. HIX在湖中段的SIZ均<1.5, 显著低于PIZ(P<0.05).
2.4 DOM特征的PCA分析与RDA分析选取淹水环境下差异显著的SUVA254、SUVA260、FI、HIX、C1和C2+C3这6个参数作为变量进行PCA分析, 提取两个特征值>1的主成分, 解释了总方差的72.2%[图 7(a)].PC1由C2+C3和FI的强正载荷与HIX与C1的强负载荷共同解释了DOM变化38.3%.PC2(33.9%)与SUVA254和SUVA260高度正相关, 与HIX、C1弱正相关.
![]() |
其中点为沉积物DOM样点, 椭圆为95%的置信区间, 红色和黑色分别表示季节淹水和常年淹水, 蓝色箭头表示沉积物因素, 黑色箭头表示DOM的变量 图 7 两种淹水环境下沉积物DOM组成与来源及影响因素的PCA分析与RDA分析 Fig. 7 PCA analysis and RDA analysis of DOM composition, source, and influencing factors of sediments under two inundation environments |
采用RDA与Spearman相关性分析, 将pH、C/N、TC、TN、TS和砂粒、粉粒及黏粒的含量作为因素, 探讨主要沉积物特性对DOM的影响.通过VIF<10的分析, 筛除了TC、TN和砂粒含量, 结果如图 7(b)和表 2.第1、2排序轴共解释总方差的25.37%.其中RDA1反映了pH与C/N的显著影响, pH和C/N均与C1、HIX呈显著正相关, 与C2+C3呈显著负相关, TN与FI呈显著正相关.RDA2反映了TS与黏粒含量对DOM的影响, 其中, TS与SUVA254和SUVA260呈显著负相关; 黏粒含量与FI显著正相关.因此, 在沉积物的基本特性中, pH和C/N显著影响DOM的特征, TS和黏粒含量次之.结合图 7(b)中采样点的分布与表 2, DOM在常年淹水区主要受到pH和C/N的影响, 而季节淹水区主要是TS、TN和黏粒含量的影响.
![]() |
表 2 沉积物因子与DOM组成和来源变量的相关性1) Table 2 Correlation between sediment factors and DOM composition and source variables |
3 讨论 3.1 东洞庭湖两种淹水环境下沉积物DOM的来源
PCA的结果表明, PC1表示DOM类蛋白组分的丰度, 反映DOM具有人为输入(C2)和内源特征(FI、C3)[32].PC2表示DOM的芳香性(SUVA254)与疏水性(SUVA260), 与DOM的C1和HIX共同指示陆源输入[32].因此, 在东洞庭湖东部的沉积物中, DOM具有内源与陆源输入的混合来源, 受人为输入的影响.然而两种淹水环境下DOM的显著差异也反映了DOM来源的差异, 并在不同的分段具有空间差异.
两种淹水条件下沉积物DOM以类蛋白物质(C2与C3组分)为主, 类腐殖酸物质(C1)较少(图 5).这可能是由于东洞庭湖东部枯水期由于长江、湘江、新墙河等河流入湖水沙的减少, 水流速度的减缓, 沉积物DOM组成可能由以类腐殖质为主转变为以类蛋白质为主[4], 并且以新产生的可生物降解的类色氨酸物质为主[图 5(d)].在东洞庭湖枯水期的水体中发现同样的结果[31].因此, 东洞庭湖东部DOM的内源特征显著, 陆源输入较少, 这与水产养殖、工业、城镇与船舶等的污水排放以及微生物活动密切相关[30, 33].
湖中段与出湖段的季节淹水区为分布着大量的渔场与入河排污口(图 1).湖岸的岳阳县为农业大县[34], 据文献[35], 岳阳县2019年化肥施用量高达128 345 t, 牧业产值为全市最高, 因此湖中段新墙河携带营养元素在入湖口随泥沙沉积积累, 加上水产养殖尾水未经处理直接排放入湖[36], 大量营养物质富集(TC和TN含量高)增强微生物活性, 增加类蛋白物质的内源输入, FI与BIX值证实了本地生产的DOM的新鲜度[37](图 6).除此之外, 湖中段与出湖段沿岸大量的工业、城镇生活污水的排放, 也促进类酪氨酸组分与类色氨酸组分的比例上升[33, 38], 显著降低的芳香性与相对分子质量印证了人为输入[27].而在湖中段的常年淹水区, 由于远离湖岸, 受到生活与养殖污水的影响减小, 新墙河与西侧藕池河东支带来的水沙混合[39], 使得类腐殖酸组分含量较高(图 3), 显著更高的相对分子质量与腐殖化程度也反映了DOM的陆源输入(图 4和图 5).而出湖段常年淹水区为湖泊出湖径流, 加上冬季三峡放水增强了长江在出湖口的阻断作用[40], 湖泊与长江的水沙混合沉积, 虽然仍以人为输入的类色氨酸为主, 但陆源输入的类腐殖酸也占有较高的比例[图 5(d)].
入湖段的沉积物DOM的来源受到西侧芦苇场和上游河湖混合的影响.西侧的季节淹水区水位下降后大量芦苇的分解产物存在于沉积物中[41], 内源特征显著(图 5)[41]; 常年淹水区DOM较高的腐殖化与C3组分反映河流带来的陆源输入与南洞庭湖内源输入的混合[图 3(g)和3(j)], 而不显著的C1组分[图 6(e)]可能受到草尾河造纸厂污水输入的影响[33].除此之外, P4和P5由于入湖后流速的减缓[21], 具有芦苇分解产物、生产污水和陆源径流多重影响的沉积物在此经历更长的停留(较高的DOC浓度), 因此光降解与微生物降解作用明显[27, 42, 43], 使得沉积物中的DOM相对分子质量减小而仍然具有较高的芳香性与疏水组分.
3.2 淹水环境对沉积物DOM组成与来源的影响沉积物/土壤特性影响溶解性有机质的组成与来源[17].其中, 沉积物的pH对DOM的类腐殖酸组分和内源特征影响最为显著(图 7与表 2).人类活动可能使得沉积物pH升高, 因此东洞庭湖东部的沉积物主要呈碱性; 而湖中段和出湖段的季节淹水区局部呈现酸性, 与湖泊沿岸湖沼土盐基淋溶作用强有关[29].有研究发现碱性沉积环境更有利于陆源难降解的多酚和多环芳香族化合物的积累[44], 因此常年淹水相较于季节淹水具有显著更高的芳香性、疏水组分和相对分子质量(图 2), 促进污染物的迁移[13].而相对分子质量在出湖段的降低也与水深的增加产生更强的厌氧分解的低分子质量DOM有关[45].同时, 高pH和厌氧环境增强反硝化作用, 导致更多N2O的排放[46], 因此常年淹水下沉积物TN含量减少, 比季节淹水具有显著更高的C/N比值(表 1).C/N比值作为区分有机质来源的常用参数, 比值高(>10)、低(4~10)反映陆生和水生有机物的蛋白质含量[47, 48].因此, 季节淹水沉积物的低C/N值反映明显的蛋白质特征, 但在入湖段和出湖段的常年淹水区具有一定的陆源有机质, 这和C/N与HIX、C1的显著正相关相印证(表 2).水生系统中硫的含量一定程度上反映人类活动带来的污水排放[49], 因此季节淹水的沉积物中相对较高TS再次证实了人为输入对DOM的影响.相较而言, 常年淹水下沉积物的颗粒组成对DOM组成与来源影响较小, 说明沉积物/土壤的物理组成对DOM的影响在水生系统中被减弱, 这在以往的研究中得以证实[42].但沉积物的细颗粒对于有机碳具有吸附作用[17].季节淹水区在枯水期沉积物出露, 减少了水动力对沉积物颗粒的分选但保持潮湿的环境, 因此黏粒含量相对较高, 更有利于微生物产物的积累[44], 从而DOM具有更高的内源特征.
因此, 湖泊枯水期淹水环境对沉积物DOM特征的可能作用机制为:季节淹水区水位的显著下降使沉积物保持高黏粒含量的湿润环境.同时沉积物的裸露使得沿岸污水直接排放到沉积物中, 再进入湖泊水体, 营养元素(高TN、TC和低C/N)含量高, 增强沉积物中的微生物活性, 因此季节淹水区DOM具有更多的类蛋白物质与自生源特征.而常年淹水区由于径流的输入减少, 水动力作用减弱, 以及受到一定沿岸与船舶污水排放的影响, DOM仍然以自生源的类蛋白物质为主, 但是常年淹水导致碱性的沉积环境与径流作用使得DOM具有显著更高的芳香性、腐殖化程度、相对分子质量、疏水组分和一定比例的类腐殖酸组分, 对污染物的迁移具有重要影响.其中, 淹水环境导致的沉积物pH、C/N和黏粒含量与DOM的来源与组成显著相关(P<0.05), 但冗余分析的解释度并不高(25.37%), 这与人类活动的强烈影响有关[33].同时, 有研究表明沉积物中氧化还原条件与铁锰氧化物对淹水环境具有更多的响应[50], 并且DOM的持久性受到其内在分子组成的影响[42].淹水环境的季节性与内外因素对于DOM组成与来源的作用需进一步研究, 并在此基础上探究DOM在不同淹水环境下与湖泊重金属污染的关系.
4 结论(1) 枯水期两种淹水环境下DOM以类蛋白组分(C2+C3)为主.与季节淹水相比, 在常年淹水的沉积物中具有更高的类腐殖酸组分(C1)与更低的类蛋白组分.常年淹水下DOM具有更高的芳香性与疏水组分, 在空间上表现为:湖中段>入湖段>出湖段.
(2) 沉积物DOM的内源特征显著, 陆源特征较弱.人为输入直接影响沉积物, 降低了DOM的芳香性与相对分子质量, 增强了类蛋白组分与内源特征.这在人为活动频繁的湖中段与出湖段的季节淹水区突出.
(3) 淹水环境对沉积物DOM特征的可能作用机制与沉积物特性和人类活动显著相关.其中, 季节淹水区DOM受沉积物TN和黏粒含量与污水排放的影响显著; 而常年淹水区DOM主要受沉积物pH和C/N与径流输入的影响.
[1] | Ren H Y, Ma F Y, Yao X, et al. Multi-spectroscopic investigation on the spatial distribution and copper binding ability of sediment dissolved organic matter in Nansi Lake, China[J]. Journal of Hydrology, 2020, 591. DOI:10.1016/j.jhydrol.2020.125289 |
[2] | Williams C J, Frost P C, Morales-Williams A M, et al. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems[J]. Global Change Biology, 2016, 22(2): 613-626. DOI:10.1111/gcb.13094 |
[3] | Qualls R G, Haines B L. Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water[J]. Soil Science Society of America Journal, 1992, 56(2): 578-586. DOI:10.2136/sssaj1992.03615995005600020038x |
[4] | Li Y P, Zhang L, Wang S R, et al. Composition, structural characteristics and indication of water quality of dissolved organic matter in Dongting Lake sediments[J]. Ecological Engineering, 2016, 97: 370-380. DOI:10.1016/j.ecoleng.2016.10.035 |
[5] |
闫晓寒, 韩璐, 文威, 等. 辽河保护区水体溶解性有机质空间分布与来源解析[J]. 环境科学学报, 2021, 41(4): 1419-1427. Yan X H, Han L, Wen W, et al. Spectral characteristics and spatial distribution of DOM in surface water of Liaohe reservation zone[J]. Acta Scientiae Circumstantiae, 2021, 41(4): 1419-1427. |
[6] | Ma Y M, Mao R, Li S Y. Hydrological seasonality largely contributes to riverine dissolved organic matter chemical composition: insights from EEM-PARAFAC and optical indicators[J]. Journal of Hydrology, 2021, 595. DOI:10.1016/j.jhydrol.2021.125993 |
[7] |
梁俭, 江韬, 卢松, 等. 淹水条件下三峡库区典型消落带土壤释放DOM的光谱特征: 紫外-可见吸收光谱[J]. 环境科学, 2016, 37(7): 2496-2505. Liang J, Jiang T, Lu S, et al. Spectral characteristics of dissolved organic matter (DOM) releases from soils of typical water-level fluctuation zones of three gorges reservoir areas: UV-vis spectrum[J]. Environmental Science, 2016, 37(7): 2496-2505. |
[8] | Fan X F, Ding S M, Chen M S, et al. Peak chromium pollution in summer and winter caused by high mobility of chromium in sediment of a eutrophic lake: in situ evidence from high spatiotemporal sampling[J]. Environmental Science & Technology, 2019, 53(9): 4755-4764. |
[9] | Chen M S, Ding S M, Li C, et al. High cadmium pollution from sediments in a eutrophic lake caused by dissolved organic matter complexation and reduction of manganese oxide[J]. Water Research, 2021, 190. DOI:10.1016/j.watres.2020.116711 |
[10] | Huang Y, Fu C, Li Z, et al. Effect of dissolved organic matters on adsorption and desorption behavior of heavy metals in a water-level-fluctuation zone of the Three Gorges Reservoir, China[J]. Ecotoxicology and Environmental Safety, 2019, 185. DOI:10.1016/j.ecoenv.2019.109695 |
[11] | Jiang T, Wang D Y, Wei S Q, et al. Influences of the alternation of wet-dry periods on the variability of chromophoric dissolved organic matter in the water level fluctuation zone of the Three Gorges Reservoir area, China[J]. Science of the Total Environment, 2018, 636: 249-259. DOI:10.1016/j.scitotenv.2018.04.262 |
[12] |
梁俭, 江韬, 卢松, 等. 淹水条件下三峡库区典型消落带土壤释放DOM的光谱特征: 荧光光谱[J]. 环境科学, 2016, 37(7): 2506-2514. Liang J, Jiang T, Lu S, et al. Spectral characteristics of dissolved organic matter (DOM) releases from soils of typical water-level fluctuation zones of three gorges reservoir areas: fluorescence spectra[J]. Environmental Science, 2016, 37(7): 2506-2514. |
[13] |
郝蓉, 徐召玉, 沈祠福, 等. 消落带夏冬季土壤溶解有机质的组成特征及来源[J]. 生态环境学报, 2019, 28(6): 1127-1133. Hao R, Xu Z Y, Shen C F, et al. Chemical characteristics and sources of dissolved organic matter in soils of water-level fluctuation zones in summer and winter[J]. Ecology and Environmental Sciences, 2019, 28(6): 1127-1133. |
[14] | Zhou M, Li Z W, Huang M, et al. Impact of drying/wetting conditions on the binding characteristics of Cu(ii) and Cd(ii) with sediment dissolved organic matter[J]. RSC Advances, 2020, 10(57): 34658-34669. DOI:10.1039/D0RA04839A |
[15] |
朱金杰, 邹楠, 钟寰, 等. 富营养化巢湖沉积物溶解性有机质光谱时空分布特征及其环境意义[J]. 环境科学学报, 2020, 40(7): 2528-2538. Zhu J J, Zou N, Zhong H, et al. Spatiotemporal characteristics and its environmental application of dissolved organic matter (DOM) in sediments from Chaohu Lake, a eutrophic lake[J]. Acta Scientiae Circumstantiae, 2020, 40(7): 2528-2538. |
[16] | Yin D L, Peng F C, He T R, et al. Ecological risks of heavy metals as influenced by water-level fluctuations in a polluted plateau wetland, southwest China[J]. Science of the Total Environment, 2020, 742. DOI:10.1016/j.scitotenv.2020.140319 |
[17] | López P, López-Tarazón J A, Casas-Ruiz J P, et al. Sediment size distribution and composition in a reservoir affected by severe water level fluctuations[J]. Science of the Total Environment, 2016, 540: 158-167. DOI:10.1016/j.scitotenv.2015.06.033 |
[18] | Wu X C, Ma T, Du Y, et al. Phosphorus cycling in freshwater lake sediments: influence of seasonal water level fluctuations[J]. Science of the Total Environment, 2021, 792. DOI:10.1016/j.scitotenv.2021.148383 |
[19] |
谢秀风, 郗敏, 李悦, 等. 湿地溶解性有机质(DOM)源识别方法研究[J]. 地质论评, 2014, 60(5): 1102-1108. Xie X F, Xi M, Li Y, et al. Research of the source identification methods for dissolved organic matter (DOM) in wetland[J]. Geological Review, 2014, 60(5): 1102-1108. |
[20] |
李有志, 刘芬, 张灿明. 洞庭湖湿地水环境变化趋势及成因分析[J]. 生态环境学报, 2011, 20(S2): 1295-1300. Li Y Z, Liu F, Zhang C M. Analysis of change trend of water environment and cause in the Dongting Lake wetland[J]. Ecology and Environmental Sciences, 2011, 20(S2): 1295-1300. |
[21] |
刘虎英. 城陵矶建闸对洞庭湖主要航道影响分析[J]. 交通科学与工程, 2018, 34(1): 50-55. Liu H Y. Analysis of the influence of Chenglingji project on main channel in Dongting Lake[J]. Journal of Transport Science and Engineering, 2018, 34(1): 50-55. DOI:10.3969/j.issn.1674-599X.2018.01.010 |
[22] | Ding X, Xu W H, Li Z W, et al. Phosphate hinders the complexation of dissolved organic matter with copper in lake waters[J]. Environmental Pollution, 2021, 276. DOI:10.1016/j.envpol.2021.116739 |
[23] | Huang M, Li Z W, Chen M, et al. In situ investigation of intrinsic relationship between protonation behavior and HA characteristics in sediments[J]. Science of the Total Environment, 2019, 683: 258-266. DOI:10.1016/j.scitotenv.2019.05.235 |
[24] |
吴可方, 欧伏平, 王丑明. 东洞庭湖秋季氮磷营养盐结构及水华风险分析[J]. 人民长江, 2018, 49(23): 21-26, 73. Wu K F, Ou F P, Wang C M. Nitrogen and phosphorus nutrient structure characteristic and risk analysis of cyanobacterial bloom in East Dongting lake in autumn[J]. Yangtze River, 2018, 49(23): 21-26, 73. |
[25] | Liao W F, Tong D, Li Z W, et al. Characteristics of microbial community composition and its relationship with carbon, nitrogen and sulfur in sediments[J]. Science of the Total Environment, 2021, 795. DOI:10.1016/j.scitotenv.2021.148848 |
[26] |
丁翔, 李忠武, 徐卫华, 等. DOM对沉积物悬浮颗粒吸附铜的促进作用及机制[J]. 环境科学, 2021, 42(8): 3837-3846. Ding X, LI Z W, XU W H, et al. Promotion and mechanisms of DOM on copper adsorption by suspended sediment particles[J]. Environmental Science, 2021, 42(8): 3837-3846. |
[27] |
宁成武, 包妍, 黄涛, 等. 夏季巢湖入湖河流溶解性有机质来源及其空间变化[J]. 环境科学, 2021, 42(8): 3743-3752. Ning C W, Bao Y, Huang T, et al. Sources and spatial variation of dissolved organic matter in summer water of inflow rivers along Chaohu Lake watershed[J]. Environmental Science, 2021, 42(8): 3743-3752. |
[28] | 徐新良, 刘纪远, 张树文, 等. 中国多时期土地利用土地覆被遥感监测数据集(CNLUCC)[Z]. 中国科学院资源环境科学数据中心数据注册与出版系统, 2018, doi: 10.12078/2018070201. |
[29] |
欧芙容, 吕殿青, 赵丹丹. 东洞庭湖湖滨带土壤酸碱度的分布及对重金属含量的影响[J]. 环境科学导刊, 2014, 33(5): 10-13. Ou F R, Lv D Q, Zhao D D. Effects of the distribution of pH value on the content of heavy metal in soil of the EasternDongting Lakeside belt[J]. Environmental Science Survey, 2014, 33(5): 10-13. DOI:10.3969/j.issn.1673-9655.2014.05.003 |
[30] |
周蕾, 周永强, 张运林, 等. 重要饮用水源地天目湖水库有色可溶性有机物来源与组成特征[J]. 环境科学, 2021, 42(8): 3709-3718. Zhou L, Zhou Y Q, Zhang Y L, et al. Characterizing sources and composition of chromophoric dissolved organic matter in a key drinking water reservoir lake Tianmu[J]. Environmental Science, 2021, 42(8): 3709-3718. |
[31] |
郭燕妮, 李元鹏, 石玉, 等. 大型通江湖泊有色可溶性有机物对不同水文情景的响应[J]. 环境科学, 2020, 41(5): 2198-2209. Guo Y N, Li Y P, Shi Y, et al. Response of chromophoric dissolved organic matter dynamics to different hydrological scenarios in the two largest freshwater lakes connected to the Yangtze River[J]. Environmental Science, 2020, 41(5): 2198-2209. |
[32] | Wang K, Li P H, He C, et al. Hydrologic heterogeneity induced variability of dissolved organic matter chemistry among tributaries of the Three Gorges Reservoir[J]. Water Research, 2021, 201. DOI:10.1016/j.watres.2021.117358 |
[33] | Du Y X, Lu Y H, Roebuck J A Jr, et al. Direct versus indirect effects of human activities on dissolved organic matter in highly impacted lakes[J]. Science of the Total Environment, 2021, 752. DOI:10.1016/j.scitotenv.2020.141839 |
[34] |
卢少勇, 张萍, 潘成荣, 等. 洞庭湖农业面源污染排放特征及控制对策研究[J]. 中国环境科学, 2017, 37(6): 2278-2286. Lu S Y, Zhang P, Pan C R, et al. Agricultural non-point source pollution discharge characteristic and its control measures of Dongtinghu Lake[J]. China Environmental Science, 2017, 37(6): 2278-2286. DOI:10.3969/j.issn.1000-6923.2017.06.036 |
[35] | 岳阳市统计局. 岳阳统计年鉴2020[M]. 岳阳: 岳阳市统计局, 2020. |
[36] | 谈毅奇, 李向前, 殷文洁, 等. 岳阳县东洞庭湖自然保护区实验区水产养殖污染现状及综合治理对策研究[J]. 当代水产, 2020, 45(8): 80-81. DOI:10.3969/j.issn.1674-9049.2020.08.030 |
[37] | Li M M, Kong F L, Li Y, et al. Ecological indication based on source, content, and structure characteristics of dissolved organic matter in surface sediment from Dagu River estuary, China[J]. Environmental Science and Pollution Research, 2020, 27(36): 45499-45512. DOI:10.1007/s11356-020-10456-1 |
[38] |
赵辰, 周玉萍, 庞宇, 等. 富营养化条件下浙江象山港可溶性有机质的光谱和分子特征初探[J]. 中国科学: 地球科学, 2021, 64(8): 1258-1274. Zhao C, Zhou Y P, Pang Y, et al. The optical and molecular signatures of DOM under the eutrophication status in a shallow, semi-enclosed coastal bay in southeast China[J]. Science China Earth Sciences, 2021, 64(7): 1090-1104. |
[39] |
王小毛, 欧伏平, 王丑明, 等. 洞庭湖底栖动物长期演变特征及影响因素分析[J]. 农业环境科学学报, 2016, 35(2): 336-345. Wang X M, Ou F P, Wang C M, et al. Long-term evolution and influencing factors of macrozoobenthos in Dongting Lake[J]. Journal of Agro-Environment Science, 2016, 35(2): 336-345. |
[40] | Dai X, Yang G S, Wan R R, et al. The effect of the Changjiang River on water regimes of its tributary Lake East Dongting[J]. Journal of Geographical Sciences, 2018, 28(8): 1072-1084. DOI:10.1007/s11442-018-1542-5 |
[41] |
罗燕清, 万智巍, 晏彩霞, 等. 鄱阳湖沉积物溶解性有机质光谱特征[J]. 环境科学, 2022, 43(2): 847-858. Luo Y Q, Wan Z W, Yan C X, et al. Spectral characteristics of dissolved organic matter in sediments from Poyang Lake[J]. Environmental Science, 2022, 43(2): 847-858. |
[42] | Kellerman A M, Kothawala D N, Dittmar T, et al. Persistence of dissolved organic matter in lakes related to its molecular characteristics[J]. Nature Geoscience, 2015, 8(6): 454-457. DOI:10.1038/ngeo2440 |
[43] | Zhang X K, Li B L, Deng J M, et al. Regional-scale investigation of dissolved organic matter and lead binding in a large impacted lake with a focus on environmental risk assessment[J]. Water Research, 2020, 172. DOI:10.1016/j.watres.2020.115478 |
[44] | Ding Y, Shi Z Q, Ye Q T, et al. Chemodiversity of soil dissolved organic matter[J]. Environmental Science & Technology, 2020, 54(10): 6174-6184. |
[45] | Zhu T B, Duan P F, He J G, et al. Sources, composition, and spectroscopiccharacteristics of dissolved organic matter extractedfrom sediments in an anthropogenic-impacted riverin Southeastern China[J]. Environmental Science and Pollution Research, 2017, 24(32): 25431-25440. DOI:10.1007/s11356-017-0224-7 |
[46] | Hu C, Li F, Xie Y H, et al. Spatial distribution and stoichiometry of soil carbon, nitrogen and phosphorus along an elevation gradient in a wetland in China[J]. European Journal of Soil Science, 2019, 70(6): 1128-1140. |
[47] |
何伟, 白泽琳, 李一龙, 等. 溶解性有机质特性分析与来源解析的研究进展[J]. 环境科学学报, 2016, 36(2): 359-372. He W, Bai Z L, Li Y L, et al. Advances in the characteristics analysis and source identification of the dissolved organic matter[J]. Acta Scientiae Circumstantiae, 2016, 36(2): 359-372. |
[48] |
王启栋, 宋金明, 李学刚. 黄河口湿地有机碳来源及其对碳埋藏提升策略的启示[J]. 生态学报, 2015, 35(2): 568-576. Wang Q D, Song J M, Li X G. Sources of organic carbon in the wetlands of the Yellow River estuary and instructions on carbon burial promotion strategies[J]. Acta Ecologica Sinica, 2015, 35(2): 568-576. |
[49] | Li S Y, Luo J C, Xu Y J, et al. Hydrological seasonality and nutrient stoichiometry control dissolved organic matter characterization in a headwater stream[J]. Science of the Total Environment, 2022, 807. DOI:10.1016/j.scitotenv.2021.150843 |
[50] | Chen C M, Hall S J, Coward E, et al. Iron-mediated organic matter decomposition in humid soils can counteract protection[J]. Nature Communications, 2020, 11(1). DOI:10.1038/s41467-020-16071-5 |