环境科学  2022, Vol. 43 Issue (8): 4313-4321   PDF    
外源Fe调控根系微生物群落结构和功能对水稻Cd积累的影响
郑沈1, 黄道友1, 李波1, 马天池1,2, 许超1, 朱奇宏1, 朱捍华1, 张泉1     
1. 中国科学院亚热带农业生态研究所, 亚热带农业生态过程重点实验室, 长沙 410125;
2. 中国科学院大学, 北京 100049
摘要: 探究外源铁(Fe)在水稻镉(Cd)阻控效应方面的研究对保障粮食安全具有重要意义.通过水培实验,研究了3种Fe浓度(5、50和500 μmol·L-1 EDTA-Na2Fe)对水稻Cd的积累效应和根系微生物群落结构的影响.结果表明,环境Fe浓度的增加促使水稻根表铁膜的形成,缺Fe和Fe充裕情况下均会促进根表铁膜对Cd的吸附固定.和正常Fe相比,缺Fe促进根Cd和地上部Cd累积,分别增加了49.76%和15.68%;而Fe充裕促进了根Cd的积累,增加了18.39%,但显著降低地上部Cd的含量,降低幅度为35.95%.采用16S rRNA高通量测序测定根系微生物群落结构并通过PCA、LEfSe和RDA等分析方法发现,和正常Fe相比,缺Fe环境会降低根系微生物的丰富度和均匀度,在门水平下Proteobacteria和Bacteroidetes为优势菌群,缺Fe抑制Bacteroidetes相对丰度的增加,Fe充裕使Proteobacteria相对丰度降低.而在属水平功能微生物EnsiferRhodopilaBdellovibrioDyella等的相对丰度在不同处理下发生改变,可能通过影响根表铁膜的形成和其他生化过程继而影响水稻对Cd的吸收和积累.并且缺Fe环境对微生物功能影响高于Fe充裕环境.为探寻不同Fe环境下调控水稻根系微生物的群落结构变化,以降低水稻对Cd的吸收转运能力,进而为Fe对Cd的阻控机制提供理论依据,并为我国南方稻田Cd污染治理提供重要参考.
关键词: 外源Fe      镉(Cd)      根表铁膜      微生物群落结构      功能微生物     
Effects of Iron Intensity-regulated Root Microbial Community Structure and Function on Cadmium Accumulation in Rice
ZHENG Shen1 , HUANG Dao-you1 , LI Bo1 , MA Tian-chi1,2 , XU Chao1 , ZHU Qi-hong1 , ZHU Han-hua1 , ZHANG Quan1     
1. Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Exploring the effects of exogenous iron (Fe) on cadmium (Cd) in rice is of great significance for ensuring food security. The accumulation of Cd and the changes in the microbial community structure in rice roots under three Fe concentrations (5, 50, and 500 μmol·L-1 EDTA-Na2Fe) were studied through a hydroponic experiment. The results showed that the increase in the environmental Fe concentration promoted the formation of iron plaque on the rice roots, and both Fe-deficiency and Fe-sufficiency would enhance the adsorption and fixation of Cd on the root surface. Compared with that of normal Fe levels (50 μmol·L-1), Fe deficiency increased Cd accumulation in rice roots and shoots by 49.76% and 15.68%, respectively. Although Fe sufficiency also increased Cd accumulation in the roots by 18.39%, the Cd concentration in shoots was significantly reduced by 35.95% compared with that of the normal Fe. 16S rRNA high-throughput sequencing was used to determine the root microbial community structure, and through PCA, LEfSe, and RDA analysis, it was found that compared with normal Fe, an Fe-deficient environment reduced the abundance and uniformity of root microbes. Proteobacteria and Bacteroidetes at the phylum level were the dominant flora, Fe deficiency inhibited the increase in the relative abundance of Bacteroidetes, and high-concentration Fe reduced the relative abundance of Proteobacteria. At the genus level, the relative abundance of functional microorganisms Ensifer, Rhodopila, Bdellovibrio, and Dyella were different under different Fe environments, which may have affected the absorption and accumulation of Cd by rice by affecting the formation of Fe plaque on the root and other biochemical processes. In addition, the effect of an Fe-deficient environment on microbial functions was higher than that of the Fe sufficient environment. This study investigated the changes in the rice root microbial community structure and the ability of rice to absorb and transport Cd under different Fe environments, which provided a theoretical basis and an important reference for the inhibition of Fe on Cd accumulation in rice in Cd-polluted paddy soil in southern China.
Key words: exogenous iron (Fe)      cadmium (Cd)      Fe plaque      microbial community structure      functional microbial     

随着城市化进程的加快, 城市生活污水和工业废水的肆意排放, 导致土壤重金属污染问题日益严重.镉(Cd)是一种毒性很强的重金属, 它可以通过食物链进入人体最终破坏人体机能[1~3].水稻是一种高积累Cd的农作物, 在污染地区种植水稻很容易使Cd在籽粒中富集[4], 并造成稻米Cd的超标.有研究表明在数万份样本的调查中水稻的平均Cd含量是小麦和其他谷物的3~8倍[5], 因此优化水稻降Cd技术对Cd污染区域的稻米安全利用具有重要意义.

铁(Fe)是动植物生长发育的必需元素, 有研究表明植物对Cd的吸收、转运及累积和Fe营养代谢途径密切相关[6~11].当土壤由氧化状态向还原状态转变时, 环境Fe矿物会消耗电子(e-)和质子(H+)发生还原反应, Fe由Fe3+被还原为Fe2+[12].而农田水稻根系依靠根部氧化酶、分泌氧化物质、氧气和根部氧化性微生物等, 将一部分的二价Fe氧化成不溶于水的三价Fe, 最终沉积于根系表面形成根表铁膜[13, 14].水稻根表铁膜会将Cd吸附于根表并截控重金属Cd向根内转运[15, 16].董明芳等[17]的研究添加4.00 mg ·L-1 Fe2+使水稻幼苗根表铁膜中Fe元素显著增加114.9%, 地上部Cd显著降低16.8%.刘丹青等[18]的研究发现缺Fe环境会抑制根表铁膜的形成, 并促进水稻对Cd的吸收.施Fe对水稻降Cd的研究已经有了大量的报道, 而不同浓度Fe环境对水稻根系微生物的群落结构及功能微生物对水稻Cd含量、根表铁膜的形成和根表Cd的吸附等影响鲜见研究.本实验通过不同浓度Fe环境调控水稻根系微生物群落结构的研究, 探究水稻根表铁膜形成对水稻Cd吸收积累的影响, 以期通过调控Fe浓度来降低水稻Cd含量.

1 材料与方法 1.1 供试材料和实验设计

将挑选好丰满的水稻种子在75%乙醇中浸泡30 s, 于2.5%次氯酸钠中浸泡1 min进行表面灭菌后, 再用去离子水清洗.然后将水稻种子于30℃黑暗条件下用去离子水浸泡24 h, 并盖上湿纱布保湿保温.将露白的水稻种子播种于湿润沙盘中, 待发芽3周后, 将大小均匀的稻苗移栽到避光装有50 L pH值为5.5的营养液塑料容器中[19]. 将水稻幼苗种植在有光照的生长室: 25~30℃、16 h/8 h明/暗循环、300~320 μmol ·(m2 ·s)-1光强和70% 的相对湿度(RH).两周后, 幼苗用5 μmol ·L-1(缺Fe, 即5Fe)、50 μmol ·L-1(正常Fe, 即50Fe)和500 μmol ·L-1(Fe充裕, 即500Fe)EDTA-Na2Fe和1 μmol ·L-1 CdCl2的水培溶液中处理一周后取样.所有实验均设置3个生物学重复.水培营养液每3 d更换一次, 每天用pH计测量.

1.2 植株和根表金属的测定

将水稻植株用自来水和去离子水洗涤后, 样品(分为根和地上部)于105℃杀青30 min, 70℃烘干至恒定重量.将干燥的水稻组织研磨成细粉, 称取0.2 g样品加入含有8 mL浓HNO3和1 mL H2 O2(HNO3 ∶H2 O2=8 ∶1)的微波消解管中, 然后通过微波消解提取矿物元素[20].随后, 使用ICP-MS(电感耦合等离子体发射光谱仪)(Varian, 美国)分析提取物.

用去离子水充分清洗每个新鲜采集的水稻根样品, 采用亚硫酸盐-柠檬酸盐-碳酸氢盐(DCB)方法用于提取沉淀在水稻根表面的Fe和Cd[21].首先, 将每个根样品浸入45 mL DCB溶液(3.0 g Na2S2 O4、0.11 mol ·L-1 NaHCO3和0.27 mol ·L-1 Na3C6H5O7 ·2H2 O)中3 h.然后将根用去离子水冲洗3次以上, 并将洗脱液加入提取剂中, 定容到100 mL的容量瓶.过滤DCB提取物并通过ICP-MS分析金属浓度.提取后将水稻根部在70℃下烘干至恒重, 然后进行微波消化, 步骤同上.

1.3 DNA提取、PCR扩增和测序

使用无菌水冲洗新鲜收集的水稻根部, 然后在离心管(50 mL)中用50 mL无菌磷酸缓冲盐溶液PBS在180 r ·min-1摇床振荡0.5 h, 相同步骤进行3次至水稻根表无任何残留, 用无菌滤纸吸取根系表面水分, 根系用于后期微生物16S rRNA高通量测序[22].委托联川公司进行DNA提取和测序, 采用CTAB法提取根系样品DNA, 以无菌水作为对照.随后, 采用稍加修饰后的引物515F(5′-GTGCCAG CMGCCGCGGTAA-3′)和806R(5′-GGACTACHVG GGTWTCTAAT-3′)对细菌16S rRNA基因在V3-V4区进行扩增.在每个样本中, 通用测序引物和特定的条形码被用来标记引物的5′末端.为PCR程序准备了25 μL系统, 其中包括2.5 μL各自的引物、12.5 μL PCR预混物和25 ng模板DNA, 用PCR级水稀释.此外, PCR在以下条件下进行, 98℃初始变性30 s; 98℃变性10 s, 54℃退火30 s, 72℃延伸45 s, 35个循环; 在72℃下进行10 min的最终延伸.通过2% (质量分数) 琼脂糖凝胶电泳(AGE) 解析后, AMPure XT用于纯化PCR扩增子, 而Qubit用于定量.此外, 250PE MiSeq运行用于对扩增子库进行测序.

1.4 统计分析

采用RDP classifier贝叶斯算法对97%相似水平的OTU代表序列进行分类学分析, 并在不同分类水平下统计每个样品的群落组成.用Omicstudio平台(http://www.omicstudio.cn/)进行水稻根内微生物群落分析.数据分析基于SPSS 21.0, 利用方差分析法(ANOVA)和LSD法(P<0.05) 进行差异分析.每个图形值代表平均值±标准差.

2 结果与分析 2.1 水稻组织中Cd含量和转运系数

水稻植株Cd在不同处理中出现显著差异(表 1).和50Fe相比, 5Fe处理的水稻根Cd含量和地上部Cd含量出现显著的增加(P < 0.05), 增加的幅度分别为49.76%和15.68%.和50Fe相比, 500Fe处理的水稻根Cd含量显著增加了18.39%(P < 0.05); 但地上部Cd含量显著降低了35.95%(P < 0.05).因此, 缺Fe环境会促进水稻植株对Cd的富集, 而Fe充裕会促进根对Cd的累积, 抑制地上部Cd的富集.施加不同浓度的Fe对水稻根到地上部Cd的转运具有显著的影响.和50Fe相比, 5Fe和500Fe的转运系数均会出现显著地降低(P < 0.05), 降低的幅度为22.04%和45.66%.因此, 水稻在过低或者过高含量的Fe环境中均会抑制Cd由根向地上部的运输.

表 1 不同处理对水稻Cd含量、转运系数、根表铁膜和根表Cd含量的影响1) Table 1 Effects of different treatments on rice Cd content, transport coefficient, Fe plaque on the root, and Cd content on the root surface

施加不同浓度的Fe对根表铁膜的形成具有显著的影响(表 1).和50Fe相比, 5Fe处理的水稻DCB-Fe显著降低(P < 0.05), 且降低了17.79%; 而500Fe处理的DCB-Fe显著增加(P < 0.05), 增加的幅度为28.51%.随着Fe浓度的增加会促进水稻根表铁膜的形成.水稻根表铁膜对Cd的吸附在不同处理中也出现显著的差异(P < 0.05), 和50Fe相比, 5Fe和500Fe处理的水稻DCB-Cd含量均出现显著的增加(P < 0.05), 分别增加了54.19%和135.45%.这似乎表明水稻根系环境过低或者过高含量的Fe均会促进根表铁膜对Cd的吸附.

2.2 根系微生物的αβ多样性分析

水稻根系微生物在不同处理下OTUs数量、均匀度、丰富度和微生物结构均出现显著的改变[图 1(a)]. 3个处理共检测到607个OTUs, 其中OTUs数量最多的处理是50Fe, 数量为500, 占总OTUs的82.37%.最少的OTUs数量是5Fe处理, 数量为423, 占总OTUs的69.69%. 3个处理共有的OTUs数量是308, 而50Fe处理独有的OTUs数量最多, 为48, 处理5Fe独有的OTUs数量最少, 为21.对不同处理下水稻根内微生物进行Shannon分析和Simpson分析发现, 5Fe的Shannon指数和Simpson指数均出现显著地降低(P < 0.05).缺Fe环境不仅会降低水稻根系微生物的种类而且使其均匀度和丰富度也出现降低.此外, 对根系微生物进行主成分分析(PCA), 主成分一的解释度为82.1%, 主成分二的解释度为15.23%, 总解释度为97.33%[图 1(c)].不同浓度的Fe环境使水稻根系微生物的群落结构出现明显的差异.

(a)不同处理对OTUs数量的影响(Upset图); (b)微生物α多样性分析, 柱子上不同小写字母表示不同处理间差异显著(P<0. 05); (c)微生物β多样性分析 图 1 不同浓度Fe的应用对水稻根内微生物的影响 Fig. 1 Application of different concentrations of iron affects the microorganisms in rice roots

2.3 根系微生物的群落组成

根内微生物在门水平共检测到11种微生物[图 2(a)], 在不同处理(5Fe、50Fe和500Fe)下相对丰度最高的是变形菌门(Proteobacteria), 相对丰度分别为87.61%、84.24%和82.31%.其次是拟杆菌门(Bacteroidetes), 其丰度在5Fe、50Fe和500Fe处理下分别为8.11%、12.70%和14.57%.前两种优势菌群的相对丰度在3种Fe环境下分别达到95.72%、96.94%和96.88%.在不同浓度Fe处理下水稻根内微生物主要是由变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)组成, 而Actinobacteria、Bacteria_unclassified、Firmicutes、Verrucomicrobia、Acidobacteria、Cyanobacteria、Planctomycetes、Chloroflexi和Armatimonadetes的丰度均处于劣势.缺Fe抑制Bacteroidetes相对丰度的增加, Fe充裕使Proteobacteria的相对丰度出现降低.此外, 在属水平上检测的根系微生物的群落组成具有显著差异[图 2(b)].其中根系具有高丰度的优势微生物物种有OchrobactrumPandoraeaEnsiferMuccilaginibacter[图 2(c)].在3种浓度Fe(5Fe、50Fe和500Fe)处理下, 4种优势微生物总的相对丰度分别为62.98%、59.50%和62.47%.缺Fe环境显著降低了PandoraeaMuccilaginibacter的相对丰度, Fe充裕显著降低了Ensifer的相对丰度.这些根内微生物的相对丰度根据环境Fe水平发生显著变化[图 2(b)2(c)].

(a)门水平微生物群落组成; (b)属水平前20种微生物群落组成; (c)属水平4种高丰度微生物差异分析, 柱子上不同小写字母表示不同处理间差异显著(P<0.05) 图 2 门和属水平微生物群落组成 Fig. 2 Microbial community composition at the phylum and genus level

2.4 根系微生物差异分析和功能预测

进行LEfSe(线性判别分析)分析以确定各组之间的显著差异[图 3(a)].LEfSe算法检测到16个高度分化的分类分支作为生物标志物.在属水平上, RhodopilaBdellovibrioDyella是活性生物标志物, 在不同处理下表现出显著差异.此外, 桑基图展示了不同处理下门和属水平微生物之间的对应关系[图 3(b)].属水平的主要优势微生物OchrobactrumPandoraeaEnsifer同属于变形菌门(Proteobacteria), 而Muccilaginibacter属于拟杆菌门(Bacteroidetes).缺Fe会促进Proteobacteria下的Ochrobactrum的相对丰度增加, 而抑制Pandoraea的生存, Fe充裕会抑制Proteobacteria下的Ensifer的生存.

(a)不同处理下线性判别分析(LEfSe分析); (b)不同处理下门和属水平的桑基图, a.Asticcacaulis; b. Beijerinckia; c. Burkholderiales_unclassified; d. Chitinophagaceae_unclassified; e. Comamonadaceae_ unclassified; f. Ensifer; g. Mucilaginibacter; h. Ochrobactrum; i. Pandoraea; j. Sphingomonas 图 3 根系微生物差异分析 Fig. 3 Root microbial difference analysis

本研究采用PICRUSt方法研究了所有样本的KEGG通路(图 4).微生物具有的锌转运蛋白相关功能、锌镉转运体和细胞分裂蛋白表达等具有显著的差异.缺Fe环境促进了锌转运系统的发生而抑制锌镉转运体的运行, 细胞分裂蛋白在缺Fe环境均出现低丰度的表达.这似乎表明缺Fe环境对微生物功能的影响要高于Fe充裕环境下.

图 4 不同处理下KEGG通路分析 Fig. 4 KEGG pathway analysis under different treatments

2.5 水稻各部位相关性和RDA分析

水稻植株Cd、DCB-Cd、DCB-Fe和转运系数之间存在显著的相关关系[P < 0.05, 图 5(a)].地上部Cd和DCB-Cd之间存在显著的负相关关系(P < 0.05), 和DCB-Fe之间具有极显著的负相关关系(P < 0.01), 而和TC存在显著的正相关关系(P < 0.05); TC和DCB-Cd之间具有极显著的负相关关系(P < 0.01).地上部Cd受根表铁膜和根表Cd的负调控, 而转运系数对地上部Cd有正效应, 根表Cd对根Cd向地上部Cd的转运具有很强的抑制作用.此外, 对4种差异的功能微生物和环境因子根Cd、地上部Cd、TC、DCB-Cd和DCB-Fe进行冗余分析(RDA)分析[图 5(b)], 发现DCB-Cd和DCB-Fe与DyellaRhodopila具有正向的相关关系, 地上部Cd和TC与Dyella呈负相关; 地上部Cd和根Cd与EnsiferBdellovibrio之间具有正向的相关关系.功能微生物与根表铁膜的形成、根表对Cd的吸附和Cd向地上部的转运均有相关性.

(a)水稻地上部Cd、根Cd、DCB-Cd、DCB-Fe和TC的相关性分析, 1.地上部Cd, 2.根Cd, 3.DCB-Cd, 4.DCB-Fe, 5.TC, *表示P < 0.05, **表示P < 0.01; (b)属水平功能微生物和环境因子冗余分析(RDA) 图 5 微生物的相关性和RDA分析 Fig. 5 Correlation analysis and RDA analysis

3 讨论 3.1 环境Fe对根表铁膜和植株Cd积累的作用

Fe肥的施加会使土壤Cd生物有效性发生改变, 影响作物对Cd的吸收和转运[23].刘文菊等[24]的研究表明, 水稻根表泌氧形成的Fe氧化物对根际环境中的Cd离子有吸附作用, 根表铁膜吸附Cd后促进了水稻对Cd的吸收.但刘侯俊等[25]的研究认为, 水稻处于高浓度的Fe离子环境中, 根系表面铁膜积累了大量的Fe和Mn化合物, 可抑制水稻对Cd的吸收.本实验随着环境Fe浓度的增加促进了铁膜的形成, 并使根表铁膜对Cd的吸附强度增加(表 1).刘丹青等[18]的研究发现在缺Fe环境下根表铁膜数量显著降低, 而DCB-Cd含量显著增加, 和本研究结果一致.在Fe充裕环境下水稻根系积累了更多的Cd(表 1), 这表明根表铁膜对根系中Cd的隔离能力有限, 水稻植株的Fe营养水平和根表铁膜中Cd的吸收有关[26]. 杜艳艳等[27]的研究指出, 根表铁膜超过一定阈值(20~25mg ·g-1)后, 可加速根系吸收重金属.对于植物体内Cd的积累可归因于Fe和Zn等金属阳离子转运系统的意外摄取[28~30], 有研究已经证明了这一点[31~33].在缺Fe环境中植株部分可诱导有关Fe吸收和转运基因的表达, 且在增加Fe吸收的同时促进Cd的吸收[34].本研究发现缺Fe使根系累积了更多的Cd, 尽管转移系数降低, 但是地上部累积的Cd还是比正常Fe处理高(表 1).而在Fe充裕环境中水稻根对Cd的吸收显著增加, 且Fe充裕环境促进根表铁膜形成, 增加了Cd的吸附或共沉淀[19, 35, 36], 降低了根向地上部的转移, 继而使地上部Cd累积减少.因此, 环境Fe浓度的变化影响水稻对Cd的吸收和转运与根表铁膜的形成有关.

3.2 环境Fe对水稻根系微生物群落结构和功能的影响

植物生长所必需的营养元素可以通过根际微生物的作用将这些元素转变成植物较易吸收的形态, 且帮助植物抵御高温、高盐、重金属等环境的胁迫[37~39].本研究在缺Fe和Fe充裕环境中均改变了水稻根系微生物的群落结构(图 2), 在不同处理下门水平的两种优势菌群相对丰度发生改变, 缺Fe抑制Bacteroidetes相对丰度的增加, Fe充裕使Proteobacteria的相对丰度出现降低.属水平微生物, 如: EnsiferRhodopilaBdellovibrioDyella等均表现出显著差异.有研究发现, 在这些根系细菌中, Ensifer可以耐受潜在的毒性金属(Cd2+、Cr3+和Ni2+), 同时也可以产生一种植物生长激素IAA去除Cd2+和Cr6+[40]; Rhodopila和Fe氧化酶的关系最密切, 具有更强的抵抗重金属胁迫的能力[41, 42]; 而BdellovibrioDyella参与Cd毒性和细胞壁成分的降解[43, 44].本研究中Ensifer在Fe充裕环境下相对丰度显著降低, Rhodopila在Fe充裕环境下相对丰度却显著增加, Bdellovibrio在缺Fe环境相对丰度显著增加.表明高浓度Fe环境不利于EnsiferBdellovibrio在根内的生存, 而有助于Rhodopila的繁殖.微生物DyellaRhodopila与根表铁膜的形成和根表Cd的吸附存在相关性[图 5(b)].而Fe充裕环境下Ensifer丰度的降低可能直接或间接影响了Cd从根系向地上部的转运.研究表明, 功能微生物会促进根表铁膜的形成, 进而降低水稻重金属含量[45].因此, 环境Fe条件的变化通过改变上述独特根系细菌的相对丰度来影响金属元素如Fe等的生理生化过程, 继而影响根表铁膜的形成和水稻对Cd的吸收和积累.更重要的是, 从根系微生物和植物相互作用的角度来看, Cd污染环境有所改善.

4 结论

(1) 环境Fe浓度的增加促进根表铁膜的形成, 缺Fe或Fe充裕会增强根表铁膜对Cd的吸附.

(2) 缺Fe会促进Cd向根部迁移, 并促进了地上部Cd积累, Fe充裕也会促进Cd向根部迁移, 但铁膜的形成抑制了地上部Cd的累积.

(3) 缺Fe环境会降低根内微生物的均匀度和丰富度.在门水平根系的优势菌群为变形菌门和拟杆菌门, 缺Fe抑制Bacteroidetes相对丰度的增加, Fe充裕使Proteobacteria的相对丰度出现降低.

(4) Fe浓度通过影响EnsiferRhodopilaBdellovibrioDyella等功能微生物的相对丰度来影响根系金属元素形态转化的关键生化过程, 继而影响水稻对Cd的吸收和积累.缺Fe环境对微生物功能影响高于Fe充裕环境.

参考文献
[1] Gu Y, Wang P, Zhang S, et al. Chemical speciation and distribution of cadmium in rice grain and implications for bioavailability to humans[J]. Environmental Science & Technology, 2020, 54(19): 12072-12080.
[2] Kiran, Bharti R, Sharma R. Effect of heavy metals: an overview[J]. Materials Today: Proceedings, 2021, doi: 10.1016/j.matpr.2021.06.278.
[3] Renu K, Chakraborty R, Myakala H, et al. Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium)- induced hepatotoxicity - a review[J]. Chemosphere, 2021, 271. DOI:10.1016/j.chemosphere.2021.129735
[4] Irshad M K, Noman A, Alhaithloul H A S, et al. Goethite-modified biochar ameliorates the growth of rice (Oryza sativa L.) plants by suppressing Cd and As-induced oxidative stress in Cd and As co-contaminated paddy soil[J]. Science of the Total Environment, 2020, 717. DOI:10.1016/j.scitotenv.2020.137086
[5] Song Y, Wang Y B N, Mao W F, et al. Dietary cadmium exposure assessment among the Chinese population[J]. PLoS One, 2017, 12(5). DOI:10.1371/journal.pone.0177978
[6] Sun W J, Zhang J C, Ji X L, et al. Low nitrate alleviates iron deficiency by regulating iron homeostasis in apple[J]. Plant, Cell & Environment, 2021, 44(6): 1869-1884.
[7] Wang X Q, Du Y H, Li F B, et al. Unique feature of Fe-OM complexes for limiting Cd accumulation in grains by target-regulating gene expression in rice tissues[J]. Journal of Hazardous Materials, 2022, 424. DOI:10.1016/j.jhazmat.2021.127361
[8] Guha T, Barman S, Mukherjee A, et al. Nano-scale zero valent iron modulates Fe/Cd transporters and immobilizes soil Cd for production of Cd free rice[J]. Chemosphere, 2020, 260. DOI:10.1016/j.chemosphere.2020.127533
[9] Liu H J, Yang L, Li N, et al. Cadmium toxicity reduction in rice (Oryza sativa L.) through iron addition during primary reaction of photosynthesis[J]. Ecotoxicology and Environmental Safety, 2020, 200. DOI:10.1016/j.ecoenv.2020.110746
[10] Han Y, Ling Q, Dong F Q, et al. Iron and copper micronutrients influences cadmium accumulation in rice grains by altering its transport and allocation[J]. Science of the Total Environment, 2021, 777. DOI:10.1016/j.scitotenv.2021.146118
[11] Lombi E, Tearall K L, Howarth J R, et al. Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens[J]. Plant Physiology, 2002, 128(4): 1359-1367. DOI:10.1104/pp.010731
[12] 李姣, 刘璐, 杨斌, 等. 镉及镉与铁、锌互作对水稻生长的影响[J]. 华北农学报, 2018, 33(1): 217-223.
Li J, Liu L, Yang B, et al. Effects of cadmium concentration and interaction of cadmium with iron and zinc interaction on rice growth[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(1): 217-223.
[13] 郑芸芸, 李忠意, 李九玉, 等. 铁膜对水稻根表面电化学性质和氮磷钾短期吸收的影响[J]. 土壤学报, 2015, 52(3): 690-696.
Zheng Y Y, Li Z Y, Li J Y, et al. Effect of iron plaque on surface electrochemical properties and short-term N, P and K uptake by rice roots[J]. Acta Pedologica Sinica, 2015, 52(3): 690-696.
[14] Liu H J, Zhang J L, Christie P, et al. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil[J]. Science of the Total Environment, 2008, 394(2-3): 361-368. DOI:10.1016/j.scitotenv.2008.02.004
[15] Liu N, Lou X G, Li X, et al. Rhizosphere dissolved organic matter and iron plaque modified by organic amendments and its relations to cadmium bioavailability and accumulation in rice[J]. Science of the Total Environment, 2021, 792. DOI:10.1016/j.scitotenv.2021.148216
[16] Deng X, Yang Y, Zeng H Y, et al. Variations in iron plaque, root morphology and metal bioavailability response to seedling establishment methods and their impacts on Cd and Pb accumulation and translocation in rice (Oryza sativa L.)[J]. Journal of Hazardous Materials, 2020, 384. DOI:10.1016/j.jhazmat.2019.121343
[17] 董明芳, 郭军康, 冯人伟, 等. Fe2+和Mn2+对水稻根表铁膜及镉吸收转运的影响[J]. 环境污染与防治, 2017, 39(3): 249-253.
Dong M F, Guo J K, Feng R W, et al. Effects of Fe2+ and Mn2+ on rice root iron plaque formation and Cd uptake and transportation[J]. Environmental Pollution & Prevention, 2017, 39(3): 249-253.
[18] 刘丹青, 陈雪, 葛滢. 缺Fe预处理对Fe、Cd根际吸附与水稻吸收和转运的影响[J]. 农业环境科学学报, 2014, 33(2): 224-230.
Liu D Q, Chen X, Ge Y. Adsorption of iron and cadmium in rhizosphere and their uptake and translocation in rice pretreated with iron deficiency[J]. Journal of Agro-Environment Science, 2014, 33(2): 224-230.
[19] Zhang Q, Chen H F, Xu C, et al. Heavy metal uptake in rice is regulated by pH-dependent iron plaque formation and the expression of the metal transporter genes[J]. Environmental and Experimental Botany, 2019, 162: 392-398. DOI:10.1016/j.envexpbot.2019.03.004
[20] Zhen S, Shuai H, Xu C, et al. Foliar application of Zn reduces Cd accumulation in grains of late rice by regulating the antioxidant system, enhancing Cd chelation onto cell wall of leaves, and inhibiting Cd translocation in rice[J]. Science of the Total Environment, 2021, 770. DOI:10.1016/j.scitotenv.2021.145302
[21] Wu Y, Yang L, Gong H, et al. Contrasting effects of iron plaque on the bioavailability of metallic and sulfidized silver nanoparticles to rice[J]. Environmental Pollution, 2020, 260. DOI:10.1016/j.envpol.2020.113969
[22] Zhang J Y, Liu Y X, Zhang N, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology, 2019, 37(6): 676-684. DOI:10.1038/s41587-019-0104-4
[23] 上官宇先, 陈琨, 喻华, 等. 不同铁肥及其施用方法对水稻籽粒镉吸收的影响[J]. 农业环境科学学报, 2019, 38(7): 1440-1449.
Shangguan Y X, Chen K, Yu H, et al. Effects of different iron fertilizers and application times on cadmium absorption in rice[J]. Journal of Agro-Environment Science, 2019, 38(7): 1440-1449.
[24] 刘文菊, 张西科, 张福锁. 根表铁氧化物和缺铁根分泌物对水稻吸收镉的影响[J]. 土壤学报, 1999, 36(4): 463-469.
Liu W J, Zhang X K, Zhang F S. Effects of Iron oxides and root iron exudates on cadmium uptake by rice[J]. Acta Pedologica Sinica, 1999, 36(4): 463-469. DOI:10.3321/j.issn:0564-3929.1999.04.005
[25] 刘侯俊, 胡向白, 张俊伶, 等. 水稻根表铁膜吸附镉及植株吸收镉的动态[J]. 应用生态学报, 2007, 18(2): 425-430.
Liu H J, Hu X B, Zhang J L, et al. Dynamics of Cd adsorption on rice seedlings root surface with iron coating and Cd uptake by plant[J]. Chinese Journal of Applied Ecology, 2007, 18(2): 425-430. DOI:10.3321/j.issn:1001-9332.2007.02.032
[26] Liu H J, Zhang J L, Zhang F S, et al. Role of iron plaque in Cd uptake by and translocation within rice (Oryza sativa L.) seedlings grown in solution culture[J]. Environmental and Experimental Botany, 2007, 59(3): 314-320. DOI:10.1016/j.envexpbot.2006.04.001
[27] 杜艳艳, 王欣, 谢伟城, 等. 负载铁生物炭对土壤-水稻系统As溶出特性与生物有效性的影响与机理解析[J]. 环境科学学报, 2017, 37(8): 3158-3168.
Du Y Y, Wang X, Xie W C, et al. Effects and mechanisms of Fe-impregnated biochar on arsenic solubility and bioavailability in soil-rice system[J]. Acta Scientiae Circumstantiae, 2017, 37(8): 3158-3168.
[28] Li S S, Lei X Q, Qin L Y, et al. Fe(Ⅲ) reduction due to low pe+pH contributes to reducing Cd transfer within a soil-rice system[J]. Journal of Hazardous Materials, 2021, 415. DOI:10.1016/j.jhazmat.2021.125668
[29] Wu X, Chen J H, Yue X M, et al. The zinc-regulated protein (ZIP) family genes and glutathione s-transferase (GST) family genes play roles in Cd resistance and accumulation of pak choi (Brassica campestris ssp. chinensis)[J]. Ecotoxicology and Environmental Safety, 2019, 183. DOI:10.1016/j.ecoenv.2019.109571
[30] Jing Y L, Chen X, Chai S Y, et al. TpIRT1 from Polish wheat (Triticum polonicum L.) enhances the accumulation of Fe, Mn, Co, and Cd in Arabidopsis[J]. Plant Science, 2021, 312. DOI:10.1016/j.plantsci.2021.111058
[31] Satoh-Nagasawa N, Mori M, Nakazawa N, et al. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium[J]. Plant and Cell Physiology, 2012, 53(1): 213-224. DOI:10.1093/pcp/pcr166
[32] Takahashi R, Ishimaru Y, Shimo H, et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice[J]. Plant, Cell & Environment, 2012, 35(11): 1948-1957.
[33] Yamaji N, Xia J X, Mitani-Ueno N, et al. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2[J]. Plant Physiology, 2013, 162(2): 927-939. DOI:10.1104/pp.113.216564
[34] 万亚男, 张燕, 余垚, 等. 铁营养状况对黄瓜幼苗吸收转运镉和锌的影响[J]. 农业环境科学学报, 2015, 34(3): 409-414.
Wan Y N, Zhang Y, Yu Y, et al. Effects of iron supply on cadmium and zinc uptake and translocation by cucumber seedlings[J]. Journal of Agro-Environment Science, 2015, 34(3): 409-414.
[35] Xiao A W, Li W C, Ye Z H. Effects of Fe-oxidizing bacteria (FeOB) on iron plaque formation, As concentrations and speciation in rice (Oryza sativa L.)[J]. Ecotoxicology and Environmental Safety, 2020, 190. DOI:10.1016/j.ecoenv.2019.110136
[36] Li S S, Chen S B, Wang M, et al. Iron fractions responsible for the variation of Cd bioavailability in paddy soil under variable pe+pH conditions[J]. Chemosphere, 2020, 251. DOI:10.1016/j.chemosphere.2020.126355
[37] Shah K, Kumar R G, Verma S, et al. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings[J]. Plant Science, 2001, 161(6): 1135-1144. DOI:10.1016/S0168-9452(01)00517-9
[38] Philippot L, Raaijmakers J M, Lemanceau P, et al. Going back to the roots: the microbial ecology of the rhizosphere[J]. Nature Reviews Microbiology, 2013, 11(11): 789-799. DOI:10.1038/nrmicro3109
[39] Mendes R, Kruijt M, De Bruijn I, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria[J]. Science, 2011, 332(6033): 1097-1100. DOI:10.1126/science.1203980
[40] Ali B, Sabri A N, Ljung K, et al. Auxin production by plant associated bacteria: Impact on endogenous IAA content and growth of Triticum aestivum L.[J]. Letters in Applied Microbiology, 2009, 48(5): 542-547. DOI:10.1111/j.1472-765X.2009.02565.x
[41] Minari G D, Saran L M, Lima Constancio M T, et al. Bioremediation potential of new cadmium, chromium, and nickel-resistant bacteria isolated from tropical agricultural soil[J]. Ecotoxicology and Environmental Safety, 2020, 204. DOI:10.1016/j.ecoenv.2020.111038
[42] Ambler R P, Meyer T E, Kamen M D. Amino acid sequence of a high redox potential Ferredoxin (HiPIP) from the purple phototrophic bacterium Rhodopila globiformis, which has the highest known redox potential of its class[J]. Archives of Biochemistry and Biophysics, 1993, 306(1): 215-222. DOI:10.1006/abbi.1993.1503
[43] Imhoff J F, Rahn T, Künzel S, et al. New insights into the metabolic potential of the phototrophic purple bacterium Rhodopila globiformis DSM 161T from its draft genome sequence and evidence for a vanadium-dependent nitrogenase[J]. Archives of Microbiology, 2018, 200(6): 847-857. DOI:10.1007/s00203-018-1489-z
[44] Desiderato J G, Alvarenga D O, Constancio M T L, et al. The genome sequence of Dyella jiangningensis FCAV SCS01 from a lignocellulose-decomposing microbial consortium metagenome reveals potential for biotechnological applications[J]. Genetics and Molecular Biology, 2018, 41(2): 507-513. DOI:10.1590/1678-4685-gmb-2017-0155
[45] Dong M F, Feng R W, Wang R G, et al. Inoculation of Fe/Mn-oxidizing bacteria enhances Fe/Mn plaque formation and reduces Cd and as accumulation in rice plant tissues[J]. Plant and Soil, 2016, 404(1-2): 75-83. DOI:10.1007/s11104-016-2829-x