2. 中交天津航道局有限公司, 天津市疏浚工程技术企业重点实验室, 天津 300457;
3. 郑州大学河南先进技术研究院, 郑州 450003
2. Tianjin Key Laboratory for Dredging Engineering Enterprises, CCCC Tianjin Dredging Co.[KG-*4], Ltd.[KG-*4], Tianjin 300457, China;
3. Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
重金属铅(Pb)是生物体非必需元素[1, 2], 其毒性大, 迁移性强, 且易在小麦籽粒中富集[3~5].经食用小麦进入人体的Pb会在肾脏、肝脏等器官累积, 引发高血压、骨质疏松和肾功能衰竭等多种疾病[6~8].近20年来小麦Pb污染事件在北美[9]、欧洲[5, 10]和我国[11]等地均有报道[9~11], 对人体健康造成严重威胁.当前我国市售小麦Pb超标率在10%左右, 对我国人群Pb暴露风险的估算显示小麦是北方人群Pb摄入的主要来源(贡献率约为15%)[11].明晰土壤-小麦系统Pb迁移机制是保障粮食质量安全的关键.
小麦Pb累积受到不同污染源、土壤pH、土壤有机质、土壤氧化还原电位和阳离子交换量等诸多因素影响[4, 12~14].Li等[15]指出我国中部地区某矿区周边71.4%的小麦Pb来源于大气沉降.Xing等[16]指出磷肥施用贡献5.41% ~21.5%的小麦Pb累积.Wu等[17]研究了我国18种类型土壤生产的小麦籽粒Pb的累积特征, 指出pH和土壤总Pb可以解释小麦Pb累积的83.8%.综合评估Pb在源-土壤-小麦系统的迁移过程和累积趋势有助于风险决策的科学性和合理性.
济源为我国北方小麦主产地之一, 同时也是亚洲最大的铅锌深加工基地, 2017年全市铅产量1.12×106t, 占全国的24%[15, 16].近年来的小麦籽粒Pb污染事件对该地农业生产造成了较大经济损失, 其小麦质量安全受到当地政府部门和民众的广泛关注[18, 19].本研究基于在济源的区域调查, 应用受体模型和多元分析阐明土壤-小麦系统Pb污染来源, 识别小麦籽粒Pb累积关键影响因子.在此基础上构建特定源风险评估模型, 量化不同输入源对小麦籽粒Pb累积的影响程度, 以期为当地小麦Pb污染防治和民众健康防护提供科学参考.
1 材料与方法 1.1 研究区概况研究区位于华北地区西部, 河南省西北部(东经112°30′~112°45′, 北纬35°00′~35°10′; 图 1), 总面积363 km2, 总人口67.6万, 属暖温带季风气候, 土壤类型为褐土和潮土.根据区域土地利用格局, 农田、工矿企业分布特点进行野外实地考察和样点布设, 采样点分布如图 1所示.
![]() |
图 1 研究区土地利用概况及采样点分布示意 Fig. 1 Location of the study area and the sampling sites |
在每个小麦田随机布设2~3个2 m×2 m的样方, 采集5~10株完整小麦, 密封保存于样品袋中.在每个小麦采样点同时采集表层土壤混合样品1份(500 g, 采样深度0~20 cm), 共采集143组土壤-小麦配对样品.同时在距离农田和工矿企业较远的山区采集10个表层土壤混合样品(每份500 g, 采样深度0~20 cm)作为对照样品.
所有样品密封后带回实验室于阴凉处室温风干.土壤样品经研磨后过孔径0.15 mm(100目)尼龙筛, 密封保存用于测定土壤pH, 有机质含量(SOM), 阳离子交换量(CEC)等土壤基本性质, 分析方法参见文献[20].应用DTPA提取剂(0.005 mol ·L-1 DTPA-0.01 mol ·L-1 CaCl2-0.1 mol ·L-1 TEA, pH=7.3, 固液比1 ∶2)浸提土壤有效态Pb含量[5].应用四酸法(HCl-HNO3-HF-HClO4)消解土壤样品[19].小麦样品经自来水冲洗后将麦穗剪下, 再用去离子水清洗后于105℃下杀青30 min, 60℃烘至恒重, 脱壳后粉碎, 应用HNO3-HClO4法消解小麦籽粒样品[18].
应用ICP-OES(Optima 8300; PerkinElmer, USA)测定样品K、Na、P、Cu和Zn含量, 应用ICP-MS(NexION 300; PerkinElmer, USA)测定样品Pb、Cd、Cr和Ni含量.测定过程中采用国家标准物质GSS-13(华北地区土壤)和GSB-24(华北地区小麦)对土壤和植物进行质量控制, 测得标准回收率为83.5% ~108%.区域土壤基本理化性质和土壤-小麦系统铅含量见表 1.土壤ω(Cd)、ω(Cu)、ω(Zn)、ω(Cr)、ω(Ni)、ω(P)和ω(K)分别为(1.37±1.79)、(28.6±6.78)、(84±28.7)、(52.3±7.57)、(25.9±4.18)、(763±219)和(18 650±2 333) mg ·kg-1.
![]() |
表 1 土壤理化性质及土壤-小麦系统Pb含量变化特征 Table 1 Physico-chemical properties of investigated wheat soils and the lead concentrations in the soil-wheat system |
1.2 源识别模型
污染源识别与各类源贡献大小量化过程有助于小麦籽粒Pb污染治理工作的针对性展开.在源解析受体模型中, 正定矩阵因子分析法(PMF)着眼于排放源对区域环境的影响并可将样本有效分解为源贡献矩阵(G)和源成分谱矩阵(F)[21], 广泛应用于大气、土壤和沉积物污染物源解析研究中[13, 19].其基本方程为:
![]() |
(1) |
式中, xij表示元素j在第i个样点的含量; gik表示k源在第i个样点的贡献, 即源贡献矩阵(G); fkj表示源k对元素j的贡献, 即源成分谱矩阵(F); eij表示残差矩阵.
PMF模型应用Multilinear engine-2算法进行多次迭代, 不断地分解原始矩阵x, 来得到源贡献矩阵(G)和源成分谱矩阵(F), 使得到的目标函数Q达到最小值[22].目标函数Q为:
![]() |
(2) |
式中, uij表示元素j在第i个样点的不确定度.
依据PMF模型源解析结果, 各污染源在每个样点对土壤Pb的贡献如下:
![]() |
(3) |
式中, Xik表示k源在第i个样点对土壤Pb含量的绝对贡献量; Cik表示k源在第i个样点对土壤Pb含量的贡献率; Xi表示在第i个样点土壤Pb含量.
土壤-小麦系统Pb转运特征可应用Freundlich-extend方程[17, 18]进行表征:
![]() |
(4) |
式中, Ciw表示第i个样点小麦籽粒Pb含量; Si表示土壤基础理化性质, α(i=0, 1, 2, 3, …, n)表示方程拟合参数.方程拟合结果依据均方根误差(RMSE)和方差进行评估[12].
将源解析模型[公式(1)~(3)]和Freundlich-extend回归模型[公式(4)]相结合, 构建特定源风险评估模型, 用于预测源k对小麦籽粒Pb累积量的贡献:
![]() |
(5) |
考虑到土壤-农作物系统重金属累积的随机性和不确定性[23, 24], 本研究在定量分析的基础上应用Monte Carlo模拟对小麦Pb累积关键参数进行抽样[18, 24], 并将其代入方程揭示不同污染源不同土壤环境下小麦Pb累积趋势, 提高风险决策的合理性和科学性.
1.3 数据分析数据统计、相关分析和聚类分析采用SPSS 23.0软件实现.空间分析采用ArcGIS 10.2软件.受体模型源解析分析采用USEPA开发的PMF 5.0软件实现.Gaussian分布方程拟合和Monte Carlo模拟通过Matlab R2018a软件实现, 10 000次模拟时结果趋于稳定.
2 结果与讨论 2.1 土壤-小麦系统铅富集特征研究区土壤pH平均值为7.70, 整体变幅较小, 属碱性土壤(表 1).区域土壤-小麦系统Pb含量特征如表 1所示.区域土壤总Pb含量变幅较大(35.8~379 mg ·kg-1), 变异系数(CV)为67.9%, 存在显著的人类活动影响[13, 14].土壤ω(Pb)平均值为(89.1±60.5) mg ·kg-1, 是区域土壤Pb背景值[(31.4±10.9) mg ·kg-1, 表 1]的2.61倍, 43.4%的土壤样品ω(Pb)高于国家土壤环境质量标准(80 mg ·kg-1; GB 15618-2018)[25].区域土壤ω(有效态Pb)(DTPA提取态)范围为1.24~132 mg ·kg-1, 平均值为21.7 mg ·kg-1(表 1).土壤Pb可利用系数(AR, 有效态Pb含量/土壤总Pb含量)平均值为18.8%, 显著高于我国其他矿区周边农田土壤Pb可利用系数(9.21%)[2], 说明Pb在区域小麦土壤中的迁移能力和淋滤风险较高.
研究区小麦籽粒ω(Pb)范围为0.02~0.42 mg ·kg-1(以DW计, 下同)(表 1), 小麦ω(Pb)平均值为0.177 mg ·kg-1, 44.2%的小麦籽粒Pb含量超过我国小麦籽粒ω(Pb)限定值(0.2 mg ·kg-1)[26].生物富集因子(BCF)可表征农作物吸收和积累重金属的能力[1, 12].区域小麦Pb富集因子(BCF-Pb)平均值为0.002 5±0.002 3.应用Gaussian分布方程对区域小麦田BCF-Pb进行拟合, 拟合结果显著(P < 0.001), 可决系数高达0.97(图 2), 可见区域BCF-Pb服从自然对数正态分布[27].应用Gaussian分布方程进一步对我国小麦BCF-Pb进行拟合, 结果显示美国小麦BCF-Pb(平均值为0.002)[28]和我国小麦(平均值为0.003)[27]累积分布特征(对数正态分布)与本研究结果较为一致(图 2).可见区域小麦田BCF-Pb在风险评估中较为典型, 并可对其它地区小麦Pb累积研究提供一定参考.
![]() |
中国和美国小麦Pb富集因子数据分别来自文献[27]和文献[28]; 小麦BCF-Pb累积分布应用Gaussian分布方程进行拟合, 其拟合方程为: ![]() |
应用PMF源解析模型对区域农田土壤Pb来源进行解析.综合考虑模型信噪比(S/N), Q值和r2等观测值[22], 本例中PMF解析因子数量为4, 迭代计算次数为20次, 各元素预测精度均较高(r2为0.45~1.00).由图 3可知, 因子1(F1)为区域小麦土壤Pb主要输入源, 贡献率占到一半以上(52.0%).Qiu等[7]指出研究区冶炼厂周边大气沉降Pb通量高达88.8 mg ·(m2 ·month)-1. Li等[15]指出研究区Pb沉降通量随着与冶炼厂距离的增加而减少.空间分析显示区域土壤Pb高值区集中分布在研究区西北和西部毗邻冶炼厂的区域(图 4).区域土壤Pb含量从西北到东南呈逐渐降低趋势, 与当地盛行风向(西风)基本一致(图 4).综上可知F1代表区域工业活动产生的大气沉降源.
![]() |
图 3 区域农田土壤重金属不同污染源贡献率 Fig. 3 Factor profiles of trace elements in the investigated wheat soils |
![]() |
图 4 区域农田土壤Pb空间分布特征 Fig. 4 Spatial distribution of total Pb concentrations in the investigated wheat soils |
因子2(F2)主要载荷元素为Pb(21.1%)、Cu(44.9%)、Zn(41.4%)、Cr(57.6)、Ni(59.3%)和K(53.5%)(图 3).土壤Cr和Ni直接或间接来源于地壳分化, 常被用来代表土壤母质源[3, 8].研究区土壤Cr和Ni平均含量分别为52.3和25.7 mg ·kg-1, 低于河南省土壤背景值[29].变异系数较低, 分别为14.5%、16.2%, 说明研究区土壤Cr和Ni受人类活动影响较少.因此F2代表土壤母质源.因子3(F3)主要载荷元素为Pb(19.3%)和P(59.2%)(图 3).农田土壤P受磷肥、农药等影响较大, 在源解析中常用来代表农业活动源[13, 14].研究区磷肥施用量较高(62.4 kg ·hm-2).Chen等[30]指出我国北方小麦田所用磷肥Pb含量较高, 施用50~100 kg ·hm-2的磷肥会增加小麦土壤18.6%的Pb累积.因此F3代表农业活动源.
因子4(F4)对Pb贡献较小(7.64%), 但对Cd贡献最为显著(54.1%)(图 3).Qiu等[7]等指出研究区冶炼厂附近石河(蟒河流域上游)底泥存在严重的Cd污染现象.Li等[19]指出研究区土壤Cd空间分布特征与污染河流流向较为一致.因此, F4代表污水灌溉源.受体模型与传统多元分析方法的联用有助于准确揭示区域农田土壤Pb时空变异及来源变化.
2.3 影响因子识别回归分析显示区域土壤Pb含量, 土壤pH和阳离子交换量(CEC) 是影响小麦Pb累积的关键因子(图 5).区域土壤pH与DTPA-Pb(r=-0.397 **)和小麦籽粒Pb含量(r=-0.573 **)呈显著负相关.H+易与被粘土、胶体及有机质颗粒等表面吸附的交换态Pb2+发生离子交换[1], 致使土壤Pb2+活性增强, 进而被小麦吸收[5, 17].与土壤pH相比, 土壤CEC对小麦Pb累积影响更为显著(r=-0.559 **).在碱性小麦土壤中, 较高水平的阳离子交换量(CEC)会增加农田土壤中Pb的持留量, 从而减少作物对Pb的吸收[4, 12].土壤有机质、P、K和Zn与土壤pH和CEC相关关系显著(r为-0.413 **~0.398 **), 可见以上因子对小麦Pb累积的影响主要是通过其对土壤pH和CEC的间接效应实现.
![]() |
拟合公式: Cw=10[-0.017-0.135×pH+0.737×lg(X)-1.02×lg(CEC)], 式中, Cw表示小麦籽粒Pb含量, X表示土壤Pb含量 图 5 小麦籽粒Pb含量预测值和观测值相关关系 Fig. 5 Relationship between the measured and predicted concentrations of Pb in the wheat grain |
应用多元逐步回归方法对Freundlich-extend方程进行拟合.由图 5可知, 推导的转移方程可解释Pb在小麦籽粒中累积程度的59.7%, 预测值多位于95%置信区间内, 拟合结果较好.应用推导方程对小麦籽粒Pb含量进行预测, 结果显示小麦籽粒Pb含量随土壤Pb含量的增加而增加(α2=0.737), 随土壤pH和CEC的增加而减小(α1=-0.135, α3=-1.02; 图 5).应用Monte Carlo模拟对小麦籽粒Pb累积量进行进一步的风险分析, 结果显示在受区域人为活动影响较小的山区[土壤ω(Pb)为(31.4±10.9)mg ·kg-1, 表 1]和无污染区域[土壤ω(Pb) < 80 mg ·kg-1; GB 15618-2018][25]收获的小麦籽粒ω(Pb)分别为(0.093±0.035)mg ·kg-1和(0.124±0.049 7)mg ·kg-1, 超过我国小麦籽粒Pb含量限定值[26](0.2 mg ·kg-1)的风险概率分别为1.88%和6.99%[图 6(a)].当土壤Pb含量上升到区域水平时[(89.1±60.5)mg ·kg-1, 表 1], 该超标风险显著上升到30.9%[图 6(a)].在研究区Pb污染高风险区(西北和西部区域, 图 4)进行的农业活动应引起当地政府部门和民众的足够重视.
![]() |
图 6 区域小麦籽粒Pb含量预测 Fig. 6 Estimated Pb concentrations in wheat grain harvested from different soils |
耦合PMF源解析结果和土壤-小麦Pb转移方程, 将小麦Pb累积方程转变为特定源风险评估模型, 并应用Monte Carlo模拟对结果进行不确定性分析[31, 32].由图 6(b)可知, 由大气沉降源(F1, 图 3)造成的区域小麦籽粒ω(Pb)为(0.118±0.072 4) mg ·kg-1(以DW计), 超过我国小麦籽粒Pb含量限定值[26](0.2 mg ·kg-1)的风险概率为10.5%.由磷肥输入源(F4, 图 3)造成的区域小麦籽粒ω(Pb)为(0.060 5±0.038 4) mg ·kg-1, 相应的小麦籽粒Pb超标风险为1.06%[图 6(b)].由这两个污染源共同造成的小麦籽粒Pb超标风险为29.0%, 针对重点污染源的区域性管控是降低小麦Pb污染的关键.
近年来, 当地政府采取了诸如设立减排目标、关闭重污染企业等手段以降低大气沉降对土壤Pb污染的影响[33, 34].然而, 在符合我国小麦Pb安全质量标准[26](0.2 mg ·kg-1)的情况下, 种植小麦产生的Pb年输出通量为110 mg ·hm-2, 显著低于我国农田土壤年均Pb沉降通量(202 g ·hm-2)[35, 36].即使不考虑灌溉水和肥料等Pb输入途径, 区域小麦籽粒Pb累积趋势在短时间内仍然难以逆转.而在受大气沉降影响显著的高风险区域(研究区西北和西部, 图 4), 通过增施绿肥、叶面微肥和推广免耕等技术手段[37~41]提升土壤阳离子交换量至20 cmol ·kg-1以上, 可将这些区域的小麦籽粒Pb超标风险从10.5%显著降低至2.39%[图 6(b)].优化区域冶炼企业布局, 加快技术升级, 清洁灌溉水等针对不同风险区域的管控措施可进一步降低区域小麦籽粒Pb累积风险.土壤环境、气候因子和耕作管理水平的不同会加剧土壤-小麦系统Pb累积的空间变异[42~45].区域调查、系统分析和随机模拟的联合应用有助于降低模型预测的不确定性, 实现对区域小麦Pb污染风险的精准评估和有效管控.
3 结论济源土壤-小麦系统Pb累积风险较高, 小麦Pb富集因子(BCF)对其他地区小麦Pb污染风险评估有一定参考作用.大气沉降和磷肥施用是区域农田土壤Pb污染的主要来源, 其中大气输入源对小麦籽粒Pb累积风险的贡献率随区域环境不同而变化明显.多场景模拟结果显示优化工矿企业布局, 清洁灌溉水等“一区一策”的措施应用可有效降低区域小麦籽粒Pb累积风险.本研究构建的特定污染源农作物重金属累积风险评估模型有助于在区域尺度上进行源头管控与消减, 提升小麦籽粒Pb污染防治的针对性, 对其他用地类型的重金属污染修复也有一定的借鉴作用.
[1] | McBride M B, Shayler H A, Spliethoff H M, et al. Concentrations of lead, cadmium and barium in urban garden-grown vegetables: the impact of soil variables[J]. Environmental Pollution, 2014, 194: 254-261. DOI:10.1016/j.envpol.2014.07.036 |
[2] | Zhong X, Chen Z W, Li Y Y, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China[J]. Journal of Hazardous Materials, 2020, 400. DOI:10.1016/j.jhazmat.2020.123289 |
[3] | Zhang Y H, Hou D Y, O'Connor D, et al. Lead contamination in Chinese surface soils: source identification, spatial-temporal distribution and associated health risks[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(15): 1386-1423. DOI:10.1080/10643389.2019.1571354 |
[4] | Uchimiya M, Bannon D, Nakanishi H, et al. Chemical speciation, plant uptake, and toxicity of heavy metals in agricultural soils[J]. Journal of Agricultural and Food Chemistry, 2020, 68(46): 12856-12869. DOI:10.1021/acs.jafc.0c00183 |
[5] | Khan S, Naushad M, Lima E C, et al. Global soil pollution by toxic elements: current status and future perspectives on the risk assessment and remediation strategies-a review[J]. Journal of Hazardous Materials, 2021, 417. DOI:10.1016/j.jhazmat.2021.126039 |
[6] | Romero-Freire A, Martin Peinado F J, van Gestel C A M. Effect of soil properties on the toxicity of Pb: assessment of the appropriateness of guideline values[J]. Journal of Hazardous Materials, 2015, 289: 46-53. DOI:10.1016/j.jhazmat.2015.02.034 |
[7] | Qiu K Y, Xing W Q, Scheckel K G, et al. Temporal and seasonal variations of As, Cd and Pb atmospheric deposition flux in the vicinity of lead smelters in Jiyuan, China[J]. Atmospheric Pollution Research, 2016, 7(1): 170-179. DOI:10.1016/j.apr.2015.09.003 |
[8] | Yang S Y, He M J, Zhi Y Y, et al. An integrated analysis on source-exposure risk of heavy metals in agricultural soils near intense electronic waste recycling activities[J]. Environment International, 2019, 133. DOI:10.1016/j.envint.2019.105239 |
[9] | Gavelek A, Spungen J, Hoffman-Pennesi D, et al. Lead exposures in older children (males and females 7-17 years), women of childbearing age (females 16-49 years) and adults (males and females 18+years): FDA total diet study 2014-16[J]. Food Additives & Contaminants: Part A, 2020, 37(1): 104-109. |
[10] | Malavolti M, Fairweather-Tait S J, Malagoli C, et al. Lead exposure in an Italian population: food content, dietary intake and risk assessment[J]. Food Research International, 2020, 137. DOI:10.1016/j.foodres.2020.109370 |
[11] | Zhang X Y, Wang Z, Liu L, et al. Assessment of the risks from dietary lead exposure in China[J]. Journal of Hazardous Materials, 2021, 418. DOI:10.1016/j.jhazmat.2021.126134 |
[12] | Ding C F, Ma Y B, Li X B, et al. Derivation of soil thresholds for lead applying species sensitivity distribution: a case study for root vegetables[J]. Journal of Hazardous Materials, 2016, 303: 21-27. DOI:10.1016/j.jhazmat.2015.10.027 |
[13] | Hu W Y, Wang H F, Dong L R, et al. Source identification of heavy metals in peri-urban agricultural soils of southeast China: an integrated approach[J]. Environmental Pollution, 2018, 237: 650-661. DOI:10.1016/j.envpol.2018.02.070 |
[14] | Zhang L X, Zhu G Y, Ge X, et al. Novel insights into heavy metal pollution of farmland based on reactive heavy metals (RHMs): pollution characteristics, predictive models, and quantitative source apportionment[J]. Journal of Hazardous Materials, 2018, 360: 32-42. DOI:10.1016/j.jhazmat.2018.07.075 |
[15] | Li L P, Zhang Y Q, Ippolito J A, et al. Lead smelting effects heavy metal concentrations in soils, wheat, and potentially humans[J]. Environmental Pollution, 2020, 257. DOI:10.1016/j.envpol.2019.113641 |
[16] | Xing W Q, Cao E Z, Scheckel K G, et al. Influence of phosphate amendment and zinc foliar application on heavy metal accumulation in wheat and on soil extractability impacted by a lead smelter near Jiyuan, China[J]. Environmental Science and Pollution Research, 2018, 25(31): 31396-31406. DOI:10.1007/s11356-018-3126-4 |
[17] | Wu X S, Cai Q Y, Xu Q, et al. Wheat (Triticum aestivum L.) grains uptake of lead (Pb), transfer factors and prediction models for various types of soils from China[J]. Ecotoxicology and Environmental Safety, 2020, 206. DOI:10.1016/j.ecoenv.2020.111387 |
[18] | Yang Y, Li Y L, Chen W P, et al. Dynamic interactions between soil cadmium and zinc affect cadmium phytoavailability to rice and wheat: regional investigation and risk modeling[J]. Environmental Pollution, 2020, 267. DOI:10.1016/j.envpol.2020.115613 |
[19] | Li Y L, Chen W P, Yang Y, et al. Quantifying source-specific intake risks of wheat cadmium by associating source contributions of soil cadmium with human health risk[J]. Ecotoxicology and Environmental Safety, 2021, 228. DOI:10.1016/j.ecoenv.2021.112982 |
[20] | 鲍士旦. 土壤农化分析[M]. (第三版). 北京: 中国农业出版社, 2000. |
[21] | Paatero P. Least squares formulation of robust non-negative factor analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1997, 37(1): 23-35. DOI:10.1016/S0169-7439(96)00044-5 |
[22] | Norris G, Duvall R, Brown S, et al. EPA positive matrix factorization (PMF) 5.0 fundamentals and user guide[R]. Washington: U.S. Environmental Protection Agency Office of Research and Development, 2014. |
[23] |
陈卫平, 涂宏志, 彭驰, 等. 环境模型中敏感性分析方法评述[J]. 环境科学, 2017, 38(11): 4889-4896. Chen W P, Tu H Z, Peng C, et al. Comment on sensitivity analysis methods for environmental models[J]. Environmental Science, 2017, 38(11): 4889-4896. |
[24] |
戴雅婷, 傅开道, 杨阳, 等. 南方典型水稻土镉(Cd)累积规律模拟[J]. 环境科学, 2021, 42(1): 353-358. Dai Y T, Fu K D, Yang Y, et al. Simulation cadmium (Cd) accumulation in typical paddy soils in South China[J]. Environmental Science, 2021, 42(1): 353-358. DOI:10.3969/j.issn.1000-6923.2021.01.041 |
[25] | GB 15618-2018, 土壤环境质量农用地土壤污染风险管控标准(试行)[S]. |
[26] | GB 2762-2017, 食品安全国家标准食品中污染物限量[S]. |
[27] | Zhang H Z, Luo Y M, Song J, et al. Predicting As, Cd and Pb uptake by rice and vegetables using field data from China[J]. Journal of Environmental Sciences, 2011, 23(1): 70-78. DOI:10.1016/S1001-0742(10)60375-0 |
[28] | Chen W P, Li L Q, Chang A, et al. Characterizing the solid-solution partitioning coefficient and plant uptake factor of As, Cd, and Pb in California croplands[J]. Agriculture, Ecosystems & Environment, 2009, 129(1-3): 212-220. |
[29] | 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. |
[30] | Chen X X, Liu Y M, Zhao Q Y, et al. Health risk assessment associated with heavy metal accumulation in wheat after long-term phosphorus fertilizer application[J]. Environmental Pollution, 2020, 262. DOI:10.1016/j.envpol.2020.114348 |
[31] |
杨阳, 陈卫平, 李艳玲, 等. 基于不确定性分析的土壤-水稻系统镉污染综合风险评估[J]. 环境科学, 2016, 37(12): 4800-4805. Yang Y, Chen W P, Li Y L, et al. Comprehensive risk evaluation of cadmium in soil-rice system based on uncertainty analysis[J]. Environmental Science, 2016, 37(12): 4800-4805. |
[32] | Yang Y, Chang A C, Wang M E, et al. Assessing cadmium exposure risks of vegetables with plant uptake factor and soil property[J]. Environmental Pollution, 2018, 238: 263-269. DOI:10.1016/j.envpol.2018.02.059 |
[33] | Xing W Q, Zhao Q, Scheckel K G, et al. Inhalation bioaccessibility of Cd, Cu, Pb and Zn and speciation of Pb in particulate matter fractions from areas with different pollution characteristics in Henan Province, China[J]. Ecotoxicology and Environmental Safety, 2019, 175: 192-200. DOI:10.1016/j.ecoenv.2019.03.062 |
[34] | Guo J L, Tu L P, Qiao Z R, et al. Forecasting the air quality in 18 cities of Henan Province by the compound accumulative grey model[J]. Journal of Cleaner Production, 2021, 310. DOI:10.1016/j.jclepro.2021.127582 |
[35] | Luo L, Ma Y B, Zhang S Z, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90(8): 2524-2530. DOI:10.1016/j.jenvman.2009.01.011 |
[36] | Shi T R, Ma J, Wu X, et al. Inventories of heavy metal inputs and outputs to and from agricultural soils: a review[J]. Ecotoxicology and Environmental Safety, 2018, 164: 118-124. DOI:10.1016/j.ecoenv.2018.08.016 |
[37] | Seybold C A, Grossman R B, Reinsch T G. Predicting cation exchange capacity for soil survey using linear models[J]. Soil Science Society of America Journal, 2005, 69(3): 856-863. DOI:10.2136/sssaj2004.0026 |
[38] |
杨帆, 徐洋, 崔勇, 等. 近30年中国农田耕层土壤有机质含量变化[J]. 土壤学报, 2017, 54(5): 1047-1056. Yang F, Xu Y, Cui Y, et al. Variation of soil organic matter content in croplands of China over the last three decades[J]. Acta Pedologica Sinica, 2017, 54(5): 1047-1056. |
[39] | Amery F, Smolders E. Unlocking fixed soil phosphorus upon waterlogging can be promoted by increasing soil cation exchange capacity[J]. European Journal of Soil Science, 2012, 63(6): 831-838. DOI:10.1111/j.1365-2389.2012.01478.x |
[40] | Ramos F T, de Carvalho Dores E F, dos Santos Weber O L, et al. Soil organic matter doubles the cation exchange capacity of tropical soil under no-till farming in Brazil[J]. Journal of the Science of Food and Agriculture, 2018, 98(9): 3595-3602. DOI:10.1002/jsfa.8881 |
[41] | 蔡祖聪, 马毅杰. 土壤有机质与土壤阳离子交换量的关系[J]. 土壤学进展, 1988, 16(3): 10-15. |
[42] |
陈卫平, 杨阳, 谢天, 等. 中国农田土壤重金属污染防治挑战与对策[J]. 土壤学报, 2018, 55(2): 261-272. Chen W P, Yang Y, Xie T, et al. Challenges and countermeasures for heavy metal pollution control in farmlands of China[J]. Acta Pedologica Sinica, 2018, 55(2): 261-272. |
[43] | Zhang G B, Song K F, Miao X, et al. Nitrous oxide emissions, ammonia volatilization, and grain-heavy metal levels during the wheat season: effect of partial organic substitution for chemical fertilizer[J]. Agriculture, Ecosystems & Environment, 2021, 311. DOI:10.1016/j.agee.2021.107340 |
[44] | Wang C, Jin H, Zhong C, et al. Estimating the contribution of atmosphere on heavy metals accumulation in the aboveground wheat tissues induced by anthropogenic forcing[J]. Environmental Research, 2020, 189. DOI:10.1016/j.envres.2020.109955 |
[45] | Zhang X Y, Geng L P, Gao P P, et al. Bioimaging of Pb by LA-ICP-MS and Pb isotopic compositions reveal distributions and origins of Pb in wheat grain[J]. Science of the Total Environment, 2022, 802. DOI:10.1016/j.scitotenv.2021.149729 |