环境科学  2022, Vol. 43 Issue (7): 3811-3824   PDF    
土壤重金属生物可利用性影响因素及模型预测
张加文1, 田彪1, 罗晶晶1, 吴凡1, 张聪2, 刘征涛1, 王晓南1     
1. 中国环境科学研究院环境基准与风险评估国家重点实验室, 北京 100012;
2. 海油环境科技(北京)有限公司, 北京 100027
摘要: 我国土壤环境污染形势严峻, 在生物有效性(bioavailability)的测试评估和预测模型等方面的研究相对较少, 导致不能精确地评估污染土壤的生态风险.作为生物有效性的重要反映指标, 对土壤中镉(Cd)、砷(As)、铜(Cu)、锌(Zn)和铅(Pb)的生物可利用性(bioaccessibility)进行研究.筛选了已发表论文中生物可利用性与所对应的土壤性质的数据, 并分析了它们之间的潜在关系, 总结了现有的土壤重金属生物可利用性的测试方法, 探究了生物可利用性含量与测试方法以及生物有效性含量之间的影响规律, 并建立了生物可利用性含量的回归预测模型.结果表明, 生物可利用性含量与重金属总含量间呈极显著(P < 0.01)的正相关关系, 与土壤pH相关性显著(P < 0.05).测试方法的不同对生物可利用性含量有明显的影响, 各测试方法测定的生物可利用性含量占比规律为: 体外胃肠道模拟>化学试剂提取.各测试方法测定的Cd和Pb的生物可利用性含量占比均较高(均值分别为42.12%和37.33%), 说明Cd和Pb较易于被生物体吸收, 也应关注由此造成的生态风险.基于生物类型对测试方法进行了分组, 以削弱不同方法产生的测试结果差异, 并构建了30种生物可利用性预测模型, 涉及了多种土壤性质和测试方法, 为生物可利用性在实际应用中提供了新思路, 并可为精准评估污染土壤的生态风险和环境风险管理工作提供技术支持.
关键词: 土壤重金属      生物有效性      生物可利用性      风险评估      预测模型     
Effect Factors and Model Prediction of Soil Heavy Metal Bioaccessibility
ZHANG Jia-wen1 , TIAN Biao1 , LUO Jing-jing1 , WU Fan1 , ZHANG Cong2 , LIU Zheng-tao1 , WANG Xiao-nan1     
1. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
2. Offshore Environmental Technology & Services Limited, Beijing 100027, China
Abstract: The soil environmental pollution situation has been severe in recent years, but studies on evaluating with bioavailability testing and prediction models are lacking, which makes it difficult to accurately assess the ecological risks of contaminated soil. As an important indicator of bioavailability, the bioaccessibility of cadmium (Cd), arsenic (As), copper (Cu), zinc (Zn), and lead (Pb) in the soil was analyzed in this study. The bioaccessibility content and their corresponding soil property data were screened and systematically analyzed to explore the relationship between bioaccessibility content and soil properties. Furthermore, some testing methods for bioaccessibility were summarized to analyze the relationship between bioaccessibility content, test methods, and bioavailability content. Additionally, the bioaccessibility content prediction models were established. The results showed that there was a strong correlation between the bioaccessibility content and the total content of heavy metals (P < 0.01) and a significant (P < 0.05) correlation with the soil pH. Different test methods had obvious effects on bioavailability. The proportion of bioaccessibility content determined via various test methods was as follows: in vitro gastrointestinal tract simulation>chemical reagent extraction. The proportions of bioaccessibility content of Cd and Pb in natural soil were relatively high, with mean values of 42.12% and 37.33%, respectively, indicating that Cd and Pb had higher risks of being absorbed by soil organisms. Moreover, 30 bioaccessibility prediction models for five heavy metals were constructed, which involved the soil properties and test methods. The results of this study can provide scientific information and bioaccessibility prediction models that can help in accurately assessing the ecological risks of contaminated soil.
Key words: soil heavy metals      bioavailability      bioaccessibility      risk assessment      prediction models     

目前对土壤中污染物的含量水平和环境风险评价多基于污染物的总浓度[1, 2], 然而, 总浓度将高估土壤中污染物的实际污染水平[1, 3]. 为了获得准确的风险评估结果, 有学者考虑采用生物有效性(bioavailability)来评价土壤中污染物的污染水平和风险[4, 5].生物有效性是指通过摄入或吸收进入生物膜内的部分, 测试生物体生物膜内污染物的含量(生物有效性含量)通常被认为是生物有效性评估的最直接的方法[6], 生物有效性含量测试通常需要大量的生物实验, 通过血液、细胞和组织提取等途径获得, 高成本和研究耗时等问题很大程度上限制了该方法的发展[6, 7].作为生物有效性的重要反映指标[8~10], 生物可利用性(bioaccessibility)逐渐被用于评估污染物的生物有效性[4, 5].生物可利用性是指能被生物体潜在吸收的部分, 虽然生物可利用性的测试方法多样且测定结果差异较大, 但是它们所测定的生物可利用性通常与生物有效性有着很强的相关性[11, 12].生物可利用性可采用化学试剂提取法和体外胃肠道模拟法等方法在不涉及生物体实验的情况下获得, 其测试成本低且耗时短, 能够有效弥补生物体直接测试法的限制问题(图 1).

图 1 生物有效性影响因素及对应研究手段 Fig. 1 Effect factors of bioavailability and corresponding research methods

污染物的生物可利用性受土壤的性质和化学物质浓度等因素的影响, 不同生物受体的生物有效性响应也存在差异(图 1), 因此, 在土壤污染的风险评估过程中, 需要考虑特定的土壤性质等对生物可利用性的影响[13].现有的生物可利用性和生物有效性研究多基于区域点位的土壤, 例如王芳婷等[14]对珠江三角洲陆地土壤研究中, 报道了Cd总含量以及土壤理化性质对土壤Cd生物可利用性的影响显著; 王锐等[15]对重庆市主要农耕区土壤Cd生物有效性及影响因素进行了研究, 结果显示不同农作物对Cd的富集能力差异较大; 周贵宇等[16]研究了菜田土壤Cd和Pb生物可利用性影响因素.生物可利用性预测模型的研究同样也局限于单一的区域点位土壤和生物可利用性测试方法, 如Dini Dc' 等[17]用塞尔维亚农业土壤建立了Mn、Cu、Zn、Ni和Pb生物可利用性含量[二乙烯三胺五乙酸(diethylenetriaminepentaacetic acid, DTPA)溶液提取]的预测模型, 模型涉及的影响因素有pH、OM、Clay和金属总含量, 其中Cu(R2为0.76~0.83)和Pb(R2为0.60~0.83)的预测模型较为可靠; Liu等[18]在研究中国广西桂林矿区土壤时, 利用3种金属(Pb、Zn和Cd)的总含量、土壤总有机碳(TOC)、pH和Mn含量对矿区土壤Pb、Cd和Zn生物可利用性[利用生理原理提取法(physiologically based extraction test, PBET)提取]建立了逐步回归模型(R2为0.37~0.93).目前关于生物可利用性测试方法的报道较多, 但各方法的适用范围存在一定差异, 很难确定各个污染物的最适生物可利用性测试方法[5].因此, 有限的土壤区域、差异化的测试方法和生物种类, 限制了污染土壤生态风险评估中对污染物生物可利用性和生物有效性部分的综合考虑.本文对土壤中镉(Cd)、砷(As)、铜(Cu)、锌(Zn)和铅(Pb)的生物可利用性进行研究, 总结了现有的土壤重金属生物可利用性的测试方法, 探究了生物可利用性含量与土壤性质、测试方法和生物有效性含量间的影响规律, 并建立了生物可利用性含量的预测模型.本研究对多种土壤类型和多种生物可利用性测试方法进行了分析, 依据表征的生物类别将测试方法分组, 减小不同生物可利用性测试方法产生的差异, 以期为精准评估污染土壤的生态风险和环境风险管理工作提供技术支持.

1 材料与方法 1.1 数据的获取、筛选与处理

采用Elsevier(http://www.sciencedirect.com)、中国知网(http://www.cnki.net)和Web of Science(http://app.webofknowledge.com)等数据库, 以主题“生物有效性”、“生物可利用性”、“土壤”、“镉”、“砷”、“铜”、“锌”和“铅”等对土壤重金属生物可利用性和生物有效性数据进行搜索, 初步筛选约400篇文献.查找文献中报道了重金属(Cd、As、Cu、Zn和Pb)生物可利用性含量和对应的土壤性质[pH、阳离子交换量(CEC)、有机质含量(OM)、黏土(Clay)含量和铁矿物含量(Fe)]的数据.删去没有受试土壤性质的数据, 包括土壤性质(CEC和OM等)未明确标注的数据; 删去非自然土壤数据(即人工配制土壤或自然土壤中人工添加重金属的实验数据).选用了剩余的80篇测试规范和数据清晰的文献进行研究.

获取的数据情况见表 1, 包括土壤中重金属的总含量和生物可利用性含量以及所对应的土壤性质.所搜集的数据量多, 涉及的测试方法和土壤性质差别大, 为了使数据的分布正态化, 对数据进行了对数转换.对于部分土壤性质参数缺失的数据, 通过缺失值插补法补充该部分参数, 以提高研究结果的可靠性.本研究采用了基于链式方程的多重插补方法(MICE)来处理缺失值问题, 由R 4.0.4和RStudio 1.3.1073软件中的“mice”数据包进行处理, 数据包中包含随机森林(RF)法.有研究表明MICE、RF以及MICE与RF联用等方法在空气质量缺失值[19]、土壤性质参数(pH等)缺失值[20]和水质参数缺失值[21]等方面有很好的插补效果.

表 1 数据整体情况1) Table 1 Overall data situation

1.2 生物可利用性含量与土壤性质、测试方法和生物有效性含量的关系分析

首先进行重金属(Cd、As、Cu、Zn和Pb)的生物可利用性含量与重金属总含量和各土壤性质之间的皮尔逊相关性分析, 显著性水平取P < 0.05和 P < 0.01.对现有的土壤重金属生物可利用性的测试方法进行总结, 并对生物可利用性含量与生物有效性含量间的相关性进行分析.数据分析和可视化由SPSS 25.0和Origin 2019b软件以及“镝数图表”网站(http://www.dycharts.com)实现.

1.3 生物可利用性含量预测模型构建

采用SPSS 25.0软件进行逐步回归分析, 使得最后保留在模型中的解释变量既是重要的, 又没有严重多重共线性, 推导出的回归模型一般表达式如下:

式中, abcdefg为模型系数; α为重金属; Bα为生物可利用性含量; Tα为土壤中重金属总含量.

采用Origin 2019b软件进行主成分分析(PCA), 根据PCA结果对回归模型进行补充说明.为了进一步验证预测模型的可靠性, 本文采用其他学者的实验数据[17, 18, 73~77]对预测模型的预测效果进行计算与比较, 所选数据未用于预测模型的构建.

2 结果与讨论 2.1 土壤性质对生物可利用性含量的影响

土壤性质是影响土壤重金属生物可利用性和生物有效性的关键因素[56, 78~81], 根据皮尔逊相关性分析(表 2), 发现土壤重金属生物可利用性含量与多种土壤性质间存在显著相关关系.土壤中5种重金属的生物可利用性含量均与重金属总含量呈极显著(P < 0.01)的正相关关系, 这与其他学者的研究结果相符[10, 17, 75, 82].pH是影响土壤类型中Cd[31]、As[8]、Cu[17]、Zn[10, 17]和Pb[82]可利用性的主要因素, 分析结果显示pH与其生物可利用性有显著相关关系(P < 0.05).此外, 有机质含量与Cd、Zn和Pb总含量和生物可利用性含量均具有显著正相关性, 可能是土壤有机质中的主要成分腐殖酸含有的羧基、羟基和酚羟基等具有对Cd和Pb等螯合的作用[16], 另一方面有机质也可提高重金属的可溶性[83], 最终对其产生了影响, 本研究的结果与王春香等[84]的研究结果相符.黏土含量对重金属(Cu除外)的生物可利用性含量和总含量均为显著负相关性, CEC与金属总含量和可利用性含量没有显著的相关关系(As除外)(表 2).有报道指出As的可利用性含量主要受As总含量、黏土含量和有机质含量的影响[8], 本文的结果表明总含量、黏土含量、pH和CEC是显著影响可利用性含量的因素, 这种差异可能由本研究所涉数据量大和土壤类型多造成的.铁矿物对重金属有较为明显的吸附作用[85, 86], 皮尔逊相关系数显示, 铁矿物与5种重金属的总含量以及Cu、Zn和Pb的生物可利用性含量均有显著性关系.总体而言, 土壤中重金属总含量与生物可利用性含量关系密切, 重金属可溶性与吸附解析的平衡过程会影响其整体生物有效性[13].

表 2 重金属可利用性含量与土壤性质之间的皮尔逊相关系数1) Table 2 Pearson correlation coefficient between the bioaccessibility content of heavy metals and soil properties

2.2 测定方法对生物可利用性的影响

目前有多种测定生物可利用性含量的方法, 如采用螯合剂(EDTA等)提取一些重金属可对蚯蚓生物有效性有较好的表征效果[80]; 采用盐溶液(如MgCl2和CaCl2等)来表征植物对重金属吸收的生物有效性效果不错[87, 88].表 3中总结了一些现阶段普遍使用的生物有效性的评估方法, 涉及生物可利用性含量的测定, 以及所表征的生物及重金属.从中可知, 胃肠道模拟方法(PBET和SPRC等)均以生物体胃肠道环境为依据确定体系固液比、温度以及pH等条件, 一些螯合剂和盐溶液等缺少对生物体的具体考虑.有学者在研究过程中会根据具体情况改进提取方法, 比如EDTA方法的溶液浓度和DTPA方法中的固液比等都有所差异(表 3).此外, 不同的方法所适宜的使用范围不一样, 比如UBM和PBET等属于体外胃肠道模拟方法, 主要测定的是能被人体潜在吸收的重金属生物可利用性; CaCl2、HNO3和EDTA等化学试剂主要用于测定能被植物体或土壤动物潜在吸收的重金属生物可利用性, 其中表征的植物体主要为体长不超过4 m的草本植物或灌木, 表征的土壤动物主要为蚯蚓(表 3).表 3中列举的RBALP方法主要针对Pb的生物可利用性研究, SEG方法主要针对蚯蚓肠道对重金属吸收的研究, 这种针对性较强的方法通常有更好的效果.而大型植物少有涉及和土壤动物研究种类少是土壤重金属生物有效性研究需要进一步解决的问题(表 3).基于以上分析, 本研究依据表征的生物类型将测试方法分为3组(具体参考表 3): 第一组为人, 主要包括PBET、SBET、UBM、SBRC和RBALP方法; 第二组为植物, 主要包括EDTA、HCl和CaCl2等方法; 第三组为蚯蚓, 主要包括SEG、BCR和DTPA等方法.

表 3 土壤重金属生物有效性评估方法总结1) Table 3 Overview of methods for assessing the bioavailability of heavy metals in soil

重金属生物可利用性含量在总含量中的占比结果显示(图 2), 采用不同测试方法所得到的生物可利用性含量占比差别较大[图 2(a)], 由EDTA方法测定的生物可利用性含量占比普遍较高(除Zn之外), 占比为32.54% ~51.50%, 而CaCl2溶液测定的能被植物体潜在吸收的重金属生物可利用性含量占比较低, 这与之前学者的报道相符[79, 89]; 相比其他方法, PBET和SBRC等体外胃肠道模拟方法能模拟土壤摄入消化道的过程, 所测定出的生物可利用性含量占比最高[图 2(a)2(b)].总体而言, 除As之外植物分组均比蚯蚓分组的生物可利用性占比高[图 2(b)].图 2(c)中显示, 各个方法所测得的Cd和Pb生物可利用性含量占比普遍较高, 平均占比分别为42.12%和37.33%, 相对而言As生物可利用性含量占比较低, 说明Cd和Pb被生物体吸收的潜力较高, 需要时刻关注.

(a)每种测试方法测定的生物可利用性含量占比; (b)将测试方法分组后的重金属生物可利用性含量平均占比; (c)未分组的重金属生物可利用性含量的平均占比 图 2 重金属生物可利用性含量在土壤总含量中的占比 Fig. 2 Percentage of heavy metal bioavailability content in total soil content

2.3 生物可利用性含量与生物有效性含量间的相关性

生物可利用性通常与生物有效性有着很强的相关性[11, 12], 是生物有效性的重要反映指标.图 3为重金属生物可利用性含量与生物有效性含量间的相关系数.各方法测定的土壤重金属含量(生物可利用性含量)与植物体不同组织以及蚯蚓体内的重金属含量(生物有效性含量)间的相关系数均值排序为: EDTA(0.646)>HNO3(0.597)>DTPA(0.518)>BCR(0.447)>CaCl2(0.429), 其中EDTA方法测定的重金属生物可利用性含量与生物体内的重金属含量具有较好的相关性, 而BCR的相关性跨度较大, HCl方法的数据量较少(图 3).此外, 各种方法测定的生物可利用性含量与植物茎叶部中的重金属含量相关性较差(相关系数均值为0.183), 可能是数据量较少造成的, 与下胚轴(0.850)、籽粒(0.663)、根(0.634)、叶(0.623)和芽(0.617)部的重金属含量相关性较好, 其中对植物芽和籽粒部生物有效性评估的数据量较多且普遍具有较好的相关性, 与蚯蚓体内重金属含量的相关性稳定(相关系数大多分布于0.400~1.000之间).不同的测试方法所得到的重金属生物可利用性含量往往只与某一类型生物体组织内的重金属生物有效性含量具有较好的相关性, 对于土壤环境基准和风险评估的研究工作, 可依据生态受体的差异采用适宜的生物有效性测定方法.

左侧纵坐标表示由化学试剂法及体外模拟法测定的重金属含量(生物可利用性含量), 右侧纵坐标表示生物体内的重金属含量(生物有效性含量); 线条为连续曲线, 一条曲线表示一组数据; 曲线颜色表示生物可利用性含量与生物有效性含量间相关系数的大小(P < 0.05); 线条的宽度表示数据量的大小 图 3 生物可利用性含量与生物有效性含量间的相关系数分布 Fig. 3 Correlation coefficient distribution diagram between bioaccessibility content and bioavailability content

2.4 生物可利用性预测模型

基于逐步回归分析方法, 构建了5种重金属的多个土壤生物可利用性含量预测模型(表 4).由回归方程可知, 土壤中重金属可利用性含量的变化主要由金属总含量解释(R2: 0.350~0.986), 其他回归模型研究也发现重金属总含量对生物可利用产生显著影响, 如As(R2=0.991; P=0.065)[75]、Pb(R2=0.772; P < 0.001)[75]、Cu(R2为0.426、0.915和0.984; P < 0.05)[10]和Zn(R2为0.786和0.861; P < 0.05)[10].此外每个组别中还有其他影响因素(如OM和CEC等), 通过逐步纳入更多参数, 获得了更为可靠的预测模型(相关性R2值提高, 表 4).

表 4 重金属生物可利用性含量的逐步回归模型 Table 4 Regression model of the bioaccessibility content of heavy metals

主成分分析显示(图 4), 区别于体外模拟法测定的人体分组, 基于化学试剂提取法测定的植物组和蚯蚓组的影响因素具有一定的相似性, 它们受pH的影响普遍大于人体分组, 其中Cd、As和Zn较为明显, 这可能是由于胃肠道模拟会对反应体系pH值进行调整使之接近于人体生理环境, 所以土壤pH值的影响被弱化.此外, 图 4显示pH和铁矿物含量是对第一主成分和第二主成分具有较大贡献的环境要素, 但本研究将pH和铁矿物含量作为主导因素建立回归模型发现pH和铁矿物含量对生物可利用性含量变化的解释度很低(R2 < 0.100), 结合表 2表 4的结果, 进一步说明pH、铁矿物含量和生物可利用性具有相关关系, 但关系较弱, 这与已有的观点不同[10, 31, 82], 可能是本研究包含的土壤类型较多和pH变化较大造成的.

图 4 主成分分析(PCA) Fig. 4 Principal component analysis (PCA)

采用已发表论文中的土壤性质数据对构建的预测模型进行验证, 共产生蚯蚓、植物和人这3个分组的49组数据点(图 5).图 5显示, 94%的数据点在95%预测带内, 43%的数据点在95%置信带内, 说明回归方程预测效果较好, 其中Cu、Pb的预测效果最好.在涉及多种土壤类型及测试方法的情况下, 基于生物类型对测试方法分组, 以削弱不同方法产生的测试结果差异, 在实际使用过程中可依据获取的土壤性质数据择优选择R2值较高的模型, 可对生物可利用性含量进行较好地预测.

每个三角形表示一组检测数据; 数字对应表 4中的方程编号 图 5 数据验证结果 Fig. 5 Data verification results graph

3 结论

(1) 统计分析发现Cd、As、Cu、Zn和Pb的生物可利用性含量与土壤中重金属总量呈极显著(P < 0.01)的强相关性, 与土壤pH有显著相关关系(P < 0.05), 为以金属总含量为主要解释变量的回归方程建立提供了理论支持.

(2) 各测试方法测定的生物可利用性含量占比规律为: 胃肠道模拟>化学试剂提取.不同方法测定的Cd和Pb的生物可利用性含量占比普遍较高, 其被生物体吸收的潜力较高.

(3) 相关性分析显示EDTA方法测定的重金属生物可利用性含量与生物体内的重金属含量具有较好的相关性; 生物可利用性含量与植物不同组织中的重金属含量相关性存在差异.因此, 对于土壤环境基准和风险评估, 可依据生态受体的差异采用适宜的生物有效性测定方法.

(4) 构建了30个生物可利用性含量的预测模型, 验证表明可以对Cd、As、Cu、Zn和Pb的生物可利用性含量进行较好地预测, 预测模型可为基于生物有效性的污染土壤精准生态风险评估提供参考.

参考文献
[1] Louzon M, Pauget B, Pelfrêne A, et al. Combining human and snail indicators for an integrative risk assessment of metal(loid)-contaminated soils[J]. Journal of Hazardous Materials, 2021, 409. DOI:10.1016/j.jhazmat.2020.124182
[2] 代允超. 土壤中镉、砷生物有效性影响因素及评价方法研究[D]. 杨凌: 西北农林科技大学, 2018.
Dai Y C. The research of affecting factors and evaluation methods of cadmium and arsenic bioavailability in soils[D]. Yangling: Northwest A&F University, 2018.
[3] Guo M X, Gong Z Q, Li X J, et al. Polycyclic aromatic hydrocarbons bioavailability in industrial and agricultural soils: linking SPME and Tenax extraction with bioassays[J]. Ecotoxicology and Environmental Safety, 2017, 140: 191-197. DOI:10.1016/j.ecoenv.2017.02.044
[4] 唐文忠, 孙柳, 单保庆. 土壤/沉积物中重金属生物有效性和生物可利用性的研究进展[J]. 环境工程学报, 2019, 13(8): 1775-1790.
Tang W Z, Sun L, Shan B Q. Research progress of bioavailability and bioaccessibility of heavy metals in soil or sediment[J]. Chinese Journal of Environmental Engineering, 2019, 13(8): 1775-1790.
[5] 林亲铁, 朱伟浩, 陈志良, 等. 土壤重金属的形态分析及生物有效性研究进展[J]. 广东工业大学学报, 2013, 30(2): 113-118.
Lin Q T, Zhu W H, Chen Z L, et al. Progress in species and bioavailability of heavy metals in soil[J]. Journal of Guangdong University of Technology, 2013, 30(2): 113-118. DOI:10.3969/j.issn.1007-7162.2013.02.022
[6] Lungu-Mitea S, Vogs C, Carlsson G, et al. Modeling bioavailable concentrations in zebrafish cell lines and embryos increases the correlation of toxicity potencies across test systems[J]. Environmental Science & Technology, 2021, 55(1): 447-457.
[7] Yan K H, Dong Z M, Naidu R, et al. Comparison of in vitro models in a mice model and investigation of the changes in Pb speciation during Pb bioavailability assessments[J]. Journal of Hazardous Materials, 2020, 388. DOI:10.1016/j.jhazmat.2019.121744
[8] Yao B M, Chen P, Zhang H M, et al. A predictive model for arsenic accumulation in rice grains based on bioavailable arsenic and soil characteristics[J]. Journal of Hazardous Materials, 2021, 412. DOI:10.1016/j.jhazmat.2021.125131
[9] Wen Y B, Li W, Yang Z F, et al. Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the Karst region, Southwestern China[J]. Environmental Pollution, 2020, 258. DOI:10.1016/j.envpol.2019.113645
[10] Luo X S, Yu S, Li X D. The mobility, bioavailability, and human bioaccessibility of trace metals in urban soils of Hong Kong[J]. Applied Geochemistry, 2012, 27(5): 995-1004. DOI:10.1016/j.apgeochem.2011.07.001
[11] Fontes R L F, Ferreira G B, Alvarez V V H, et al. Bioavailability of soil Cu, Fe, Mn and Zn from soil fractions[J]. Semina: Ciências Agrárias, 2021, 42(1): 19-42. DOI:10.5433/1679-0359.2021v42n1p19
[12] Zhang L L, Verweij R A, Van Gestel C A M. Effect of soil properties on Pb bioavailability and toxicity to the soil invertebrate Enchytraeus crypticus[J]. Chemosphere, 2019, 217: 9-17. DOI:10.1016/j.chemosphere.2018.10.146
[13] Hartemink A E, McBratney A B, Naidu R. Developments in soil science: chemical bioavailability in terrestrial environments[M]. Amsterdam: Elsevier, 2008: 1-6.
[14] 王芳婷, 包科, 陈植华, 等. 珠江三角洲海陆交互相沉积物中镉生物有效性与生态风险评价[J]. 环境科学, 2021, 42(2): 653-662.
Wang F T, Bao K, Chen Z H, et al. Bioavailability and ecological risk assessment of cadmium in the sea-land interaction sediments of the Pearl River Delta[J]. Environmental Science, 2021, 42(2): 653-662.
[15] 王锐, 胡小兰, 张永文, 等. 重庆市主要农耕区土壤Cd生物有效性及影响因素[J]. 环境科学, 2020, 41(4): 1864-1870.
Wang R, Hu X L, Zhang Y W, et al. Bioavailability and influencing factors of soil Cd in the major farming areas of Chongqing[J]. Environmental Science, 2020, 41(4): 1864-1870.
[16] 周贵宇, 姜慧敏, 杨俊诚, 等. 几种有机物料对设施菜田土壤Cd、Pb生物有效性的影响[J]. 环境科学, 2016, 37(10): 4011-4019.
Zhou G Y, Jiang H M, Yang J C, et al. Effects of different organic materials on bio-availability of Cd, Pb in a contaminated greenhouse soil[J]. Environmental Science, 2016, 37(10): 4011-4019.
[17] Dinić Z, Maksimović J, Stanojković-Sebić A, et al. Prediction models for bioavailability of Mn, Cu, Zn, Ni and Pb in soils of republic of serbia[J]. Agronomy, 2019, 9(12). DOI:10.3390/agronomy9120856
[18] Liu S Y, Tian S H, Li K X, et al. Heavy metal bioaccessibility and health risks in the contaminated soil of an abandoned, small-scale lead and zinc mine[J]. Environmental Science and Pollution Research, 2018, 25(15): 15044-15056. DOI:10.1007/s11356-018-1660-8
[19] Hajmohammadi H, Heydecker B. Multivariate time series modelling for urban air quality[J]. Urban Climate, 2021, 37. DOI:10.1016/j.uclim.2021.100834
[20] 张逸飞, 曹佳. 土壤属性数据pH缺失的插补方法[J]. 计算机系统应用, 2021, 30(1): 277-281.
Zhang Y F, Cao J. Imputation method to predict missing pH data of soil attribute[J]. Computer Systems & Applications, 2021, 30(1): 277-281.
[21] Ratolojanahary R, Ngouna R H, Medjaher K, et al. Model selection to improve multiple imputation for handling high rate missingness in a water quality dataset[J]. Expert Systems with Applications, 2019, 131: 299-307. DOI:10.1016/j.eswa.2019.04.049
[22] Ding C F, Ma Y B, Li X G, et al. Determination and validation of soil thresholds for cadmium based on food quality standard and health risk assessment[J]. Science of the Total Environment, 2018, 619-620: 700-706. DOI:10.1016/j.scitotenv.2017.11.137
[23] Onyatta J O, Huang P M. Chemical speciation and bioavailability index of cadmium for selected tropical soils in Kenya[J]. Geoderma, 1999, 91(1-2): 87-101. DOI:10.1016/S0016-7061(99)00002-6
[24] Liu B L, Mo C H, Zhang Y M. Using cadmium bioavailability to simultaneously predict its accumulation in crop grains and the bioaccessibility in soils[J]. Science of the Total Environment, 2019, 665: 246-252. DOI:10.1016/j.scitotenv.2019.01.427
[25] Beygi M, Jalali M. Assessment of trace elements (Cd, Cu, Ni, Zn) fractionation and bioavailability in vineyard soils from the Hamedan, Iran[J]. Geoderma, 2019, 337: 1009-1020. DOI:10.1016/j.geoderma.2018.11.009
[26] Schweizer S A, Seitz B, Van Der Heijden M G A, et al. Impact of organic and conventional farming systems on wheat grain uptake and soil bioavailability of zinc and cadmium[J]. Science of the Total Environment, 2018, 639: 608-616. DOI:10.1016/j.scitotenv.2018.05.187
[27] Mu T T, Wu T Z, Zhou T, et al. Geographical variation in arsenic, cadmium, and lead of soils and rice in the major rice producing regions of China[J]. Science of the Total Environment, 2019, 677: 373-381. DOI:10.1016/j.scitotenv.2019.04.337
[28] Pauget B, Gimbert F, Scheifler R, et al. Soil parameters are key factors to predict metal bioavailability to snails based on chemical extractant data[J]. Science of the Total Environment, 2012, 431: 413-425. DOI:10.1016/j.scitotenv.2012.05.048
[29] Kosolsaksakul P, Oliver I W, Graham M C. Evaluating cadmium bioavailability in contaminated rice paddy soils and assessing potential for contaminant immobilisation with biochar[J]. Journal of Environmental Management, 2018, 215: 49-56.
[30] Lee S H, Kim E Y, Hyun S, et al. Metal availability in heavy metal-contaminated open burning and open detonation soil: assessment using soil enzymes, earthworms, and chemical extractions[J]. Journal of Hazardous Materials, 2009, 170(1): 382-388. DOI:10.1016/j.jhazmat.2009.04.088
[31] Tian H Q, Wang Y Z, Xie J F, et al. Effects of soil properties and land use types on the bioaccessibility of Cd, Pb, Cr, and Cu in Dongguan City, China[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(1): 64-70. DOI:10.1007/s00128-019-02740-9
[32] Soriano-Disla J M, Speir T W, Gómez I, et al. Evaluation of different extraction methods for the assessment of heavy metal bioavailability in various soils[J]. Water, Air, & Soil Pollution, 2010, 213(1-4): 471-483.
[33] Argyraki A, Kelepertzis E, Botsou F, et al. Environmental availability of trace elements (Pb, Cd, Zn, Cu) in soil from urban, suburban, rural and mining areas of Attica, Hellas[J]. Journal of Geochemical Exploration, 2018, 187: 201-213. DOI:10.1016/j.gexplo.2017.09.004
[34] Basta N, Gradwohl R. Estimation of Cd, Pb, and Zn bioavailability in smelter-contaminated soils by a sequential extraction procedure[J]. Journal of Soil Contamination, 2000, 9(2): 149-164. DOI:10.1080/10588330008984181
[35] Rodrigues S M, Cruz N, Coelho C, et al. Risk assessment for Cd, Cu, Pb and Zn in urban soils: chemical availability as the central concept[J]. Environmental Pollution, 2013, 183: 234-242. DOI:10.1016/j.envpol.2012.10.006
[36] Cruz-Hernández Y, Santana-Silva A, Villalobos M, et al. Assessment of a simple extraction method to determine the bioaccessibility of potentially toxic Tl, As, Pb, Cu, Zn and Cd in soils contaminated by mining-metallurgical waste[J]. Revista Internacional de Contaminación Ambiental, 2019, 35(4): 849-868. DOI:10.20937/RICA.2019.35.04.07
[37] Karadaș C, Kara D. In vitro gastro-intestinal method for the assessment of heavy metal bioavailability in contaminated soils[J]. Environmental Science and Pollution Research, 2011, 18(4): 620-628. DOI:10.1007/s11356-010-0404-1
[38] Rodrigues S M, Cruz N, Carvalho L, et al. Evaluation of a single extraction test to estimate the human oral bioaccessibility of potentially toxic elements in soils: towards more robust risk assessment[J]. Science of the Total Environment, 2018, 635: 188-202. DOI:10.1016/j.scitotenv.2018.04.063
[39] Waterlot C, Douay F, Pelfrêne A. Chemical availability of Cd, Pb and Zn in anthropogenically polluted soil: assessing the geochemical reactivity and oral bioaccessibility[J]. Pedosphere, 2017, 27(3): 616-629. DOI:10.1016/S1002-0160(17)60356-4
[40] Li S W, Li J, Li H B, et al. Arsenic bioaccessibility in contaminated soils: coupling in vitro assays with sequential and HNO3 extraction[J]. Journal of Hazardous Materials, 2015, 295: 145-152. DOI:10.1016/j.jhazmat.2015.04.011
[41] Juhasz A L, Smith E, Weber J, et al. Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils[J]. Chemosphere, 2007, 69(6): 961-966. DOI:10.1016/j.chemosphere.2007.05.018
[42] Martínez-Sánchez M J, Martínez-López S, García-Lorenzo M L, et al. Evaluation of arsenic in soils and plant uptake using various chemical extraction methods in soils affected by old mining activities[J]. Geoderma, 2011, 160(3-4): 535-541. DOI:10.1016/j.geoderma.2010.11.001
[43] Ghosh A K, Bhattacharyya P, Pal R. Effect of arsenic contamination on microbial biomass and its activities in arsenic contaminated soils of Gangetic West Bengal, India[J]. Environment International, 2004, 30(4): 491-499. DOI:10.1016/j.envint.2003.10.002
[44] Fleming M, Tai Y P, Zhuang P, et al. Extractability and bioavailability of Pb and As in historically contaminated orchard soil: effects of compost amendments[J]. Environmental Pollution, 2013, 177: 90-97. DOI:10.1016/j.envpol.2013.02.013
[45] Ahumada I, Escudero P, Ascar L, et al. Extractability of arsenic, copper, and lead in soils of a mining and agricultural zone in central Chile[J]. Communications in Soil Science and Plant Analysis, 2004, 35(11-12): 1615-1634. DOI:10.1081/CSS-120038558
[46] Rahman M S, Reichelt-Brushet A J, Clark M W, et al. Arsenic bio-accessibility and bioaccumulation in aged pesticide contaminated soils: a multiline investigation to understand environmental risk[J]. Science of the Total Environment, 2017, 581-582: 782-793. DOI:10.1016/j.scitotenv.2017.01.009
[47] Duplay J, Semhi K, Errais E, et al. Copper, zinc, lead and cadmium bioavailability and retention in vineyard soils (Rouffach, France): the impact of cultural practices[J]. Geoderma, 2014, 230-231: 318-328. DOI:10.1016/j.geoderma.2014.04.022
[48] 苏丽鳗, 陈培珍, 叶宏萌, 等. 武夷山茶园土壤中Cu、Zn、Pb和Cr元素的生物有效性及其影响因素[J]. 长江大学学报(自科版), 2020, 17(6): 82-87.
Su L M, Chen P Z, Ye H M, et al. The influencing factors and the bioavailability of Cu, Zn, Pb and Cr in the soil of Wuyishan tea garden[J]. Journal of Yangtze University (Natural Science Edition), 2020, 17(6): 82-87. DOI:10.3969/j.issn.1673-1409.2020.06.014
[49] 徐笠. 土壤中可提取态Cu、Zn与全量的关系及其生物有效性研究[D]. 合肥: 安徽农业大学, 2009.
Xu L. Investigation the relationships between the total and extractable Cu、Zn and its bioavailability[D]. Hefei: Anhui Agricultural University, 2009.
[50] Chaignon V, Quesnoit M, Hinsinger P. Copper availability and bioavailability are controlled by rhizosphere pH in rape grown in an acidic Cu-contaminated soil[J]. Environmental Pollution, 2009, 157(12): 3363-3369. DOI:10.1016/j.envpol.2009.06.032
[51] Wang S L, Nan Z R, Liu X W, et al. Accumulation and bioavailability of copper and nickel in wheat plants grown in contaminated soils from the oasis, Northwest China[J]. Geoderma, 2009, 152(3-4): 290-295. DOI:10.1016/j.geoderma.2009.06.012
[52] Cattani I, Fragoulis G, Boccelli R, et al. Copper bioavailability in the rhizosphere of maize (Zea mays L.) grown in two Italian soils[J]. Chemosphere, 2006, 64(11): 1972-1979. DOI:10.1016/j.chemosphere.2006.01.007
[53] Smith B A, Greenberg B, Stephenson G L. Bioavailability of copper and zinc in mining soils[J]. Archives of Environmental Contamination and Toxicology, 2012, 62(1): 1-12. DOI:10.1007/s00244-011-9682-y
[54] Brewin L E, Mehra A, Lynch P T, et al. Bioavailability of copper within Dolfrwynog Bog soils, North Wales, UK[J]. Chemical Speciation & Bioavailability, 2007, 19(4): 149-162.
[55] Niesiobedzka K. Mobile forms and migration ability of Cu, Pb and Zn in forestry system in Poland[J]. Environmental Earth Sciences, 2016, 75(2). DOI:10.1007/s12665-015-4821-9
[56] Teng Y G, Feng D, Wu J, et al. Distribution, bioavailability, and potential ecological risk of Cu, Pb, and Zn in soil in a potential groundwater source area[J]. Environmental Monitoring and Assessment, 2015, 187(5). DOI:10.1007/s10661-015-4541-3
[57] Smith B A, Greenberg B, Stephenson G L. Comparison of biological and chemical measures of metal bioavailability in field soils: test of a novel simulated earthworm gut extraction[J]. Chemosphere, 2010, 81(6): 755-766. DOI:10.1016/j.chemosphere.2010.07.012
[58] De Santiago-Martín A, Van Oort F, González C, et al. Improving the relationship between soil characteristics and metal bioavailability by using reactive fractions of soil parameters in calcareous soils[J]. Environmental Toxicology and Chemistry, 2015, 34(1): 37-44. DOI:10.1002/etc.2772
[59] Yang X E, Peng H Y, Jiang L Y, et al. Phytoextraction of copper from contaminated soil by Elsholtzia splendens as affected by EDTA, citric acid, and compost[J]. International Journal of Phytoremediation, 2005, 7(1): 69-83. DOI:10.1080/16226510590915855
[60] Li Y, Demisie W, Zhang M K. The function of digestive enzymes on Cu, Zn, and Pb release from soil in in vitro digestion tests[J]. Environmental Science and Pollution Research, 2013, 20(7): 4993-5002. DOI:10.1007/s11356-013-1472-9
[61] 田彪, 卿黎, 罗晶晶, 等. 重金属铜和铅的生态毒性归一化及土壤环境基准研究[J]. 环境科学学报, 2022, 42(3): 431-440.
Tian B, Qing L, Luo J J, et al. Study of ecotoxicity normalization for heavy metals Cu and Pb and their soil environmental criteria[J]. Acta Scientiae Circumstantiae, 2022, 42(3): 431-440.
[62] Minca K K, Basta N T, Scheckel K G. Using the mehlich-3 soil test as an inexpensive screening tool to estimate total and bioaccessible lead in urban soils[J]. Journal of Environmental Quality, 2013, 42(5): 1518-1526. DOI:10.2134/jeq2012.0450
[63] Liu Y, Bello O, Rahman M M, et al. Investigating the relationship between lead speciation and bioaccessibility of mining impacted soils and dusts[J]. Environmental Science and Pollution Research, 2017, 24(20): 17056-17067. DOI:10.1007/s11356-017-9250-8
[64] Yan K H, Dong Z M, Liu Y J, et al. Quantifying statistical relationships between commonly used in vitro models for estimating lead bioaccessibility[J]. Environmental Science and Pollution Research, 2016, 23(7): 6873-6882. DOI:10.1007/s11356-015-5947-8
[65] Juhasz A L, Weber J, Smith E. Impact of soil particle size and bioaccessibility on children and adult lead exposure in peri-urban contaminated soils[J]. Journal of Hazardous Materials, 2011, 186(2-3): 1870-1879. DOI:10.1016/j.jhazmat.2010.12.095
[66] Farmer J G, Broadway A, Cave M R, et al. A lead isotopic study of the human bioaccessibility of lead in urban soils from Glasgow, Scotland[J]. Science of the Total Environment, 2011, 409(23): 4958-4965. DOI:10.1016/j.scitotenv.2011.08.061
[67] Minca K K. Using soil nutrient tests and 1M HNO3 to predict total and bioaccessible Pb in urban soils[D]. State of Ohio: The Ohio State University, 2012.
[68] Beyer W N, Basta N T, Chaney R L, et al. Bioaccessibility tests accurately estimate bioavailability of lead to quail[J]. Environmental Toxicology and Chemistry, 2016, 35(9): 2311-2319. DOI:10.1002/etc.3399
[69] Argyraki A. Garden soil and house dust as exposure media for lead uptake in the mining village of Stratoni, Greece[J]. Environmental Geochemistry and Health, 2014, 36(4): 677-692. DOI:10.1007/s10653-013-9589-9
[70] Geebelen W, Adriano D C, Van Der Lelie D, et al. Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils[J]. Plant and Soil, 2003, 249(1): 217-228. DOI:10.1023/A:1022534524063
[71] Finžgar N, Tlustoš P, Leštan D. Relationship of soil properties to fractionation, bioavailability and mobility of lead and zinc in soil[J]. Plant, Soil and Environment, 2007, 53(5): 225-238.
[72] Yan K H, Dong Z M, Wijayawardena M A A, et al. The source of lead determines the relationship between soil properties and lead bioaccessibility[J]. Environmental Pollution, 2019, 246: 53-59. DOI:10.1016/j.envpol.2018.11.104
[73] Wang K, Qiao Y H, Li H F, et al. Structural equation model of the relationship between metals in contaminated soil and in earthworm (Metaphire californica) in Hunan Province, subtropical China[J]. Ecotoxicology and Environmental Safety, 2018, 156: 443-451. DOI:10.1016/j.ecoenv.2018.03.038
[74] Mehta N, Cipullo S, Cocerva T, et al. Incorporating oral bioaccessibility into human health risk assessment due to potentially toxic elements in extractive waste and contaminated soils from an abandoned mine site[J]. Chemosphere, 2020, 255. DOI:10.1016/j.chemosphere.2020.126927
[75] Wang X S, Qin Y, Chen Y K. Leaching characteristics of arsenic and heavy metals in urban roadside soils using a simple bioavailability extraction test[J]. Environmental Monitoring and Assessment, 2007, 129(1-3): 221-226. DOI:10.1007/s10661-006-9355-x
[76] Huang R Q, Gao S F, Wang W L, et al. Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, Southeast China[J]. Science of the Total Environment, 2006, 368(2-3): 531-541. DOI:10.1016/j.scitotenv.2006.03.013
[77] Liao Q, He L X, Tu G Y, et al. Simultaneous immobilization of Pb, Cd and As in soil by hybrid iron-, sulfate- and phosphate-based bio-nanocomposite: effectiveness, long-term stability and bioavailablity/bioaccessibility evaluation[J]. Chemosphere, 2021, 266. DOI:10.1016/j.chemosphere.2020.128960
[78] Daoust C M, Bastien C, Deschênes L. Influence of soil properties and aging on the toxicity of copper on compost worm and barley[J]. Journal of Environmental Quality, 2006, 35(2): 558-567. DOI:10.2134/jeq2005.0107
[79] Owojori O J, Reinecke A J, Rozanov A B. Influence of clay content on bioavailability of copper in the earthworm Eisenia fetida[J]. Ecotoxicology and Environmental Safety, 2010, 73(3): 407-414. DOI:10.1016/j.ecoenv.2009.03.017
[80] Duan X W, Xu M, Zhou Y Y, et al. Effects of soil properties on copper toxicity to earthworm Eisenia fetida in 15 Chinese soils[J]. Chemosphere, 2016, 145: 185-192. DOI:10.1016/j.chemosphere.2015.11.099
[81] Xiao L, Li M H, Dai J, et al. Assessment of earthworm activity on Cu, Cd, Pb and Zn bioavailability in contaminated soils using biota to soil accumulation factor and DTPA extraction[J]. Ecotoxicology and Environmental Safety, 2020, 195. DOI:10.1016/j.ecoenv.2020.110513
[82] Wu X S, Cai Q Y, Xu Q, et al. Wheat (Triticum aestivum L.) grains uptake of lead (Pb), transfer factors and prediction models for various types of soils from China[J]. Ecotoxicology and Environmental Safety, 2020, 206. DOI:10.1016/j.ecoenv.2020.111387
[83] 李思民, 王豪吉, 朱曦, 等. 土壤pH和有机质含量对重金属可利用性的影响[J]. 云南师范大学学报(自然科学版), 2021, 41(1): 49-55.
Li S M, Wang H J, Zhu X, et al. Effects of soil pH and organic matter on the content of bioavailable heavy metals[J]. Journal of Yunnan Normal University (Natual Sciences Edition), 2021, 41(1): 49-55.
[84] 王春香, 徐宸, 许安定, 等. 植烟土壤重金属的有效性及影响因素研究[J]. 农业环境科学学报, 2014, 33(8): 1532-1537.
Wang C X, Xu C, Xu A D, et al. Availability of heavy metals and its influencing factors in tobacco grown soils[J]. Journal of Agro-Environment Science, 2014, 33(8): 1532-1537.
[85] 杨瑞杰, 石良. 重金属在含铁矿物表面上的吸附与解吸附[A]. 见中国矿物岩石地球化学学会第17届学术年会论文摘要集[C]. 贵州: 中国矿物岩石地球化学学会, 2019.
[86] 邵金秋, 温其谦, 阎秀兰, 等. 天然含铁矿物对砷的吸附效果及机制[J]. 环境科学, 2019, 40(9): 4072-4080.
Shao J Q, Wen Q Q, Yan X L, et al. Adsorption and mechanism of arsenic by natural iron-containing minerals[J]. Environmental Science, 2019, 40(9): 4072-4080.
[87] Ma Q, Zhao W F, Guan D X, et al. Comparing CaCl2, EDTA and DGT methods to predict Cd and Ni accumulation in rice grains from contaminated soils[J]. Environmental Pollution, 2020, 260. DOI:10.1016/j.envpol.2020.114042
[88] Feng M H, Shan X Q, Zhang S Z, et al. A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley[J]. Environmental Pollution, 2005, 137(2): 231-240. DOI:10.1016/j.envpol.2005.02.003
[89] 杨洁, 瞿攀, 王金生, 等. 土壤中重金属的生物有效性分析方法及其影响因素综述[J]. 环境污染与防治, 2017, 39(2): 217-223.
Yang J, Qu P, Wang J S, et al. Review on analysis methods of bioavailability of heavy metals in soil and its influence factors[J]. Environmental Pollution & Control, 2017, 39(2): 217-223.
[90] Kumpiene J, Giagnoni L, Marschner B, et al. Assessment of methods for determining bioavailability of trace elements in soils: a review[J]. Pedosphere, 2017, 27(3): 389-406. DOI:10.1016/S1002-0160(17)60337-0
[91] Juhasz A L, Smith E, Weber J, et al. Predicting lead relative bioavailability in peri-urban contaminated soils using in vitro bioaccessibility assays[J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2013, 48(6): 604-611.
[92] Dong Z M, Yan K H, Liu Y J, et al. A meta-analysis to correlate lead bioavailability and bioaccessibility and predict lead bioavailability[J]. Environment International, 2016, 92-93: 139-145. DOI:10.1016/j.envint.2016.04.009
[93] Zhou Y F, Yang Y Y, Liu G H, et al. Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: the roles of water pH, lead ions, natural organic matter and phenanthrene[J]. Water Research, 2020, 184. DOI:10.1016/j.watres.2020.116209
[94] Guo D, Ali A, Ren C Y, et al. EDTA and organic acids assisted phytoextraction of Cd and Zn from a smelter contaminated soil by potherb mustard (Brassica juncea, Coss) and evaluation of its bioindicators[J]. Ecotoxicology and Environmental Safety, 2019, 167: 396-403. DOI:10.1016/j.ecoenv.2018.10.038
[95] Cheraghi-Aliakbari S, Beheshti-Alagha A, Ranjbar F, et al. Comparison of Myagrum perfoliatum and Sophora alopecuroides in phytoremediation of Cd- and Pb-contaminated soils: a chemical and biological investigation[J]. Chemosphere, 2020, 259. DOI:10.1016/j.chemosphere.2020.127450
[96] Xing W Q, Liu H, Banet T, et al. Cadmium, copper, lead and zinc accumulation in wild plant species near a lead smelter[J]. Ecotoxicology and Environmental Safety, 2020, 198. DOI:10.1016/j.ecoenv.2020.110683
[97] Rezapour S, Atashpaz B, Moghaddam S S, et al. Heavy metal bioavailability and accumulation in winter wheat (Triticum aestivum L.) irrigated with treated wastewater in calcareous soils[J]. Science of the Total Environment, 2019, 656: 261-269. DOI:10.1016/j.scitotenv.2018.11.288
[98] Wu J H, Song Q M, Zhou J Y, et al. Cadmium threshold for acidic and multi-metal contaminated soil according to Oryza sativa L. cadmium accumulation: influential factors and prediction model[J]. Ecotoxicology and Environmental Safety, 2021, 208. DOI:10.1016/j.ecoenv.2020.111420
[99] Huang C D, Wang W Y, Yue S Z, et al. Role of biochar and Eisenia fetida on metal bioavailability and biochar effects on earthworm fitness[J]. Environmental Pollution, 2020, 263(Pt A). DOI:10.1016/j.envpol.2020.114586
[100] Jin C W, Zheng S J, He Y F, et al. Lead contamination in tea garden soils and factors affecting its bioavailability[J]. Chemosphere, 2005, 59(8): 1151-1159. DOI:10.1016/j.chemosphere.2004.11.058
[101] Houben D, Evrard L, Sonnet P. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.)[J]. Biomass and Bioenergy, 2013, 57: 196-204. DOI:10.1016/j.biombioe.2013.07.019
[102] Lambrechts T, Couder E, Bernal M P, et al. Assessment of heavy metal bioavailability in contaminated soils from a former mining area (La Union, Spain) using a rhizospheric test[J]. Water, Air, & Soil Pollution, 2011, 217(1-4): 333-346.
[103] Boshoff M, De Jonge M, Scheifler R, et al. Predicting As, Cd, Cu, Pb and Zn levels in grasses (Agrostis sp. and Poa sp.) and stinging nettle (Urtica dioica) applying soil-plant transfer models[J]. Science of the Total Environment, 2014, 493: 862-871. DOI:10.1016/j.scitotenv.2014.06.076
[104] Turull M, Fontàs C, Díez S. Effect of different amendments on trace metal bioavailability in agricultural soils and metal uptake on lettuce evaluated by diffusive gradients in thin films[J]. Environmental Technology & Innovation, 2021, 21. DOI:10.1016/j.eti.2020.101319
[105] Fernández-Ondoño E, Bacchetta G, Lallena A M, et al. Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia[J]. Journal of Geochemical Exploration, 2017, 172: 133-141. DOI:10.1016/j.gexplo.2016.09.013