环境科学  2022, Vol. 43 Issue (6): 3299-3307   PDF    
石灰海泡石钝化后两种轮作模式对重度镉污染农田土壤的利用及修复
许璐1, 周春海1,2, 刘梅3, 孔辉3, 李元1, 黄志红3     
1. 云南农业大学资源与环境学院, 昆明 650201;
2. 山东天弘化学有限公司, 东营 257200;
3. 圣清环保股份有限公司, 昆明 650100
摘要: 为安全利用并修复矿区重度镉污染农田, 使作物达到饲料安全标准, 以不同配比的石灰海泡石作为钝化剂, 钝化后试验两种轮作模式(玉米-紫花苜蓿和玉米-黑麦草), 综合分析比较, 筛选出最佳的钝化剂配比及配套的轮作模式.进行大田试验, 测定土壤理化性质、重金属Cd有效态含量及作物中Cd含量、生物量, 并采用BCR形态分级试验研究土壤钝化前后重金属形态的变化, 综合分析评价其修复效果.结果表明: ①通过石灰海泡石的施加, 能不同程度地提高土壤pH值、有机质和CEC. ②推荐施加量为LS1(石灰6.6 t·hm-2+海泡石9.9 t·hm-2), 相比CK可显著降低玉米根、茎、叶和籽粒中重金属Cd的含量, 分别降低了70.27%、61.54%、46.51%和44.23%.紫花苜蓿地上部Cd显著下降了78.47%, 而黑麦草地上部Cd显著下降了65.79%.玉米季、紫花苜蓿种植区和黑麦草种植区土壤有效态Cd钝化率分别为51.37%、69.58%和77.83%, 土壤中重金属由活性高的弱酸提取态向活性低的残渣态进行转化. ③推荐在施加量为LS1下, 配合玉米-紫花苜蓿的轮作模式, 相比CK, 在略微提高玉米产量的同时可显著提高紫花苜蓿产量, 且可饲用部分均能达到饲料标准[GB 13078-2017, ω(Cd)≤ 1 mg·kg-1], 实现安全种植的同时修复成本最低.
关键词: 镉(Cd)污染      石灰      海泡石      轮作      钝化     
Utilization and Remediation of Heavily Cadmium-Contaminated Agricultural Soils by Two Crop Rotation Patterns After Lime and Sepiolite Passivation
XU Lu1 , ZHOU Chun-hai1,2 , LIU Mei3 , KONG Hui3 , LI Yuan1 , HUANG Zhi-hong3     
1. College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China;
2. Shandong Tianhong Chemical Co., Ltd., Dongying 257200, China;
3. Shengqing Environmental Protection Co., Ltd., Kunming 650100, China
Abstract: In order to safely utilize and remediate the heavily cadmium-contaminated farmland in a mining area and ensure that the crops meet the feed safety standards, two rotation patterns (maize-alfalfa and maize-ryegrass) were tested after passivation with different ratios of lime and sepiolite as passivating agents, and the best ratio of passivating agent and matching crop rotation patterns were selected through comprehensive analysis and comparison. The field test was conducted to determine the physical and chemical properties of the soil, the content of the effective state of the heavy metal Cd, and the content and biomass of Cd in crops. We also studied the changes in heavy metal morphology before and after soil passivation using the BCR morphology classification test and comprehensively analyzed and evaluated its remediation effect. ① The results showed that the soil pH, organic matter, and CEC could be increased to different degrees by the application of lime and sepiolite. ② The recommended application amount of LS1 (lime 6.6 t·hm-2+sepiolite 9.9 t·hm-2) significantly reduced the content of heavy metal Cd in maize roots, stems, leaves, and seeds by 70.27%, 61.54%, 46.51%, and 44.23%, respectively, compared with those of CK. The Cd above ground in alfalfa was significantly reduced by 78.47%, whereas the Cd above ground in ryegrass was significantly reduced by 65.79%. The effective state Cd passivation rate of the soil was 51.37%, 69.58%, and 77.83% in the corn season, alfalfa growing area, and ryegrass growing area, respectively. The heavy metals in the soil were converted from the weak acid extracted state with high activity to the residual state with low activity. ③ The recommended crop rotation pattern of supporting maize-alfalfa under the applied amount of LS1 can significantly increase alfalfa yield while slightly increasing maize yield compared with those of CK, and the forageable parts can meet the feed standard [GB 13078-2017, ω(Cd)≤1 mg·kg-1], achieving safe cultivation with the lowest restoration cost.
Key words: cadmium(Cd)contamination      lime      sepiolite      crop rotation      passivation     

云南省拥有非常丰富的矿产资源, 被称为“有色金属王国”, 但在发展工矿业的同时也带来了很多问题[1].金属矿石的开采、冶炼和加工等活动会导致重金属释放到空气、水和土壤中, 再经食物链进入人体, 威胁当地居民健康[2]. 根据Hu等[3]的研究, 云南当前的土壤镉(Cd)含量与平均Cd背景值的比值为16.92, 属于极高风险地区, 在如此严重的污染下, 如何安全利用并修复土壤值得研究.国内外修复重金属污染土壤的方法主要有化学法、物理法和生物法[4].其中化学钝化法经济便宜, 适用于大面积土壤原位修复, 该技术是向污染土壤中投加钝化材料, 降低重金属在土壤中的迁移率和生物有效性等[5].钝化材料像石灰和海泡石等, 石灰可以提高土壤pH值[6], 促进重金属形成沉淀[7], 海泡石具有较大的孔容和比表面积[8], 通过吸附作用[9]、离子交换[10]和共沉淀[11]等对重金属污染土壤具有良好的钝化效果[12], 并能降低作物对Cd的吸收.轮作可以使不同作物均衡利用土壤养分, 减少病虫害和连作障碍的发生, 利于提高作物产量及品质[13, 14], 生物量高的经济作物轮作可以加快修复土壤Cd污染并获得经济效益[15].玉米在轮作体系中是许多作物的良好前茬[16], 牧草也是轮作种植模式中优选的作物[17].

目前农田原位钝化修复技术集中于单一种植模式下对土壤重金属的固化效果[18], 且农田污染程度相对较轻.对重度污染农田的利用和修复研究较少, 对钝化后不同作物轮作情况的研究也较少, 而将两者结合起来研究的暂未见报道.本试验选取矿区周边Cd重污染农田进行研究, 在施加不同配比的石灰和海泡石后, 采用玉米-紫花苜蓿和玉米-黑麦草这2种轮作模式, 在满足饲料安全标准的前提下, 筛选出作物产量提高最明显的轮作模式, 及其相应钝化剂施加量配比, 以期为Cd重度污染农田土壤如何安全利用与修复提供参考.

1 材料与方法 1.1 试验地点与材料

本试验地点为云南省某矿区周边玉米农田, 矿区全年露天开采, 开采矿种主要为铅锌矿.经过前期试验发现, 该区域所种玉米可食用部分Cd和Pb的确超过食品安全国家标准[GB 2762-2017, ω(Cd)≤0.1 mg·kg-1, ω(Pb)≤0.2mg·kg-1], 但如果作为饲料, 仅Cd超过饲料标准, 而Pb不超标[GB 13078-2017, ω(Cd)≤1 mg·kg-1, ω(Pb)≤30 mg·kg-1], 故主要针对Cd进行研究.试验地土壤类型为砖红土, 具体养分含量为: ω(速效磷) 0.25 g·kg-1, ω(速效钾) 0.12 g·kg-1, ω(碱解氮) 0.36 g·kg-1ω(有机质) 38.20 g·kg-1.所用石灰和海泡石购自湖南湘潭海泡石有限公司.供试土壤及钝化剂的pH和重金属含量见表 1.

表 1 供试土壤与钝化剂的pH值和重金属含量1) Table 1 pH value and heavy metal content of tested soil and passivation agent

1.2 试验方法

本试验采用玉米(Zea mays), 品种为“宣会7号”, 作为青贮玉米; 黑麦草(Lolium perenne)及紫花苜蓿(Medicago sativa)种子购买于当地种子店.

大田试验开展6个处理, 除CK外其他不同处理的钝化剂配比及施加量基于前期盆栽试验结果确定, 见表 2.考虑到有两种轮作模式, 每个处理6个重复, 共计36个小区.每个小区面积15 m2, 小区间隔1 m, 中间设田埂, 小区四周设排水沟便于雨季排水.钝化剂施用时用大型机械将其与土壤充分混匀, 耕作深度20 cm.钝化10 d后种植玉米, 采用宽窄行种植, 株距30 cm, 行距60 cm, 生长期间根据情况进行杀虫、除草、排水和追肥.于玉米成熟期采取土样与植物样, 此时每种处理下有6个玉米小区, 将2个相邻小区视为1个大区, 五点取样法, 每个大区采取5株玉米, 收集玉米根际土壤, 土样风干后混匀, 过2 mm尼龙筛, 装袋保存、备用; 每株玉米分为根、茎、叶和籽粒这4个部分, 去离子水清洗, 105℃烘箱内杀青30 min, 然后在75℃烘干至恒重, 用不锈钢粉碎机粉碎, 过0.5 mm尼龙筛, 装袋保存、备用.

表 2 钝化剂施用量 Table 2 Application amount of passivating agent

玉米收获完成后进行精细整地, 分区种植黑麦草和紫花苜蓿.彻底清除杂草, 深耕、耙平, 采用条播, 行距20 cm, 生长期间管理同玉米种植.于牧草成熟期采取土样与植物样, 五点取样法, 每个小区采取5堆牧草, 收集牧草根际土壤, 土样风干后混匀, 过2 mm尼龙筛, 装袋保存、备用; 每株牧草分解地上、地下两部分, 用自来水和去离子水清洗干净, 放入105℃烘箱内杀青30 min, 然后在75℃烘干至恒重, 再用不锈钢粉碎机粉碎, 过0.5 mm尼龙筛, 装袋保存、备用.

1.3 样品分析与数据统计

土壤基本理化性质按照土壤农化常规分析方法测定[19].土壤重金属全量采用王水-高氯酸消解[20], 土壤有效态重金属采用DTPA提取剂提取[21], 形态分级试验则参照欧共体标准测量与检测局提出的BCR法进行[22], 植物重金属含量采用硝酸-过氧化氢, 于压力消解罐中消解.土壤重金属含量和DTPA提取态含量利用火焰原子吸收分光光度计(Thermo ICE 3000 SERIES)进行测定, 植物重金属含量及土壤中弱酸提取态重金属含量利用石墨炉原子吸收分光光度计(Thermo ICE 3000 SERIES)进行测定, 采用国家标准物质(土壤: GBW07407, 植物: GBW10012)进行质量控制, 土壤样品和植物样品回收率分别为95% ~103%和92% ~102%.重金属钝化效率按下式计算[23]:

式中, Ce为污染土壤钝化后单一金属元素浸出含量, mg·kg-1; Ci为未处理污染土壤单一金属元素浸出含量, mg·kg-1.

本研究数据采用Microsoft Excel软件进行编辑和整理, 采用SPSS 23.0软件对数据进行单因素方差分析(One-way ANOVA)和差异显著性检验(P<0.05), Origin软件绘图.图表中的数据用3个重复的均值±标准差表示.

采用动态加权综合评估法[24, 25]对各处理结果进行综合评价, 从土壤pH值、作物可饲用部分Cd含量、土壤有效态Cd含量、作物地上部产量和修复药剂成本这5个方面进行考量, 按评估指标的特性进行一致化和标准化处理, 根据指标和权重值的变化确定权函数为偏大型正态分布, 即

(1)

式中, Wi(x)为每个指标对应的权函数, xi为第i个评估指标的取值, αixi的Ⅰ类中间值; σiWi(α3i)=0.9(i=1, 2, 3, 4)确定, α3i为第i个评估指标第3区间值[α3, b3).再根据标准化的评估指标值xi及相对应的动态权函数Wi(x)建立综合评价模型, 评价结果X为各指标的动态加权和, 即:

(2)
2 结果与讨论 2.1 施用石灰海泡石对不同作物土壤理化性质的影响

石灰和海泡石复配可显著提高土壤pH值[26, 27], 由图 1图 2可看出, 在不同处理下玉米季土壤pH值相比CK(6.58)均显著提高0.43~0.63个pH值单位, 牧草季紫花苜蓿区土壤pH相比CK(6.80)均显著提高0.46~1.34个pH值单位, 黑麦草区土壤pH相比CK(6.72)均显著提高0.53~1.57个pH值单位.随着钝化剂施加量的增加pH值不断提高, 均在LS5处理下提高至最大, 但不同处理间无显著差异.土壤有机质、CEC(阳离子交换量)是衡量土壤肥力的重要指标[28, 29], 在玉米季所有处理均能提升土壤有机质, 相比CK提高了57.57% ~241.10%, 牧草季黑麦草区情况与之大致相同.而在牧草季紫花苜蓿区LS5处理下土壤有机质相比CK反倒有所下降, 可能是在该施加量下更利于土壤微生物活动, 加速含碳有机物转化, 促进有机质分解[30].在各处理下, 玉米季土壤CEC相比CK分别显著提升3.03% ~21.14%, 到了牧草季除黑麦草区的LS3外, 其他处理土壤CEC仍有所提高, 但相比CK已经没有了显著性, 说明此时土壤CEC已趋于稳定.

不同字母表示处理间差异显著(P<0.05), 下同 图 1 玉米季不同处理下土壤pH值、有机质和CEC的变化情况 Fig. 1 Changes in soil pH, organic matter, and CEC under different treatments in the maize season

图 2 牧草季不同处理下土壤pH值、有机质和CEC的变化情况 Fig. 2 Changes in soil pH, organic matter, and CEC under different treatments in the forage season

2.2 施用石灰海泡石对不同作物土壤Cd赋存形态及有效态含量的影响

图 3图 4可知, 在施加复合钝化剂后, 与CK相比, 玉米季土壤有效态重金属Cd的含量均显著降低了51.36% ~72.82%, 随着钝化剂施加量的增加不断降低, 在LS5时达到最低.牧草季紫花苜蓿区土壤有效态Cd含量相比CK均显著降低65.64% ~95.06%, 黑麦草区土壤有效态Cd含量相比CK均显著降低61.73% ~93.01%, 两个区域均在LS5的处理下达到了最佳的钝化效果.玉米季土壤经钝化处理后, 不同形态的Cd含量发生了显著变化.弱酸提取态的Cd降低了43.58% ~89.51%, 可还原态的Cd降低了56.79% ~88.20%, 而残渣态的Cd含量上升了112.46% ~192.16%, 可氧化态Cd无明显变化.LS5处理修复效果最佳, 其他处理效果排序为: LS1>LS4>LS2>LS3.牧草季两种牧草种植区通过复合钝化剂的修复, 紫花苜蓿区土壤中弱酸提取态的Cd含量显著降低70.22% ~88.74%, 而残渣态的Cd含量上升了37.39% ~51.37%, LS5处理修复效果最佳, 其他处理效果排序为: LS1>LS2>LS4>LS3.黑麦草区土壤弱酸提取态的Cd降低了73.53% ~84.66%, 残渣态的Cd含量上升了29.25% ~43.49%, LS1处理修复效果最佳, 其他处理效果排序为: LS5>LS2>LS4>LS3.施加石灰后土壤pH值升高, 增加了黏土矿物和有机质表面的负电荷, 提高了土壤胶体对重金属离子的吸附能力, 促进重金属离子与CO32-或OH-反应形成沉淀[31], 降低土壤中Cd的活性.海泡石具有较大比表面积和特殊的孔结构, 可对重金属进行稳定的内层吸附或非稳定的外层络合物理吸附, 并随着pH值的增加, 海泡石表现出同晶置换和表面络合作用的并存, 增强海泡石对重金属的吸附钝化[32]. Zhou等[33]的研究表明, 石灰和海泡石复合钝化剂作用于土壤后, CEC增加, 高活性重金属可交换态含量显著降低, 本研究的结果与前人的一致[34].

图 3 玉米季不同处理对土壤Cd赋存形态及有效态含量的影响 Fig. 3 Effects of different treatments in maize season on the occurrence form and available content of Cd in soil

(a)紫花苜蓿, (b)黑麦草 图 4 牧草季不同处理对土壤Cd赋存形态及有效态含量的影响 Fig. 4 Effects of different treatments in forage season on the occurrence form and available content of Cd in soil

2.3 施用石灰海泡石对作物地上部生物量及各部位Cd含量的影响

所种玉米作为青贮饲料, 就是将包括果穗在内的地上部植株作为原料[35, 36].由图 5图 6可知, 相比CK, 复合钝化剂修复后的玉米植株地上部生物量虽有变化, 但均未达到显著性, 其中LS1、LS2和LS3处理下的玉米植株生物量有所升高, LS4和LS5处理下玉米生物量开始减少, 可能是在这种大用量下土壤团粒结构遭到破坏, 土壤微生物活性受到影响, 导致了减产[37].牧草季紫花苜蓿在LS1处理下, 植株地上部生物量显著升高, 其次为LS5处理, 其余处理虽有变化但未达到显著性.而黑麦草只在LS4处理下其地上部生物量显著升高.本试验中, 玉米及牧草的生物量在LS1、LS2和LS3处理下均未降低甚至有显著增加, 一方面可能是因为在该石灰海泡石用量下有利于土壤形成团粒结构, 使土壤疏松, 有吸水保肥作用, 利于植物生长[38].一方面可能是作物轮作提高了用地与养地效率, 利于提高作物产量[39].

图 5 玉米地上部生物量 Fig. 5 Upper biomass of maize

图 6 牧草地上部生物量 Fig. 6 Upper biomass of forage

表 3可看出, 通过复合钝化剂的施加, 不同处理下玉米植株的根、茎、叶和籽粒中Cd含量均降低, 根下降47.49% ~85.32%, 茎下降47.55% ~61.54%, 叶下降13.95% ~69.77%, 籽粒下降21.15% ~67.31%.综合玉米地上部的茎、叶和籽粒来看, 经处理后其Cd含量均达到了我国饲料标准要求[GB 13078-2017, ω(Cd)≤1 mg·kg-1], 这或许是石灰海泡石中的Ca2+对Cd离子存在一定的拮抗作用参与竞争植物根系上的吸收位点, 从而抑制植物对Cd的吸收[40], 减小了对农作物的毒害作用, 提高了农作物的安全性[41].由表 4可看出, 牧草季紫花苜蓿地上部Cd含量在各处理下显著降低21.52% ~78.47%, 而黑麦草地上部Cd含量在各处理下降低14.91% ~65.79%, 对地上部Cd含量而言两种牧草均在LS1处理下降幅最大.在所有处理中, 仅LS3处理下的紫花苜蓿地上部Cd含量超标, 从富集系数来看, LS3处理下玉米、紫花苜蓿及黑麦草的富集系数都是仅次于对照处理的, 可能是在该用量下作物更易富集Cd.

表 3 不同处理对玉米不同部位Cd含量的影响1) Table 3 Effect of different treatments on Cd content in different parts of maize

表 4 不同处理对牧草不同部位Cd含量的影响 Table 4 Effects of different treatments on Cd content in different parts of forage

2.4 综合分析

根据饲料卫生标准(GB 13078-2017), 参考相关研究并结合本试验情况将各指标等级进行分类, 见表 5, 石灰价格按400元·t-1计算, 海泡石价格按800元·t-1计算, 产量按鲜重计算[42], 紫花苜蓿适宜pH为7~8[43], 黑麦草适宜pH为6~7[44, 45], 根据公式(1)计算出相应的ασ值.结合公式(1)和公式(2)得表 6的各函数计算值, 数值越小说明评价效果越好, X1为玉米相关指标数与紫花苜蓿指标数相加, X2为玉米指标数与黑麦草指标数相加.可以看出LS1处理下的两种轮作模式均优于其他处理, 在调节土壤pH值、降低修复成本、提高作物地上部生物量和降低作物可饲用部分Cd含量方面具有较大优势.结合前面的试验结果, LS1处理后可以显著提高紫花苜蓿地上部生物量至最大, 优于同期的黑麦草, 且种植苜蓿的收益会高于黑麦草[46], 故推荐配合玉米-紫花苜蓿轮作模式.

表 5 处理效果评估指标分级 Table 5 Treatment effect assessment index grading

表 6 综合评价指标函数计算值 Table 6 Calculated value of comprehensive evaluation index function

3 结论

(1) 通过石灰海泡石的施加, 能不同程度地提高土壤pH值、有机质和CEC, 降低土壤有效态Cd, 使土壤中重金属由活性高的弱酸提取态向活性低的残渣态进行转化.

(2) 通过综合评价分析, 推荐大田施加量为LS1(石灰6.6 t·hm-2+海泡石9.9 t·hm-2).

(3) 推荐在施加量为LS1下, 配合玉米-紫花苜蓿的轮作模式, 在略微提高玉米产量的同时能显著提高紫花苜蓿产量, 且可饲用部分均能达到饲料标准, 实现安全种植的同时修复成本最低.

参考文献
[1] Wang Y R, Wang R M, Fan L Y, et al. Assessment of multiple exposure to chemical elements and health risks among residents near Huodehong lead-zinc mining area in Yunnan, Southwest China[J]. Chemosphere, 2017, 174: 613-627. DOI:10.1016/j.chemosphere.2017.01.055
[2] Cheng X F, Danek T, Drozdova J, et al. Soil heavy metal pollution and risk assessment associated with the Zn-Pb mining region in Yunnan, Southwest China[J]. Environmental Monitoring and Assessment, 2018, 190(4). DOI:10.1007/s10661-018-6574-x
[3] Hu B F, Shao S, Ni H, et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level[J]. Environmental Pollution, 2020, 266. DOI:10.1016/j.envpol.2020.114961
[4] Liu L W, Li W, Song W P, et al. Remediation techniques for heavy metal-contaminated soils: principles and applicability[J]. Science of the Total Environment, 2018, 633: 206-219. DOI:10.1016/j.scitotenv.2018.03.161
[5] Li C F, Zhou K H, Qin W Q, et al. A review on heavy metals contamination in soil: effects, sources, and remediation techniques[J]. Soil and Sediment Contamination: an International Journal, 2019, 28(4): 380-394. DOI:10.1080/15320383.2019.1592108
[6] 李光辉, 成晴, 陈宏. 石灰配施有机物料修复酸性Cd污染稻田[J]. 环境科学, 2021, 42(2): 925-931.
Li G H, Cheng Q, Chen H. Remediation of Cd contaminated acidic rice fields using the combined application of lime and organic matter[J]. Environmental Science, 2021, 42(2): 925-931.
[7] 田雪, 周文君, 张正蕊, 等. 不同时间下钝化剂对污染土壤中Cd和Pb的钝化效果[J]. 生态与农村环境学报, 2019, 35(4): 522-528.
Tian X, Zhou W J, Zhang Z R, et al. Deactivation effects of deactivators on cadmium and plumbum polluted soil at different times[J]. Journal of Ecology and Rural Environment, 2019, 35(4): 522-528.
[8] 周嗣江, 刘针延, 熊双莲, 等. 同步钝化土壤Cd和As材料的筛选[J]. 环境科学, 2021, 42(7): 3527-3534.
Zhou S J, Liu Z Y, Xiong S L, et al. Screening of amendments for simultaneous Cd and As immobilization in soil[J]. Environmental Science, 2021, 42(7): 3527-3534.
[9] Xie S, Wang L, Xu Y M, et al. Performance and mechanisms of immobilization remediation for Cd contaminated water and soil by hydroxy ferric combined acid-base modified sepiolite (HyFe/ABsep)[J]. Science of the Total Environment, 2020, 740. DOI:10.1016/j.scitotenv.2020.140009
[10] Song N, Hursthouse A, McLellan I, et al. Treatment of environmental contamination using sepiolite: current approaches and future potential[J]. Environmental Geochemistry and Health, 2021, 43(7): 2679-2697. DOI:10.1007/s10653-020-00705-0
[11] Bashir S, Ali U, Shaaban M, et al. Role of sepiolite for cadmium (Cd) polluted soil restoration and spinach growth in wastewater irrigated agricultural soil[J]. Journal of Environmental Management, 2020, 258. DOI:10.1016/j.jenvman.2019.110020
[12] 王玉婷, 王紫玥, 刘田田, 等. 钝化剂对镉污染土壤修复效果及青菜生理效应影响[J]. 环境化学, 2020, 39(9): 2395-2403.
Wang Y T, Wang Z Y, Liu T T, et al. Effects of amendments on remediation of cadmium-contaminated soil and physiological characteristics of pakchoi[J]. Environmental Chemistry, 2020, 39(9): 2395-2403.
[13] 陈华, 赵文军, 王正旭, 等. 不同轮作模式下氮素调控对烤烟产质量及氮肥利用的影响[J]. 河南农业科学, 2021, 50(9): 87-95.
Chen H, Zhao W J, Wang Z X, et al. Effects of nitrogen management on yield, quality and nitrogen utilization of flue -cured tobacco under different rotation patterns[J]. Journal of Henan Agricultural Sciences, 2021, 50(9): 87-95.
[14] 孙倩, 吴宏亮, 陈阜, 等. 不同轮作模式下作物根际土壤养分及真菌群落组成特征[J]. 环境科学, 2020, 41(10): 4682-4689.
Sun Q, Wu H L, Chen F, et al. Characteristics of soil nutrients and fungal community composition in crop rhizosphere under different rotation patterns[J]. Environmental Science, 2020, 41(10): 4682-4689.
[15] 涂鹏飞, 谭可夫, 陈璘涵, 等. 红叶甜菜-花生和油葵-花生轮作修复土壤Cd的能力[J]. 农业资源与环境学报, 2020, 37(4): 609-614.
Tu P F, Tan K F, Chen L H, et al. Ability of red leaf beet-peanut and oil sunflower-peanut rotation patterns to remediate soil Cd[J]. Journal of Agricultural Resources and Environment, 2020, 37(4): 609-614.
[16] 范琳娟, 刘奇志, 王合, 等. 玉米-苹果轮作体系对苹果根际土壤酶活性和pH值的影响[J]. 浙江农业学报, 2017, 29(12): 2084-2090.
Fan L J, Liu Q Z, Wang H, et al. Effects of corn-apple rotation on enzyme activity and pH value in rhizosphere soil of apple trees[J]. Acta Agriculturae Zhejiangensis, 2017, 29(12): 2084-2090. DOI:10.3969/j.issn.1004-1524.2017.12.17
[17] 谭玉兰, 曾庆飞, 韦兴迪, 等. 不同牧草品种与烤烟轮作对植烟土壤养分及物理性状的影响[J]. 江苏农业科学, 2019, 47(19): 275-279.
Tan Y L, Zeng Q F, Wei X D, et al. Effects of different forage varieties and tobacco rotation on tobacco planting soil nutrients and physical properties[J]. Jiangsu Agricultural Sciences, 2019, 47(19): 275-279.
[18] 徐浩然, 肖广全, 陈玉成, 等. 水旱轮作原位钝化削减技术修复土壤镉污染[J]. 环境工程学报, 2020, 14(3): 789-797.
Xu H R, Xiao G Q, Chen Y C, et al. Remediation of cadmium pollution in soil by in-situ passivation reduction technology of water and drought rotation[J]. Chinese Journal of Environmental Engineering, 2020, 14(3): 789-797.
[19] 鲍士旦. 土壤农化分析[M]. (第三版). 北京: 中国农业出版社, 2000.
[20] 苏焕珍, 刘文胜, 郑丽, 等. 兰坪铅锌矿区不同污染梯度下优势植物的重金属累积特征[J]. 环境工程学报, 2014, 8(11): 5027-5034.
Su H Z, Liu W S, Zheng L, et al. Accumulation characteristics of heavy metals in dominant plant species growing on Lanping lead/zinc mining wasteland with different pollution gradients[J]. Chinese Journal of Environmental Engineering, 2014, 8(11): 5027-5034.
[21] 周鸿斌, 角媛梅, 史正涛, 等. 云南沘江沿岸农田土壤磁测分析与重金属污染评价[J]. 农业环境科学学报, 2008, 27(4): 1586-1591.
Zhou H B, Jiao Y M, Shi Z T, et al. Magnetic analysis and assessment on heavy metal contamination in the farmland soil along Bijiang River in Yunnan Province[J]. Journal of Agro-Environment Science, 2008, 27(4): 1586-1591. DOI:10.3321/j.issn:1672-2043.2008.04.054
[22] Quevauviller P, Rauret G, Muntau H, et al. Evaluation of a sequential extraction procedure for the determination of extractable trace metal contents in sediments[J]. Fresenius' Journal of Analytical Chemistry, 1994, 349(12): 808-814. DOI:10.1007/BF00323110
[23] 袁兴超, 李博, 朱仁凤, 等. 不同钝化剂对铅锌矿区周边农田镉铅污染钝化修复研究[J]. 农业环境科学学报, 2019, 38(4): 807-817.
Yuan X C, Li B, Zhu R F, et al. Immobilization of Cd and Pb using different amendments of cultivated soils around lead-zinc mines[J]. Journal of Agro-Environment Science, 2019, 38(4): 807-817.
[24] 何赢, 杜平, 石静, 等. 土壤重金属钝化效果评估——基于大田试验的研究[J]. 农业环境科学学报, 2020, 39(8): 1734-1740.
He Y, Du P, Shi J, et al. Evaluation of the effect of heavy metal immobilization remediation-field experiment study[J]. Journal of Agro-Environment Science, 2020, 39(8): 1734-1740.
[25] 庞发虎, 吴雪姣, 孔雪菲, 等. 重金属钝化剂阻控生菜Cd吸收的功能稳定性和适用性[J]. 环境科学, 2021, 42(5): 2502-2511.
Pang F H, Wu X J, Kong X F, et al. Functional stability and applicability of heavy metal passivators in reducing Cd uptake by lettuce[J]. Environmental Science, 2021, 42(5): 2502-2511.
[26] 汪毅, 王华静, 郑沈, 等. 3种钝化剂及其组合对小白菜镉铅含量的影响[J]. 环境科学与技术, 2020, 43(12): 151-158.
Wang Y, Wang H J, Zheng S, et al. Effects of different soil amendments on the uptake and accumulation of cadmium and lead in pakchoi (Brassica chinensis)[J]. Environmental Science & Technology, 2020, 43(12): 151-158.
[27] 沈章军, 侯万青, 徐德聪, 等. 不同钝化剂对重金属在土壤-油菜中迁移的影响[J]. 农业环境科学学报, 2020, 39(12): 2779-2788.
Shen Z J, Hou W Q, Xu D C, et al. Effects of different immobilization materials on heavy metal migration in contaminated soil-rape[J]. Journal of Agro-Environment Science, 2020, 39(12): 2779-2788. DOI:10.11654/jaes.2020-0397
[28] 白志强, 张世熔, 钟钦梅, 等. 四川盆地西缘土壤阳离子交换量的特征及影响因素[J]. 土壤, 2020, 52(3): 581-587.
Bai Z Q, Zhang S R, Zhong Q M, et al. Characteristics and impact factors of soil cation exchange capacity (CEC) in western margin of Sichuan Basin[J]. Soils, 2020, 52(3): 581-587.
[29] 王仪明, 雷艳芳, 魏臻武, 等. 不同轮作模式对青贮玉米产量、品质及土壤肥力的影响[J]. 核农学报, 2017, 31(9): 1803-1810.
Wang Y M, Lei Y F, Wei Z W, et al. Effects of different rotation modes on yield, quality of silage Corn, and soil fertility[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(9): 1803-1810.
[30] 闫家普, 丁效东, 崔良, 等. 不同改良剂及其组合对土壤镉形态和理化性质的影响[J]. 农业环境科学学报, 2018, 37(9): 1842-1849.
Yan J P, Ding X D, Cui L, et al. Effects of several modifiers and their combined application on cadmium forms and physicochemical proper-ties of soil[J]. Journal of Agro-Environment Science, 2018, 37(9): 1842-1849.
[31] 蔡如梦, 石林. 矿物-有机质复合调理剂对Pb污染土壤的改良效果[J]. 农业环境科学学报, 2017, 36(12): 2438-2444.
Cai R M, Shi L. Amelioration effects of mineral-organic compound conditioner on Pb-contaminated soil[J]. Journal of Agro-Environment Science, 2017, 36(12): 2438-2444. DOI:10.11654/jaes.2017-0887
[32] 陈远其, 张煜, 陈国梁. 石灰对土壤重金属污染修复研究进展[J]. 生态环境学报, 2016, 25(8): 1419-1424.
Chen Y Q, Zhang Y, Chen G L. Remediation of heavy metal contaminated soils by lime: a review[J]. Ecology and Environmental Sciences, 2016, 25(8): 1419-1424.
[33] Zhou H, Zhou X, Zeng M, et al. Effects of combined amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil[J]. Ecotoxicology and Environmental Safety, 2014, 101: 226-232. DOI:10.1016/j.ecoenv.2014.01.001
[34] 周歆, 周航, 曾敏, 等. 石灰石和海泡石组配对水稻糙米重金属积累的影响[J]. 土壤学报, 2014, 51(3): 555-563.
Zhou X, Zhou H, Zeng M, et al. Effects of combined amendment (Limestone+Sepiolite)on heavy metal accumulation in brown rice[J]. Acta Pedologica Sinica, 2014, 51(3): 555-563.
[35] NY/T 2696-2015, 饲草青贮技术规程玉米[S].
NY/T 2696-2015, Code of practice for ensiling forage-Corn (Zea mays)[S].
[36] 唐德富, 陈志刚, 李飞, 等. 青贮玉米不同部位(组织)养分含量近红外预测模型的构建[J]. 草业科学, 2021, 38(9): 1753-1761.
Tang D F, Chen Z G, Li F, et al. Construction of a near-infrared prediction model for nutrient content in different parts (tissues) of corn silage[J]. Pratacultural Science, 2021, 38(9): 1753-1761.
[37] 鄢德梅, 郭朝晖, 黄凤莲, 等. 钙镁磷肥对石灰、海泡石组配修复镉污染稻田土壤的影响[J]. 环境科学, 2020, 41(3): 1491-1497.
Yan D M, Guo Z H, Huang F L, et al. Effect of calcium magnesium phosphate on remediation paddy soil contaminated with cadmium using lime and sepiolite[J]. Environmental Science, 2020, 41(3): 1491-1497.
[38] 曾秀君, 程坤, 黄学平, 等. 石灰、腐植酸单施及复配对污染土壤铅镉生物有效性的影响[J]. 生态与农村环境学报, 2020, 36(1): 121-128.
Zeng X J, Cheng K, Huang X P, et al. Effect of single and multiple application of lime and humic acid on the bioavailability of lead and cadmium in contaminated soil[J]. Journal of Ecology and Rural Environment, 2020, 36(1): 121-128.
[39] 杨佳节, 游少鸿, 吴佳玲, 等. 间套轮作超积累植物技术模式修复Cd污染土壤的研究进展[J]. 农业环境科学学报, 2020, 39(10): 2122-2133.
Yang J J, You S H, Wu J L, et al. Research progress of intercropping, interplanting, and crop rotation models on remediationof cadmium contaminated soil by hyperaccumulators[J]. Journal of Agro-Environment Science, 2020, 39(10): 2122-2133. DOI:10.11654/jaes.2020-0568
[40] 李涛, 李光照, 梅馨月, 等. 镉-钙交互作用对植物的生态学效应[J]. 中国农学通报, 2017, 33(32): 77-80.
Li T, Li G Z, Mei X Y, et al. The interaction of cadmium and calcium and its ecological effects on plants[J]. Chinese Agricultural Science Bulletin, 2017, 33(32): 77-80. DOI:10.11924/j.issn.1000-6850.casb17070035
[41] Lahori A H, Zhang Z Q, Guo Z Y, et al. Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils[J]. Ecotoxicology and Environmental Safety, 2017, 145: 313-323. DOI:10.1016/j.ecoenv.2017.07.049
[42] 魏志标, 柏兆海, 马林, 等. 中国苜蓿、黑麦草和燕麦草产量差及影响因素[J]. 中国农业科学, 2018, 51(3): 507-522.
Wei Z B, Bai Z H, Ma L, et al. Yield gap of alfalfa, ryegrass and oat grass and their Influence factors in China[J]. Scientia Agricultura Sinica, 2018, 51(3): 507-522.
[43] 徐丽君, 徐大伟, 逄焕成, 等. 中国苜蓿属植物适宜性区划[J]. 草业科学, 2017, 34(11): 2347-2358.
Xu L J, Xu D W, Pang H C, et al. Chinese alfalfa habitat suitability regionalization[J]. Pratacultural Science, 2017, 34(11): 2347-2358. DOI:10.11829/j.issn.1001-0629.2016-0551
[44] 陈腾达, 赵晓登, 李玉帅, 等. 多花黑麦草营养品质及在动物饲养方面的研究进展[J]. 饲料研究, 2020, 43(10): 146-149.
Chen T D, Zhao X D, Li Y S, et al. Research progress of nutritional quality and animal feeding of Lolium multiflorum[J]. Feed Research, 2020, 43(10): 146-149.
[45] 陈娜红, 李国亮, 蔡雪娇, 等. 酸碱胁迫对黑麦草种子萌发和幼苗生长的影响[J]. 浙江农业科学, 2019, 60(12): 2191-2193.
Chen N H, Li G L, Cai X J, et al. Effects of acid-base stresses on seed germination and seedling growth of ryegrass[J]. Journal of Zhejiang Agricultural Sciences, 2019, 60(12): 2191-2193.
[46] 石自忠, 王明利, 胡向东, 等. 我国牧草种植成本收益变化与比较[J]. 草业科学, 2017, 34(4): 902-911.
Shi Z Z, Wang M L, Hu X D, et al. Variation and comparison of forages' cost-benefits in China[J]. Pratacultural Science, 2017, 34(4): 902-911.