城市河流是城市生态系统的重要组成部分, 在生态调节、涵养水源和防洪防涝等方面起到了重要作用, 其水质状况的变化对其景观价值和生态价值有重要影响[1].在点源污染得以有效控制的情况下, 面源污染对城市水体环境的威胁日益严重[2, 3], 面源污染具有分布范围广、监测难度大和隐秘性强等特点, 对其进行预测和防治难度极大[4].作为城市面源污染的接纳者, 城市河流的水质状况会受到周边区域土地利用类型和人类活动的显著影响, 不同区域间呈现出较大的差异性[5~7].水环境中的溶解性有机质(dissolved organic matter, DOM)是由成千上万种芳香族和脂肪族化合物组成的复杂异质体, 具有高反应性和强迁移性[8, 9].水体中的DOM为微生物提供必需的营养和能量, 在生物地球化学循环和全球碳循环中起着重要作用[10], 其含量和构成在时空分布上有很大差异, 对水体生态环境状况具有很好的指示作用[11, 12].在面源输入影响下, 为了对城市水生生态系统进行更好的健康评估和管理, 了解DOM来源、迁移和转化特征至关重要[13].
基于光谱学的水质监测、评价和管理是一种很有前景的策略[14], 紫外-可见吸收光谱(UV-vis)常用来分析和表征DOM的组成和结构特征[15], 三维荧光激发-发射光谱(excitation-emission matrix spectroscopy, EEMs)以其快速和高灵敏度等特性, 已被广泛用于探测DOM的化学成分和生物地球化学循环过程[16~19].平行因子法(parallel factor analysis, PARAFAC)基于数学三线性模型将环境复杂物质分解为有化学意义的组分[20], 被称之为“数字色谱”, 已成为处理EEMs数据最常用的算法, 并且在区分和表征DOM指标方面显示出优于寻峰法和区域积分法的能力[21, 22].
本文选取了两条面源输入强度不同的城市河流春夏两季水体作为研究对象, 运用UV-vis和三维荧光光谱结合平行因子法(EEMs-PARAFAC)探究水体DOM含量和结构变化与水质参数间相互作用关系, 有助于揭示在不同季节不同面源污染状况下城市河流水质变化情况及DOM来源和归趋, 对城市河流水质预测、面源污染防治和生态修复具有指导意义.
1 材料与方法 1.1 样品采集与处理 1.1.1 研究区概况研究区位于安徽省淮南市田家庵区(117°00′30″~117°01′30″E, 32°33′05″~32°33′35″N).如图 1所示, 涧沟发源于姚皋水库, 流经城市居民区、开发区、待开发裸地和林地, 水体易受周边陆地面源影响, 由北进入研究区与百川河交汇后流出研究区.百川河为城市景观河流, 水体补充来自于周边地表径流, 并设有多级堤坝维持水面高度, 由西至东海拔逐渐降低.百川河周边植被覆盖茂盛无裸露土地, 流域内存在大面积建筑物和道路等土地硬化区域, 且作为景观水体, 水域内生长着菖蒲和荷花等水生植物.
![]() |
图 1 河流采样区域与点位布设示意 Fig. 1 Distribution of study area and sampling sites |
研究区与采样点地理信息如图 1所示, 采样点S1~S6位于百川河, S7~S10位于涧沟.春季采样时间为2021年3月5日, 夏季采样时间为2021年7月1日.每个点位使用有机玻璃采水器采集3次水样混合均匀, 放入棕色玻璃瓶内4℃避光保存, 共采集38份水样, 3 d内测定所有指标.采样时目视估计水生植物的水面覆盖率(Cover), 数据以百分数(%)记录.
1.2 样品测定与分析方法 1.2.1 水质参数测定温度(T)、电导率(EC)和总溶解性固体(TDS)使用EC300便携式电导率仪(YSI, 美国)测定; 溶解氧(DO)使用ProODO光学溶解氧仪(YSI, 美国)测定; 浊度(TUR)使用便携式浊度仪测定(HANNA, 意大利); pH使用PhSJ-4F pH计(雷磁, 上海)测定.总氮(TN)采用碱性过硫酸钾消解紫外分光光度法测定; 总磷(TP)采用过硫酸钾消解钼酸铵分光光度法测定; 氨氮(NH4+-N)采用纳氏试剂分光光度法测定; 化学需氧量(COD)采用重铬酸盐法测定.另取500 mL水样使用0.45 μm玻璃纤维滤膜(马弗炉400℃灼烧4 h)过滤后测定EEMs、UV-vis和溶解性有机碳(DOC)(TOC-VCPH, Shimadzu, 日本), 滤膜经过-20℃反复冻融-丙酮浸提后利用分光光度法测定叶绿素a(Chla)含量[23].
1.2.2 光谱分析光谱测定过程中样品全程避光, 测定前使样品温度恢复至室温.
使用N5000PLUS紫外-可见分光光度计(YOKE, 上海)测定水样200~800 nm波段的吸光度.使用1 cm光程石英比色皿, 以超纯水作为空白参比, 扫描间隔为1 nm, 并用680~800 nm波段进行光谱校正, UV-vis参数SUVA254和SR的计算方法见文献[24].
水样EEMs数据使用F4600荧光光谱分析仪(HITACHI, 日本)测定.基本参数: 光源为150 W无臭氧氙气光源; 光电倍增电压(PMT)设置为700 V; 激发和发射狭缝宽度均设置为5 nm; 激发波长(Ex)范围: 200~500 nm, 发射波长(Em)范围: 200~550 nm, 扫描间隔均为5 nm; 扫描速度为1 200 nm·min-1; 采用1 cm光程四通石英比色皿测定, 同时测定超纯水EEMs数据.使用R(4.0.5)中“staRdom”(1.1.21)包进行纯水空白校正、光谱校正、内滤效应校正、散射切除、插值平滑、拉曼归一化、PARAFAC模型建立、异常值剔除、残差分析、拆半检验和Tucker's congruence coefficient(TCC)检验[25, 26].荧光指数(fluorescence index, FI)、腐殖化指数(humification index, HIX)、新鲜度指数(freshness index, β∶α)和自生源指数(biological index, BIX)这4种荧光参数计算方法见文献[27~29].
1.3 数据分析方法使用R(4.0.5)进行统计学分析(以P < 0.05, P < 0.01, P < 0.001表示在不同统计学水平上存在显著性差异).利用R中“agricolae”(1.3-5)包进行单因素方差分析(ANOVA)和LSD事后检验; “factoextra”(1.0.7)包和“FactoMineR”(2.4)包进行主成分分析(PCA); “randomForest”(4.6-14)和“A3”(1.0.0)包进行随机森林回归分析; “vegan”(2.5-7)包进行Adonis多元方差分析.绘图采用“ggplot2”(3.3.3)包、Origin2021b(学习版)、Adobe Illustrator2021和ArcMap10.2.文中数据以均值(mean)±标准偏差(SD)表示.
2 结果与讨论 2.1 常规水体指标如表 1和表 2所示, 涧沟流域面积广且周边面源输入强度高, 春夏两季涧沟水体EC、TDS、TUR、TN、NH4+-N和TP等水质指标均显著高于百川河(P < 0.05).春季时, 百川河和涧沟COD、DOC和Chla浓度水平并无显著性差异(P>0.05).水体温度春季[(11.35±0.33)℃]显著低于夏季[(29.2±0.33)℃](P < 0.001).夏季时, 随着水温升高、生物活动加剧和面源输入增加, 涧沟ρ(Chla)[(213.96±59.97)μg·L-1]和ρ(COD)[(63.07±19.05)mg·L-1]均显著高于百川河(P < 0.05).两条河流ρ(NH4+-N)和ρ(TN)均呈现出春季高夏季低的特征, 但ρ(TP)的春夏分布特征与氮相反.夏季降水增多, 河流陆地面源输入水平高于春季, 周边土壤中的氮和磷进入水体, 但夏季藻类和水生植物的生长繁殖进入旺盛期, 对于营养元素的需求也随之提高.藻类生长对于氮的需求量远高于磷[30], 两者需求量的差别造成了春夏两季水体中氮和磷浓度的变化趋势具有差异性.两条河流ρ(DOC)均表现出春季高于夏季的分布特征.Liu等[31]的研究表明长江和黄河中DOC含量雨季低于旱季, 降水会稀释水体中的有机物浓度, 春季微生物活动弱且光照强度也低于夏季.Lv等[32]的研究表明DOC中类腐殖质物质比例较高, 会表现出较强的光降解性, 在6~7 d的DOC降解实验中, 总DOC的损失为49.1%~66.0%, 微生物作用去除了总DOC的33.0%~47.3%, 而光降解去除了9.0%~35.3%.
![]() |
表 1 河流水体理化指标1) Table 1 Physical and chemical indicators of two rivers |
![]() |
表 2 河流水质指标1) Table 2 Water quality indicators of two rivers |
2.2 DOM紫外-可见吸收光谱特征
SUVA254用于表征DOM腐殖化程度, 与水体DOM腐殖化水平呈显著正相关[33].如图 2所示, 春季时, 百川河SUVA254为(1.64±0.73)L·(mg·m)-1, 与涧沟的(2.28±0.67)L·(mg·m)-1无显著性差异(P>0.05).但夏季时, 涧沟SUVA254为(5.19±1.21)L·(mg·m)-1, 显著高于百川河的(4.17±1.33)L·(mg·m)-1(P < 0.05).夏季河流陆源DOM输入增加, 水体中DOM相对分子质量、芳香性、疏水性和腐殖化程度相应增加, 两条河流SUVA254均表现出夏季高于春季的特征. SR值与DOM相对分子质量呈显著负相关[34].春季时, 涧沟SR为1.38±0.23, 与百川河的1.40±0.26无显著性差异(P>0.05), 但均显著高于夏季时的涧沟(1.06±0.01)和百川河(1.14±0.09)(P < 0.01), 呈现出明显的季节性差异.春季时, 涧沟和百川河水体中DOM以相对分子质量较小的物质为主.夏季时, 地表径流形成的面源过程将土壤中的大分子物质带入水体, 使河流水体SR值显著降低(水体中DOM相对分子质量增加).涧沟流经大面积建设用地、林地和草地进入研究区, 夏季地表径流将土壤中高芳香性陆源腐殖质组分带入水体, 使夏季涧沟呈现出最高的SUVA254和最低的SR.百川河周边建筑密集, 且地表植被覆盖程度高, 陆地面源输入水平低于涧沟.
![]() |
不同小写字母表示组间差异显著性(P < 0.05) 图 2 春夏两季河流水体SUVA254与SR指标分布 Fig. 2 Distribution of SUVA254 and SR in spring and summer of two rivers |
通过PARAFAC模型(R2=0.995 9)共解析出4个有意义的化学组分, 模型可靠性通过拆半检验(TCC>0.996 2)和残差分析得到了充分验证.模型数据上传至OpenFluor(https://openfluor.lablicate.com)数据库中进行匹配(TCC>0.95)以获得相应组分的信息[35].如图 3所示, C1在Ex/Em=255/390 nm处有单一激发和发射峰; C2在Ex/Em=275/340 nm处有单一激发和发射峰; C3在Ex/Em=265/460 nm处有激发和发射主峰, Ex/Em=365/460 nm处有二级峰. C4在Ex/Em=320/405 nm处有单一激发和发射峰. C1的Ex峰值位于255 nm处于短波紫外(UVC)区, 因此将C1归类为UVC类富里酸, 荧光信号接近于“A”峰区域[36]; C2可以归类为类蛋白质中的类色氨酸组分, 类似于“T”峰[37~39]; C3为陆源类胡敏酸组分, 其主副峰分别接近“A”峰和“C”峰[40~42]; C4的Ex峰值位于320 nm处, 位于长波紫外(UVA)范围内, 称之为UVA类富里酸, 其峰值接近“M”峰的位置, 类似于海洋类腐殖质组分[16, 43].所获得的组分C1、C3和C4归类为类腐殖质, 已在森林溪流、农业径流和湿地在内的广泛环境研究中得到确认, 是陆源输入、水体微生物活动和光化学氧化过程共同影响下的综合产物[44, 45].类色氨酸组分C2主要由水体生物活动产生, 能够很好地指示水体的自生源过程, 新鲜程度较高, 同时也有研究指出在人类排放的污水尾水中也含有类色氨酸组分[46]. C3组分Ex/Em=365/460 nm处次级峰强度显著弱于Ex/Em=365/460 nm处的主峰(图 3), Ex主峰位于UVC波段而次级峰位于UVA波段内, 前人研究表明地表所受紫外辐射约94%为UVA波段[47], 因此C3次级峰区域荧光物质受到的光化学氧化作用强于主峰区域.同时, C4激发峰部分位于UVA波段内, 易受到光化学氧化的影响.
![]() |
图 3 PARAFAC组分荧光图谱和相应激发-发射载荷 Fig. 3 Fluorescence profiles of PARAFAC components and excitation-emission loadings |
如图 4(a)所示, C1、C2、C3和C4荧光强度均值分别为(0.45±0.27)、(0.46±0.27)、(0.29±0.13)和(0.24±0.13)R.U., C1和C2的荧光强度显著高于C3和C4(P < 0.01), C1和C2为两条河流DOM的主要贡献组分.春夏两季, 涧沟各PARAFAC组分荧光强度均高于百川河对应组分.涧沟C1荧光强度夏季[(0.85±0.04)R.U.]显著高于春季[(0.49±0.13)R.U.](P < 0.05), 但百川河C1荧光强度春季[(0.31±0.17)R.U.]高于夏季[(0.27±0.09)R.U.](P>0.05). C3和C4荧光强度春夏变化趋势与C1类似.涧沟C2荧光强度夏季[(0.74±0.07)R.U.]与春季[(0.66±0.17)R.U.]无显著性差异(P>0.05), 但百川河C2荧光强度春季[(0.52±0.36)R.U.]显著高于夏季[(0.25±0.09)R.U.](P < 0.05).涧沟受到较强的面源输入影响, 水中高浓度的氮和磷促进了水体生物活动, 使C2荧光强度始终维持在高水平, 夏季水温升高, 生物活动进一步增强, C2荧光强度也随之增强.百川河水体依靠自然降水补充, 周边面源输入水平低, 水体中氮和磷浓度维持在较低水平, 生物活动弱于涧沟, 因此百川河C2荧光强度低于涧沟.夏季雨水充沛, 百川河汇集周边的雨水, 水体更替速度提高, C2荧光强度夏季显著低于春季(P < 0.05).除C2外, 百川河C1、C3和C4荧光强度分布也表现出春季高于夏季的现象.在本研究中, 面源输入水平高的河流, 春季水体各PARAFAC组分荧光强度均低于夏季, 而面源输入水平低的河流则表现出相反的特征.
![]() |
不同小写字母表示同一组分内差异显著性(P < 0.05); 不同大写字母表示组分间差异显著性(P < 0.05); 柱高为mean, 误差棒为SD 图 4 PARAFAC模型各组分荧光强度和相对丰度分布 Fig. 4 Fluorescence intensity and relative abundance of each component in the PARAFAC model |
如图 4(b)所示, C1、C2、C3和C4相对丰度均值分别为(31±4)%、(31±6)%、(21±3)%和(17±2)%, C1和C2相对丰度显著高于C3和C4(P < 0.01).涧沟和百川河C1相对丰度夏季均显著高于春季(P < 0.05), C4也有类似趋势.在C2相对丰度分布中, 涧沟和百川河都表现出春季显著高于夏季的特点(P < 0.05), 夏季降水活动频繁, 带入水体更多类腐殖质组分, 降低了水体DOM中C2的相对丰度.夏季百川河C3相对丰度为(23±2)%, 显著高于春季百川河[(19±2)%]、春季涧沟[(18±1)%]和夏季涧沟[(19±0.2)%](P < 0.05).夏季陆地面源过程显著提升了百川河水体中C3相对丰度, 百川河作为景观水体, 夏季水面覆盖率达到(44±35)%, 显著高于夏季涧沟的(17±8)%(P < 0.001).百川河水面生长着大面积的菖蒲和荷花遮挡水面, 削弱了太阳辐射的光化学氧化作用, 有利于水体DOM中类腐殖质成分的积累[8].
2.3.2 随机森林回归模型分析利用随机森林回归模型判断水体DOM构成对水体指标变化的敏感性及PARAFAC各组分相对丰度的主要预测变量.有研究基于随机森林回归模型识别了施用堆肥土壤中DOM结构变化的潜在驱动因素[48, 49], 并评估不同因素对DOM结构变化的贡献. Yang等[50]的研究使用随机森林回归模型评估了洛杉矶NO2、O3和PM2.5对新冠肺炎封锁不同阶段交通排放变化的敏感性.随机森林回归模型中拟合优度(%Var explained, R2)表明预测变量对响应变量的整体方差解释率, 其值越大表示响应变量受预测变量的影响越显著; 均方误差增加率(%Inc MSE)表示预测变量的重要性, 该值越大表明预测变量对模型的重要性越高[51].如图 5所示, 选取Cover、TUR、DO、NH4+-N、TN、TP、COD、DOC和Chla作为预测变量, PARAFAC各组分相对丰度C1%、C2%、C3%和C4%分别作为响应变量建立随机森林回归模型.4个模型拟合优度均高于阈值(P < 0.001), 选取的水体理化指标可以很好地预测DOM各PARAFAC组分构成变化情况.随机森林回归模型拟合优度由高到低排序为: C3%(R2=0.75)>C2%(R2=0.56)>C1%(R2=0.52)>C4%(R2=0.51), 相对于其它组分, C3可以更好地指示水体理化指标变化情况, 对水体指标变化更为敏感. C3作为陆源类胡敏酸组分, 表示着陆地面源输入水平, 更易驱动水质指标发生变化. Chla和TP为C1%的主要预测变量, 表明C1%的变化与水体富营养化状况有关. DOC为C2%主要预测变量, 水体中DOC浓度受到水体生物活动的影响. DOC和NH4+-N为C3%主要预测变量, C3具有较高的腐殖化水平、芳香性、C/H和疏水性, 可以显著提高水体DOC浓度. Cover和COD为C4%主要预测变量, C4为UVA类富里酸组分, 易受UVA光降解的影响[52], 因此Cover对C4具有显著的预测重要性(P < 0.001).
![]() |
模型拟合优度P值经过999次置换检验算得; A表示Cover, B表示TUR, C表示DO, D表示NH4+-N, E表示TN, F表示TP, G表示COD, H表示DOC, I表示Chla; 不同星号表示预测变量重要性显著性, *表示P < 0.05, **表示P < 0.01, ***表示P < 0.001; 空白填充表示P < 0.05的预测变量, 斜线填充表示P>0.05的预测变量 图 5 随机森林回归模型预测变量均方误差增加率和拟合优度 Fig. 5 The %Inc MSE and %Var explained of the random forest regression model |
FI用以表征DOM中类腐殖质组分的来源, FI>1.9表明了微生物代谢为DOM中类腐殖质主要来源, FI < 1.4表明以陆源输入类腐殖质为主要贡献[53].如图 6所示, 两条河流在春夏两季FI指数并无显著性差异(P>0.05), 其值介于1.4和1.9之间, DOM中类腐殖质来源介于微生物源和陆源之间.BIX反映了水体DOM自生源的贡献水平, BIX>1表明新生自生源占主要地位, 0.6~0.7表示自生源水平较低[54].夏季涧沟BIX指数为1.13±0.05, 显著高于春季涧沟(1.04±0.01)、春季百川河(1.05±0.06)和夏季百川河(1.04±0.08)(P < 0.05), 两条河流DOM均以自生源为主要来源.HIX为水体腐殖化程度的衡量指标[55], 夏季时, 百川河HIX指数均值为0.69±0.03, 显著高于春季百川河(0.62±0.02)、春季涧沟(0.63±0.02)和夏季涧沟(0.67±0.01)(P < 0.05). β∶α表示新生成的DOM所占比例[56], 其趋势与BIX指数类似, 夏季涧沟β∶α指数均值为1.02±0.03, 显著高于春季涧沟(0.94±0.02)和夏季百川河(0.95±0.06)(P < 0.05).百川河荧光参数分布离散程度高于涧沟(图 6), 百川河作为景观河流, 不同区域内设有维持水面高度的挡水坝, 水体混合程度低, 不同区域间水质变化幅度大.
![]() |
不同小写字母表示组间差异显著性(P < 0.05) 图 6 春夏两季河流水体FI、BIX、HIX和β∶α分布 Fig. 6 Distribution of FI, BIX, HIX, and β∶α in spring and summer of two rivers |
通过主成分分析(PCA)与Adonis检验探究DOM光谱参数和水质理化指标间的内在联系及指示作用[57], 选取了部分指标进行分析, KMO结果为0.73, Bartlett球形检验P < 0.001, 表明所选指标适合使用PCA进行分析. PCA结果如图 7所示, PC1和PC2共解释了所选指标66.3%方差变化, 其中PC1解释了36.8%的方差变化, PC2解释了29.5%的方差变化.
![]() |
(a)中不同颜色表示指标载荷强弱;(b)中椭圆为95%置信区间 图 7 水体指标和光谱参数主成分分析 Fig. 7 Principal component analysis of water indicators and spectral parameters |
如图 7(a)所示, PC1轴上TN、NH4+-N、TP、COD、Chla和TUR等水质参数具有强的正载荷, 表明PC1的正载荷方向指示高营养水平的水体. C2%、BIX、β∶α、FI和C1+C2+C3+C4(总荧光强度)位于PC1的正载荷方向上, 水体中氮和磷等营养物质促进了水体DOM自生源过程并提高了DOM总荧光强度.在水环境系统中, 碳、氮和磷的关系是密不可分的, 它们是微生物生长的营养物质, 也是构成某些DOM的必需元素, DOM的转化通常也受到氮和磷等营养物质的调节, 水体富营养化会导致DOM代谢的变化[58]. C3%和Cover在PC1负载荷方向上, 表明陆源类胡敏酸在低营养水平和太阳照射强度弱的水体中更易积累, 水体中的生物活动和太阳辐射会加速类腐殖质组分降解[32]. PC2轴上C2%、DOC和SR有强的负载荷, C1%、C3%、C4%、SUVA254、HIX和Cover有强的正载荷, PC2可作为判断水体DOM腐殖化水平的指标. DOC位于PC2的负载荷方向, 水体中DOC含量由小分子自生源物质贡献较多, Cover指标位于PC2正载荷方向, 光化学氧化过程可以改变DOM组成结构[8].
如图 7(b)所示, 将水样按河流和季节分为4组, 利用Adonis多元方差分析(基于Euclidean距离)对分组情况进行999次置换检验[59], 组间呈现显著性差异(R2=0.775, P < 0.001), 组间分离效果较好.涧沟水样主要位于PC1的正载荷方向上, 百川河水样主要位于PC1负载荷方向上, 这与PC1负方向所指代水体低营养水平相符.春季水样位于PC2负载荷方向, 夏季水样则位于PC2正载荷方向, 说明春季两条河流水体以低相对分子质量、弱芳香性和疏水性的DOM组分为主, 夏季陆地面源输入过程增加了水体的腐殖质化水平.陈昭宇等[60]研究了三峡库区城镇化河流DOM季节特征却显示DOM腐殖化水平春季高于夏季, 其研究区域受生活污水排放影响, 而本研究区域为陆地面源输入为主.
3 结论(1) 夏季两条河流DOM腐殖化水平和相对分子质量均显著高于春季(P < 0.05).
(2) 夏季涧沟(高面源输入河流)PARAFAC各组分荧光强度均高于春季, 而百川河(低面源输入河流)则相反. C1(UVC类富里酸)和C2(类色氨酸)是两条河流水体中DOM主要荧光组分.夏季面源输入过程改变了城市河流水体DOM构成, 两条河流C1相对丰度夏季高于春季, 而C2则相反. DOM含量与组成受到面源输入、生物活动、水体更替和光化学氧化等因素综合影响.
(3) 随机森林回归模型表明, C3(类胡敏酸)对水体指标变化敏感度高于其它PARAFAC组分, 对城市河流水质变化及面源输入水平具有较好的指示性作用.水面覆盖率(Cover)对C4(UVA类富里酸)预测重要性程度高, Cover能够显著影响水体DOM的腐殖化水平(P < 0.01).
(4) PCA结果表明, 城市河流水体中氮和磷的浓度与BIX、FI、β∶α、Chla和荧光强度密切相关, 是水体自生源过程的重要推动力.面源输入对水体DOM的影响需要从陆源物质输入和氮、磷浓度水平两个方面来综合考虑. Adonis检验结果表明, 春夏两季不同面源输入水平河流水体间呈现显著性差异(P < 0.001).
[1] | Yang L H, Li J Z, Zhou K K, et al. The effects of surface pollution on urban river water quality under rainfall events in Wuqing district, Tianjin, China[J]. Journal of Cleaner Production, 2021, 293. DOI:10.1016/j.jclepro.2021.126136 |
[2] | Chow M I, Lundin J I, Mitchell C J, et al. An urban stormwater runoff mortality syndrome in juvenile coho salmon[J]. Aquatic Toxicology, 2019, 214. DOI:10.1016/j.aquatox.2019.105231 |
[3] |
李定强, 刘嘉华, 袁再健, 等. 城市低影响开发面源污染治理措施研究进展与展望[J]. 生态环境学报, 2019, 28(10): 2110-2118. Li D Q, Liu J H, Yuan Z J, et al. Research advance and prospects on low impact development control measures for urban non-point source pollution[J]. Ecology and Environmental Sciences, 2019, 28(10): 2110-2118. |
[4] | Tredway J C, Havlick D G. Assessing the potential of low-impact development techniques on runoff and streamflow in the Templeton Gap Watershed, Colorado[J]. The Professional Geographer, 2017, 69(3): 372-382. DOI:10.1080/00330124.2016.1252272 |
[5] | Okaikue-Woodi F E K, Cherukumilli K, Ray J R. A critical review of contaminant removal by conventional and emerging media for urban stormwater treatment in the United States[J]. Water Research, 2020, 187. DOI:10.1016/j.watres.2020.116434 |
[6] | Delkash M, Al-Faraj F A M, Scholz M. Impacts of anthropogenic land use changes on nutrient concentrations in surface waterbodies: a review[J]. CLEAN - Soil, Air, Water, 2018, 46(5). DOI:10.1002/clen.201800051 |
[7] | Yang X L, Yu X B, Cheng J R, et al. Impacts of land-use on surface waters at the watershed scale in southeastern China: insight from fluorescence excitation-emission matrix and PARAFAC[J]. Science of the Total Environment, 2018, 627: 647-657. DOI:10.1016/j.scitotenv.2018.01.279 |
[8] | Song F H, Wu F C, Feng W Y, et al. Depth-dependent variations of dissolved organic matter composition and humification in a plateau lake using fluorescence spectroscopy[J]. Chemosphere, 2019, 225: 507-516. DOI:10.1016/j.chemosphere.2019.03.089 |
[9] | Kellerman A M, Kothawala D N, Dittmar T, et al. Persistence of dissolved organic matter in lakes related to its molecular characteristics[J]. Nature Geoscience, 2015, 8(6): 454-457. DOI:10.1038/ngeo2440 |
[10] | Williams C J, Frost P C, Morales-Williams A M, et al. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems[J]. Global Change Biology, 2016, 22(2): 613-626. DOI:10.1111/gcb.13094 |
[11] | He Y H, Song N, Jiang H L. Effects of dissolved organic matter leaching from macrophyte litter on black water events in shallow lakes[J]. Environmental Science and Pollution Research, 2018, 25(10): 9928-9939. DOI:10.1007/s11356-018-1267-0 |
[12] | Liu D, Du Y X, Yu S J, et al. Human activities determine quantity and composition of dissolved organic matter in lakes along the Yangtze River[J]. Water Research, 2020, 168. DOI:10.1016/j.watres.2019.115132 |
[13] |
何杰, 朱学惠, 魏彬, 等. 基于EEMs与UV-vis分析苏州汛期景观河道中DOM光谱特性与来源[J]. 环境科学, 2021, 42(4): 1889-1900. He J, Zhu X H, Wei B, et al. Spectral characteristics and sources of dissolved organic matter from landscape river during flood season in Suzhou based on EEMs and UV-vis[J]. Environmental Science, 2021, 42(4): 1889-1900. |
[14] | Tang J F, Li X H, Cao C L, et al. Compositional variety of dissolved organic matter and its correlation with water quality in peri-urban and urban river watersheds[J]. Ecological Indicators, 2019, 104: 459-469. DOI:10.1016/j.ecolind.2019.05.025 |
[15] | Li P H, Hur J. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: a review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(3): 131-154. DOI:10.1080/10643389.2017.1309186 |
[16] | Liu C, Du Y H, Yin H B, et al. Exchanges of nitrogen and phosphorus across the sediment-water interface influenced by the external suspended particulate matter and the residual matter after dredging[J]. Environmental Pollution, 2019, 246: 207-216. DOI:10.1016/j.envpol.2018.11.092 |
[17] | Carstea E M, Popa C L, Baker A, et al. In situ fluorescence measurements of dissolved organic matter: a review[J]. Science of the Total Environment, 2020, 699. DOI:10.1016/j.scitotenv.2019.134361 |
[18] | Li L, Wang Y, Zhang W J, et al. New advances in fluorescence excitation-emission matrix spectroscopy for the characterization of dissolved organic matter in drinking water treatment: a review[J]. Chemical Engineering Journal, 2020, 381. DOI:10.1016/j.cej.2019.122676 |
[19] | Xiao K, Yu J L, Wang S, et al. Relationship between fluorescence excitation-emission matrix properties and the relative degree of DOM hydrophobicity in wastewater treatment effluents[J]. Chemosphere, 2020, 254. DOI:10.1016/j.chemosphere.2020.126830 |
[20] | Cohen E, Levy G J, Borisover M. Fluorescent components of organic matter in wastewater: efficacy and selectivity of the water treatment[J]. Water Research, 2014, 55: 323-334. DOI:10.1016/j.watres.2014.02.040 |
[21] | He W, Hur J. Conservative behavior of fluorescence EEM-PARAFAC components in resin fractionation processes and its applicability for characterizing dissolved organic matter[J]. Water Research, 2015, 83: 217-226. DOI:10.1016/j.watres.2015.06.044 |
[22] |
李程遥, 黄廷林, 温成成, 等. 汛期暴雨径流对饮用水水库溶解性有机质(DOM)光谱特征的影响[J]. 环境科学, 2021, 42(3): 1391-1402. Li C Y, Huang T L, Wen C C, et al. Influence of storm runoff on the spectral characteristics of dissolved organic matter (DOM) in a drinking water reservoir during the flood season[J]. Environmental Science, 2021, 42(3): 1391-1402. |
[23] |
林少君, 贺立静, 黄沛生, 等. 浮游植物中叶绿素a提取方法的比较与改进[J]. 生态科学, 2005, 24(1): 9-11. Lin S J, He L J, Huang P S, et al. Comparison and improvement on the extraction method for chlorophyll a in phytoplankton[J]. Ecologic Science, 2005, 24(1): 9-11. DOI:10.3969/j.issn.1008-8873.2005.01.003 |
[24] |
俞晓琴, 崔扬, 陈慧敏, 等. 城市不同类型水体有色可溶性有机物来源组成特征[J]. 环境科学, 2021, 42(8): 3719-3729. Yu X Q, Cui Y, Chen H M, et al. Sources and optical dynamics of chromophoric dissolved organic matter in different types of urban water bodies[J]. Environmental Science, 2021, 42(8): 3719-3729. |
[25] | Krylov I N, Drozdova A N, Labutin T A. Albatross R package to study PARAFAC components of DOM fluorescence from mixing zones of arctic shelf seas[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 207. DOI:10.1016/j.chemolab.2020.104176 |
[26] | Pucher M, Wünsch U, Weigelhofer G, et al. staRdom: versatile software for analyzing spectroscopic data of dissolved organic matter in R[J]. Water, 2019, 11(11). DOI:10.3390/w11112366 |
[27] |
张紫薇, 周石磊, 陈召莹, 等. 河北省夏季降雨溶解性有机物光谱特征的空间分布、来源解析及氮素响应[J]. 环境科学, 2021, 42(11): 5250-5263. Zhang Z W, Zhou S L, Chen Z Y, et al. Spatial distribution characteristics of the spectrum, source analysis, and nitrogen response of dissolved organic matter in summer rainfall in the Hebei province[J]. Environmental Science, 2021, 42(11): 5250-5263. |
[28] |
刘堰杨, 秦纪洪, 刘琛, 等. 基于三维荧光及平行因子分析的川西高原河流水体CDOM特征[J]. 环境科学, 2018, 39(2): 720-728. Liu Y Y, Qin J H, Liu C, et al. Characteristics of chromophoric dissolved organic matter (CDOM) in rivers of western Sichuan plateau based on EEM-PARAFAC analysis[J]. Environmental Science, 2018, 39(2): 720-728. |
[29] |
李翔, 李致春, 汪旋, 等. 蓝藻衰亡过程中上覆水溶解性有机物变化特征[J]. 环境科学, 2021, 42(7): 3281-3290. Li X, Li Z C, Wang X, et al. Characteristics of dissolved organic matter in overlying water during algal bloom decay[J]. Environmental Science, 2021, 42(7): 3281-3290. |
[30] | Yaakob M A, Mohamed R M S R, Al-Gheethi A, et al. Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: an overview[J]. Cells, 2021, 10(2). DOI:10.3390/cells10020393 |
[31] | Liu D, Pan D L, Bai Y, et al. Variation of dissolved organic carbon transported by two Chinese rivers: the Changjiang River and Yellow River[J]. Marine Pollution Bulletin, 2015, 100(1): 60-69. DOI:10.1016/j.marpolbul.2015.09.029 |
[32] | Lv S C, Wang F, Yan W J, et al. DOC fluorescence properties and degradation in the Changjiang River Network, China: implications for estimating in-stream DOC removal[J]. Biogeochemistry, 2019, 145(3): 255-273. DOI:10.1007/s10533-019-00603-3 |
[33] | Weishaar J L, Aiken G R, Bergamaschi B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37(20): 4702-4708. |
[34] | Helms J R, Stubbins A, Ritchie J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2008, 53(3): 955-969. DOI:10.4319/lo.2008.53.3.0955 |
[35] | Murphy K R, Stedmon C A, Wenig P, et al. OpenFluor- an online spectral library of auto-fluorescence by organic compounds in the environment[J]. Analytical Methods, 2014, 6(3): 658-661. DOI:10.1039/C3AY41935E |
[36] | Zito P, Podgorski D C, Johnson J, et al. Molecular-level composition and acute toxicity of photosolubilized petrogenic carbon[J]. Environmental Science & Technology, 2019, 53(14): 8235-8243. |
[37] | Cabrera J M, García P E, Pedrozo F L, et al. Dynamics of the dissolved organic matter in a stream-lake system within an extremely acid to neutral pH range: agrio-caviahue watershed[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 235. DOI:10.1016/j.saa.2020.118278 |
[38] | Kim J, Kim T H, Park S R, et al. Factors controlling the distributions of dissolved organic matter in the East China Sea during summer[J]. Scientific Reports, 2020, 10(1). DOI:10.1038/s41598-020-68863-w |
[39] | Yan C X, Sheng Y R, Ju M, et al. Relationship between the characterization of natural colloids and metal elements in surface waters[J]. Environmental Science and Pollution Research, 2020, 27(25): 31872-31883. DOI:10.1007/s11356-020-09500-x |
[40] | Tomco P L, Zulueta R C, Miller L C, et al. DOC export is exceeded by C fixation in May Creek: a late-successional watershed of the Copper River Basin, Alaska[J]. PLoS One, 2019, 14(11). DOI:10.1371/journal.pone.0225271 |
[41] | Pitta E, Zeri C. The impact of combining data sets of fluorescence excitation-emission matrices of dissolved organic matter from various aquatic sources on the information retrieved by PARAFAC modeling[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 258. DOI:10.1016/j.saa.2021.119800 |
[42] | Kim J, Kim Y, Kang H W, et al. Tracing water mass fractions in the deep western Indian Ocean using fluorescent dissolved organic matter[J]. Marine Chemistry, 2020, 218. DOI:10.1016/j.marchem.2019.103720 |
[43] | Dalmagro H J, Lathuillière M J, da S Sallo F, et al. Streams with riparian forest buffers versus impoundments differ in discharge and DOM characteristics for pasture catchments in southern Amazonia[J]. Water, 2019, 11(2). DOI:10.3390/w11020390 |
[44] | Fellman J B, D'Amore D V, Hood E, et al. Fluorescence characteristics and biodegradability of dissolved organic matter in forest and wetland soils from coastal temperate watersheds in southeast Alaska[J]. Biogeochemistry, 2008, 88(2): 169-184. DOI:10.1007/s10533-008-9203-x |
[45] |
宁成武, 包妍, 黄涛, 等. 夏季巢湖入湖河流溶解性有机质来源及其空间变化[J]. 环境科学, 2021, 42(8): 3743-3752. Ning C W, Bao Y, Huang T, et al. Sources and spatial variation of dissolved organic matter in summer water of inflow rivers along Chaohu Lake watershed[J]. Environmental Science, 2021, 42(8): 3743-3752. |
[46] |
李梦雅, 宋钰莹, 张晓岚, 等. 蛋白类有机质在水厂各处理单元中的去除特性[J]. 环境科学, 2021, 42(7): 3348-3357. Li M Y, Song Y Y, Zhang X L, et al. Removal behavior of protein-like dissolved organic matter during different water treatment processes in full-scale drinking water treatment plants[J]. Environmental Science, 2021, 42(7): 3348-3357. |
[47] | Diffey B L. Sources and measurement of ultraviolet radiation[J]. Methods, 2002, 28(1): 4-13. DOI:10.1016/S1046-2023(02)00204-9 |
[48] | Trivedi P, Delgado-Baquerizo M, Trivedi C, et al. Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships[J]. The ISME Journal, 2016, 10(11): 2593-2604. DOI:10.1038/ismej.2016.65 |
[49] |
席北斗, 王燕, 檀文炳, 等. 土壤中溶解性有机质对不同类型堆肥的响应差异[J]. 环境科学, 2021, 42(7): 3565-3576. Xi B D, Wang Y, Tan W B, et al. Different responses of soil dissolved organic matter to different types of compost[J]. Environmental Science, 2021, 42(7): 3565-3576. |
[50] | Yang J N, Wen Y F, Wang Y, et al. From COVID-19 to future electrification: assessing traffic impacts on air quality by a machine-learning model[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(26). DOI:10.1073/pnas.2102705118 |
[51] | Jiao S, Chen W M, Wang J L, et al. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems[J]. Microbiome, 2018, 6(1). DOI:10.1186/s40168-018-0526-0 |
[52] |
赵紫凡, 孙欢, 苏雅玲. 基于紫外-可见光吸收光谱和三维荧光光谱的腐殖酸光降解组分特征分析[J]. 湖泊科学, 2019, 31(4): 1088-1098. Zhao Z F, Sun H, Su Y L. Photodegradation response of humic acid using UV-visible absorption and excitation-Emission matrix spectra[J]. Journal of Lake Sciences, 2019, 31(4): 1088-1098. |
[53] | Maie N, Parish K J, Watanabe A, et al. Chemical characteristics of dissolved organic nitrogen in an oligotrophic subtropical coastal ecosystem[J]. Geochimica et Cosmochimica Acta, 2006, 70(17): 4491-4506. DOI:10.1016/j.gca.2006.06.1554 |
[54] | Huguet A, Vacher L, Relexans S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009, 40(6): 706-719. DOI:10.1016/j.orggeochem.2009.03.002 |
[55] | Ohno T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science & Technology, 2002, 36(4): 742-746. |
[56] | Parlanti E, Wörz K, Geoffroy L, et al. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs[J]. Organic Geochemistry, 2000, 31(12): 1765-1781. DOI:10.1016/S0146-6380(00)00124-8 |
[57] |
周石磊, 孙悦, 苑世超, 等. 岗南水库沉积物间隙水有色溶解有机物的时空分布特征及差异分析[J]. 环境科学, 2020, 41(6): 2635-2645. Zhou S L, Sun Y, Yuan S C, et al. Temporal and spatial distribution characteristics and difference analysis of chromophoric dissolved organic matter in sediment interstitial water from Gangnan reservoir[J]. Environmental Science, 2020, 41(6): 2635-2645. DOI:10.3969/j.issn.1000-6923.2020.06.034 |
[58] | Maie N, Scully N M, Pisani O, et al. Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems[J]. Water Research, 2007, 41(3): 563-570. DOI:10.1016/j.watres.2006.11.006 |
[59] | Sylvain I A, Adams R I, Taylor J W. A different suite: the assemblage of distinct fungal communities in water-damaged units of a poorly-maintained public housing building[J]. PLoS One, 2019, 14(3). DOI:10.1371/journal.pone.0213355 |
[60] |
陈昭宇, 李思悦. 三峡库区城镇化影响下河流DOM光谱特征季节变化[J]. 环境科学, 2021, 42(1): 195-203. Chen Z Y, Li S Y. Seasonal variation of DOM spectral characteristics of rivers with different urbanization levels in the Three Gorges reservoir area[J]. Environmental Science, 2021, 42(1): 195-203. |